×
16.06.2023
223.018.7c1a

Результат интеллектуальной деятельности: Способ приготовления биметаллических палладий-родиевых катализаторов (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам (вариантам) получения каталитических композиций, применяемых в качестве трехмаршрутных катализаторов нейтрализации автомобильных выхлопных газов. Первое изобретение относится к способу приготовления биметаллических палладий-родиевых катализаторов, включающему стадию нанесения комплексных солей на субстрат, сушку полупродукта и его последующий обжиг, при этом стадия нанесения комплексных солей представляет из себя нанесение двойных комплексных солей с формулой [ML][ML]X, где M и M = Rh или Pd, L = этилендиамин или аммиак, L = CO, X = противоионы, x, y и z – стехиометрические коэффициенты. Второе изобретение относится к способу приготовления биметаллических палладий-родиевых катализаторов, в котором стадия нанесения комплексных солей содержит следующие технологические операции: нанесение соединения типа [ML] X, где M = Rh или Pd, L = этилендиамин или аммиак, X = противоионы, x и y – стехиометрические коэффициенты, сушку в воздушной среде при комнатной температуре в течение 8-20 ч, затем в сушильном шкафу в воздушной среде при температуре 70-95 °С в течение 3-9 ч, нанесение соединения типа X[M L], где M = Rh или Pd, L = CO, X = противоионы, x и y – стехиометрические коэффициенты. Технический результат заключается в получении биметаллических палладий-родиевых катализаторов с высокой каталитической активностью при снижении затрат энергии и количества технологических растворов для утилизации. 2 н. и 4 з.п. ф-лы, 1 ил., 9 пр.

Изобретение относится к способам получения каталитических композиций, применяемых в качестве трехмаршрутных катализаторов нейтрализации автомобильных выхлопных газов. Более конкретно, изобретение относится к способам приготовления биметаллических катализаторов, содержащих наночастицы палладия и родия для очистки выхлопных газов автомобилей с бензиновыми двигателями.

Биметаллические палладий-родиевые катализаторы применяются как составная часть трехмаршрутных каталитических нейтрализаторов окисления оксида углерода, органических соединений и восстановления оксидов азота.

Наиболее широко используемые в настоящее время каталитические нейтрализаторы, на которых эффективно протекают процессы окисления оксида углерода, органических соединений и восстановления оксидов азота даже при относительно низких температурах и высоких скоростях потока, содержат Pt и/или Pd и Rh, нанесенные на носители: Al2O3, CeO2, ZrO2 и др. [Heck R. M. Catalytic air pollution control: commercial technology / R. M. Heck, R. J. Farrauto, S. T. Gulati. – Hoboken : John Wiley & Sons, 2009. – 518 с.]. Для повышения термической стабильности носителя, а также для увеличения емкости хранения кислорода (oxygen storage capacity - OSC) оксид алюминия часто легируется диоксидом циркония и/или оксидами редкоземельных элементов, например, Ce, La, Y.

Известен метод приготовления катализаторов [Exhaust treatment device: пат 1541220В1 Европейского Союза : МПК B 01 D 53/945 / Nunan J. G., патентообладатель Umicore AG and Co KG. - № 20040078285 ; заявл. 03.12.2003, опубл. 26.02.2014, Бюл. №2014/09], в котором оба активных металла (Pd/Pt и Rh), а также OSC компонент содержатся в одном слое каталитического блока. Катализаторы готовят с использованием технологии пропитки пористых носителей совместным раствором, содержащим соли платиновых металлов. Недостатком таких методов приготовления является создание каталитически активных компонентов катализатора, в которых образующиеся каталитически активные частицы родия и палладия никак не взаимодействуют между собой и находятся на поверхности оксидных носителей в виде отдельных монометаллических или оксидных фаз.

В результате такого подхода практически полностью исключается возможность образования биметаллических частиц в процессе синтеза катализатора, что приводит к снижению каталитической активности при работе катализатора в условиях высоких температур, вследствие укрупнения частиц Pd и диффузии Rh вглубь носителя.

Известно, что нанесение полиметаллических систем при приготовлении катализаторов имеет ряд преимуществ по сравнению с монометаллическими системами за счет возможного синергетического эффекта. Увеличение термической стабильности Pd-Rh катализаторов может быть достигнуто, если палладий и родий будут распределены на поверхности носителя в виде ультрадисперсных биметаллических частиц [Araya P. Synergism in the reaction of CO with O2 on bimetallic Rh-Pd catalysts supported on silica / P. Araya, V. Diaz // Journal of the Chemical Society, Faraday Transactions (1997) 93 (21):3887-3891. doi:10.1039/a703704j; Renzas J.R. Rh1−xPdx nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. / J.R. Renzas, W. Huang, Y. Zhang, M.E. Grass, D.T. Hoang, S. Alayoglu, D.R. Butcher, F. Tao, Z. Liu, G.A. Somorjai // Phys Chem Chem Phys (2011) 13 (7):2556-2562. doi:10.1039/c0cp01858a]. При этом уменьшение размера частиц приведет к увеличению каталитической активности, а образование твердого раствора существенно понизит вероятность укрупнения частиц Pd и диффузию Rh вглубь носителя.

Обычно полиметаллические катализаторы готовят как описано в способе [