×
18.03.2020
220.018.0c9f

Результат интеллектуальной деятельности: Способ переработки гидролизной кислоты

Вид РИД

Изобретение

Аннотация: Изобретение относится к переработке отходов производства диоксида титана - гидролизной серной кислоты сульфатным способом с получением продуктов, используемых в химической, металлургической, электронной промышленности. Способ переработки гидролизной кислоты включает последовательное извлечение скандия из гидролизной серной кислоты методом жидкостной экстракции, извлечение серной кислоты сорбцией на низкоосновном поликонденсационном анионите с получением маточника сорбции серной кислоты, который для предотвращения окисления железа и одновременно извлечения титана обрабатывают фосфористой кислотой или солями её щелочных металлов и аммония, взятыми в мольном соотношении 0,5-3 от содержания титана в гидролизной кислоте, с получением фосфата титана в качестве конечного продукта и маточника фильтрации фосфата титана, который утилизируют. Техническим результатом изобретения является увеличение извлечения и чистоты получаемых продуктов. 2 табл., 2 пр.

Изобретение относится к переработке отходов производства диоксида титана сульфатным способом с получением продуктов используемых в химической, металлургической, электронной промышленности.

Сернокислотный метод производства диоксида титана из ильменита и титановых шлаков имеет ряд существенных недостатков - сложная многостадийная схема и значительное количество отходов - загрязненная примесями гидролизная серная кислота (ГСК).

Гидролизную кислоту после концентрирования нельзя возвращать в производственный цикл, из-за присутствующей в ней взвеси гидроксида титана, которая может стать причиной преждевременного гидролиза растворов.

Из методов утилизации ГСК наиболее изученным является метод термического разложения с получением SO2 и нейтрализации известковым молоком с получением гипса для стройматериалов и попутным извлечением гидроксида титана [Гимаев Р.Н., Кондаков Д.И., Сюняев З.И. и др. Современные методы утилизации сернокислотных отходов нефтепереработки и нефтехимии. М.: ЦНИИТЭНефтехим, 1973. - 97с.]. Недостатком данного метода является то, что переработка такого вида отходов (при переработке ильменитовых концентратов на 1 т TiO2 получается до 5 м3 ГСК), связана с большими дополнительными затратами, которые лишь частично компенсируются стоимостью полученных продуктов. Кроме того, при использовании данного метода безвозвратно теряются некоторые редкоземельные металлы, переходящие в ГСК из ильменита, например, скандий.

Наиболее практичным вариантом было бы возвращение ГСК в производственный цикл и, следовательно, сокращение ее общего потребления.

Предложен экстракционный способ [Еденбаев Б.Е., Стряпков А.В., Байков Х,И. Исследование экстракции серной кислоты три-н-октиламином. - Караганда: АН Каз. ССР. - 1974. - 26 с. - Деп. в ВИНИТИ. - 1978. - №207-75.] извлечения серной кислоты техническим три-н-октиламином из ГСК. В качестве экстрагента использовали растворы технического три-н-октиламина в керосине (1:1) и в трибутилфосфате (ТБФ) (1:1) с добавкой 5 об. % высшего спирта (н-гексилового спирта) или без его добавки. Экстрагент регенерировали отмывкой содовым раствором (60 г/дм3), 1 н. раствором едкого натра и водой. Время контакта фаз во всех случаях составляло 10 мин. Органическая фаза отмывалась от кислоты в одну ступень, разделение фаз было удовлетворительное. Варьируя отношением О:В на стадии реэкстракции, авторы показали возможность получения очищенных растворов H2SO4 с концентрацией 56-78 кг/м3.

Недостатком данного метода является большая растворимость органических экстрагентов и растворителей, что будет приводить к загрязнению как рафинатов экстракции, так и очищенной серной кислоты органическими продуктами. Данный метод, так же, не позволяет извлекать, достаточно дорогой скандий присутствующий в ГСК в количестве до 20 мг/дм3, что в двадцать раз превышает концентрацию скандия в растворах от переработки урановых руд – основного промышленного источника получения скандия.

Известен способ получения оксида скандия из сбросного раствора гидролизной кислоты производства пигментного диоксида титана сернокислотным способом (Фаворская Л.В., Кошулько Л.П., Преснецова В.А. Технология минерального сырья: Сб. статей. Вып. 2. Алма-Ата. Мингео Каз. ССР, 1975, С. 67-73.). При реализации способа скандий выделяют с помощью экстракции раствором ди(2-этилгексил)фосфорной кислоты (Ди2ЭГФК) 0,4 моль/л в керосине и соотношении фаз О:В = 1:100. Скандий реэкстрагируют твёрдым фтористым натрием (NaF). Содержание Sc2O3 в конечном продукте составило до 61%.

Недостатком данного способа является использование экстрагента Ди2ЭГФК, который, несмотря на то, что имеет большую ёмкость по Sc, но обладает незначительной селективностью по Sc в присутствии таких элементов как титан, цирконий, торий, РЗЭ, ванадий. В результате получается достаточно грязный оксид скандия. Кроме того, данный Экстрагент, при его использовании в технологии, проявляет склонность к эмульгированию, что затрудняет его эффективное использование; метод не позволяет извлекать титан из ГСК и регенерировать саму ГСК.

Известен способ получения концентрата скандия при сернокислотной переработке отходов алюминиевого производства (Weiwei Wang, Yoko Pranolo, Chu Yong Cheng Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA // Separation and Purification Technology 108 (2013) 96–102), включающий экстракцию скандия из сернокислого раствора на экстрагенте состоящем из смеси Ди2ЭГФК и ТБФ, с получением насыщенного экстрагента и рафината экстракции, промывку насыщенного экстрагента раствором H2SO4 = 50-200 г/дм3 и перекиси водорода (H2O2) = 5-20 г/дм3, реэкстракцию скандия раствором состоящим из смеси NaOH и Na2CO3, с получением концентрата скандия.

Несмотря на такие эффективные технологические приёмы как: использование смеси Ди2ЭГФК и ТБФ для понижения эмульгирования органической фазы, дополнительная очистка от ионов титана за счёт введения в промывной сернокислый раствор перекиси водорода, к недостаткам данного способа следует отнести невозможность попутного извлечения титана и очистку ГСК.

Наиболее близким по совокупности существенных признаков к заявляемому изобретению является способ переработки жидких отходов производства диоксида титана (Патент РФ №2651019, дат. рег. 18.04.2018г., «Способ переработки жидких отходов производства диоксида титана», Рычков В.Н., Кириллов Е.В., Кириллов С.В., Буньков Г.М., Боталов М.С., Смирнов А.Л., Машковцев М.А., Смышляев Д.В., заявка №2016137413, опубл. 19.09.2016 г.), где, согласно изобретению, сначала из гидролизной кислоты извлекают скандий методом жидкостной экстракции, далее из гидролизной кислоты извлекают серную кислоту сорбцией на низкоосновном поликонденсационном анионите, после чего из маточника сорбции серной кислоты извлекают титан сорбцией на низкоосновном полимеризационном анионите.

Преимуществом данного способа является комплексность переработки гидролизной кислоты с извлечением всех ценных компонентов и возвратом серной кислоты в основное производство. Однако, ввиду того, что гидролизная кислота является сложным в химическом плане продуктом, с большим содержанием солей, то после операции извлечения кислоты в оставшемся слабокислом растворе может наблюдаться эффект окисления железа (II) до железа (III). Полученное железо (III) в слабокислой среде начинает гидролизоваться с получением объемного студенистого осадка. В виду значительного содержания железа (II) в гидролизной кислоте это может привести к исчезновению текучести слабокислого раствора и получению вместо раствора студенистого осадка гидроксида железа (III). Если допустить протекание такого процесса, то дальнейшее извлечение титана, после извлечения серной кислоты, станет невозможным.

В основу изобретения положена задача, по созданию эффективного комплексного технологического процесса переработки жидких отходов производства диоксида титана.

При этом, техническим результатом заявляемого изобретения является, увеличение извлечения и чистоты получаемых продуктов.

Заявляемый технический результат достигается тем, что в способе переработки гидролизной кислоты, согласно изобретению, маточник сорбции серной кислоты обрабатывают фосфористой кислотой или солями ее щелочных металлов и аммония, взятыми в мольном соотношении 0,5-3 от содержания титана в гидролизной кислоте, с получением фосфата титана и маточника фильтрации фосфата титана, где фосфат титана является конечным продуктом, а маточник фильтрации фосфата титана утилизируют.

Использование фосфористой кислоты или солей ее щелочных металлов и аммония, на данной операции, позволит как стабилизировать железо (II) в слабокислотном растворе после извлечения серной кислоты из гидролизной кислоты за счет восстановительных функций фосфористой кислоты и солей ее щелочных металлов и аммония, так и перевести в осадок титан за счет образования труднорастворимого фосфата титана.

Добавка фосфористой кислоты или солей ее щелочных металлов и аммония, взятых в мольном соотношении менее 0,5 от содержания титана, не позволит достаточно полно выделить титан в виде осадка фосфата титана, а также создать восстановительную среду, препятствующую окислению железа (II) до железа (III). Добавка фосфористой кислоты или солей ее щелочных металлов и аммония, взятых в мольном соотношении более 3 от содержания титана, будет приводить к соосаждению фосфатов железа (II) с фосфатом титана и тем самым загрязнять фосфат титана, усложняя его дальнейшую переработку.

Осуществление заявляемого способа подтверждается следующими примерами.

Пример 1.

Гидролизную серную кислоту, согласно прототипу, приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ 1:3. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией 10 г/дм3. Отмытый экстрагент реэкстрагировали щелочным агентом с содержанием NaOH:Na2CO3 1:3. Рафинат экстракции скандия пропускали через стеклянную колонку диаметром 10 мм и высотой 30 мм, заполненную низкоосновным поликонденсационным анионитом, со скоростью 3 объема раствора через объем анионита в час до полного насыщения. Далее, полученный раствор разделяли на несколько равных частей и добавляли в каждую из них фосфористую кислоту в различном мольном соотношении относительно содержания титана. Полученную суспензию фильтровали. Маточник фильтрации анализировали.

Таблица 1

Концентрация элементов после добавления фосфористой кислоты при мольном соотношении фосфористая кислота : титан H2SO4 Fe Ti Si
Концентрация элементов перед добавлением фосфористой кислоты в маточник сорбции серной кислоты г/дм3 20 39 5 1
0,1 20 39 4,5 1
0,5 20 39 1,1 0,9
1 20 39 0,7 0,8
3 20 37 0,6 0,9
4 20 30 0,5 0,9

Из данных, приведенных в таблице 1 видно, что заданный интервал мольного соотношения фосфористой кислоты и титана позволяет перевести в осадок практически весь титан, при этом примеси остаются в растворе.

Пример 2.

Гидролизную серную кислоту приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ 1:3. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией 10 г/дм3. Отмытый экстрагент реэкстрагировали щелочным агентом с содержанием NaOH:Na2CO3 1:3. Рафинат экстракции скандия пропускали через стеклянную колонку диаметром 10 мм и высотой 30 мм, заполненную низкоосновным поликонденсационным анионитом, со скоростью 3 объема раствора через объем анионита в час до полного насыщения. Далее, полученный раствор разделяли на несколько равных частей и добавляли в каждую из них аммонийную, натриевую и калиевую соль фосфористой кислоты взятыми в мольном соотношении относительно содержания титана как 1:1 каждая. Полученную суспензию фильтровали. Маточник фильтрации анализировали.

Таблица 2

Концентрация элементов после добавления фосфористой кислоты при мольном соотношении фосфористая кислота : титан H2SO4 Fe Ti Si
Концентрация элементов перед добавлением фосфористой кислоты в маточник сорбции серной кислоты г/дм3 20 39 5 1
Аммонийная соль (NH4)2HPO3 20 37 0,6 1
Натриевая соль Nа2HPO3 20 38 0,7 0,9
Калиевая соль K2HPO3 20 39 0,6 0,9

Из данных, приведенных в таблице 2 видно, что использование взамен фосфористой кислоты солей её щелочных металлов так же приводит к эффективному осаждению фосфата титана.

Способ переработки гидролизной кислоты, включающий последовательное извлечение скандия из гидролизной кислоты методом жидкостной экстракции, далее извлечение серной кислоты сорбцией на низкоосновном поликонденсационном анионите, после чего из маточника сорбции серной кислоты извлекают титан, отличающийся тем, что титан извлекают путем обработки маточника сорбции серной кислоты фосфористой кислотой или солями её щелочных металлов и аммония, взятыми в мольном соотношении 0,5-3 от содержания титана в гидролизной кислоте, с получением фосфата титана и маточника фильтрации фосфата титана, где фосфат титана является конечным продуктом, а маточник фильтрации фосфата титана утилизируют.
Источник поступления информации: Роспатент

Showing 91-100 of 207 items.
11.10.2018
№218.016.904d

Устройство для получения пленок

Изобретение относится к области ионно-плазменного напыления многослойных пленок, в частности к устройству для получения многослойных пленок. Устройство содержит экранированную катод-мишень и подложкодержатель, расположенный в горизонтальном магнитном поле. При распылении центр подложки...
Тип: Изобретение
Номер охранного документа: 0002669259
Дата охранного документа: 09.10.2018
27.10.2018
№218.016.9750

Мобильный гелиоопреснитель

Изобретение относится к устройствам для дистилляции морских, загрязненных или минерализованных вод посредством использования только солнечной энергии. В корпусе опреснителя установлено последовательно несколько пар металлических листов с образованием зон конденсации, между листами в каждой паре...
Тип: Изобретение
Номер охранного документа: 0002670928
Дата охранного документа: 25.10.2018
04.12.2018
№218.016.a31e

Способ производства пористых имплантатов на основе металлических материалов

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ производства пористых имплантатов на основе титана или сплава титана ВТ6, включающий подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником...
Тип: Изобретение
Номер охранного документа: 0002673795
Дата охранного документа: 30.11.2018
13.12.2018
№218.016.a692

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. Получение концентрата скандия из скандийсодержащего раствора проводят сорбцией скандия из скандийсодержащего раствора на...
Тип: Изобретение
Номер охранного документа: 0002674717
Дата охранного документа: 12.12.2018
19.12.2018
№218.016.a856

Способ извлечения металлов из растворов

Изобретение относится к металлургии цветных металлов, в частности к извлечению благородных металлов из цианистых растворов цинком или алюминием. Способ включает контактирование растворов с электроотрицательным металлом, загруженным в донную конусную часть цементатора. Раствор подают снизу...
Тип: Изобретение
Номер охранного документа: 0002675135
Дата охранного документа: 17.12.2018
30.12.2019
№218.016.adb5

Имитатор радиолокационной цели

Изобретение относится к радиотехнике, а именно к радиолокации, и может быть использовано для настройки технических параметров радиолокационных станций (РЛС) на заводе-изготовителе и их проверки при регламентных работах в течение всего срока эксплуатации. Наиболее предпочтительно его...
Тип: Изобретение
Номер охранного документа: 0002676469
Дата охранного документа: 29.12.2018
18.01.2019
№219.016.b134

Способ изготовления труб

Изобретение относится к металлургии, к изготовлению стальных горячедеформированных труб и может использоваться при производстве труб горячей прокаткой на трубопрокатных агрегатах. Способ включает нагрев и прошивку заготовки с получением толстостенной гильзы, деформацию гильзы на оправке с...
Тип: Изобретение
Номер охранного документа: 0002677404
Дата охранного документа: 16.01.2019
19.01.2019
№219.016.b1be

Антенная решетка свч с щелями переменной геометрии

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть применено в составе бортовых радиолокационных систем с частотным сканированием. Антенная решетка СВЧ содержит дуговой волновод с вырезанными на внешней его стороне поперечными щелями. Длина щелей убывает по линейному или...
Тип: Изобретение
Номер охранного документа: 0002677496
Дата охранного документа: 17.01.2019
17.02.2019
№219.016.bbc6

Способ кучного выщелачивания золота

Изобретение относится к гидрометаллургии и может быть использовано при кучном выщелачивании золота из руд, концентратов и хвостов обогащения. Способ кучного выщелачивания золота включает обработку минерального сырья выщелачивающим раствором, окомкование, закладку окомкованной руды в штабель,...
Тип: Изобретение
Номер охранного документа: 0002680120
Дата охранного документа: 15.02.2019
21.03.2019
№219.016.ead7

Способ получения диаграммы направленности антенной решетки свч с частотным сканированием

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть применено в составе бортовых радиолокационных систем с частотным сканированием. Способ получения диаграммы направленности антенной решетки СВЧ с частотным сканированием, для чего генерируются сигналы с линейно-частотной...
Тип: Изобретение
Номер охранного документа: 0002682592
Дата охранного документа: 19.03.2019
Showing 31-34 of 34 items.
23.05.2023
№223.018.6e62

Способ комплексной переработки сидеритовых руд

Изобретение относится к черной металлургии, а именно к переработке высокомагнезиальных сидеритовых руд. Способ включает дробление и грохочение исходной руды, магнетизирующий обжиг, сухую магнитную сепарацию, доизмельчение извлеченной магнитной фракции, выщелачивание из нее магния, выделение...
Тип: Изобретение
Номер охранного документа: 0002795929
Дата охранного документа: 15.05.2023
16.06.2023
№223.018.7a2f

Способ производства автомобильного трехмаршрутного катализатора

Предложен способ производства автомобильного трехмаршрутного катализатора. Способ содержит стадии приготовления водной суспензии, содержащей композицию на основе оксидов церия и циркония, оксид алюминия, соль модификатора и раствор соли драгоценных металлов; нанесение суспензии на субстрат,...
Тип: Изобретение
Номер охранного документа: 0002738984
Дата охранного документа: 21.12.2020
16.06.2023
№223.018.7b8d

Способ синтеза композиции на основе оксида алюминия и твердого раствора оксидов церия и циркония

Изобретение относится к способам получения композиционных порошковых материалов гидрометаллургическим способом, а именно к композициям на основе стабилизированного оксида алюминия и твердого раствора оксидов церия и циркония, которые могут быть применены как носители каталитически активной фазы...
Тип: Изобретение
Номер охранного документа: 0002755558
Дата охранного документа: 17.09.2021
16.06.2023
№223.018.7c1a

Способ приготовления биметаллических палладий-родиевых катализаторов (варианты)

Изобретение относится к способам (вариантам) получения каталитических композиций, применяемых в качестве трехмаршрутных катализаторов нейтрализации автомобильных выхлопных газов. Первое изобретение относится к способу приготовления биметаллических палладий-родиевых катализаторов, включающему...
Тип: Изобретение
Номер охранного документа: 0002744920
Дата охранного документа: 17.03.2021
+ добавить свой РИД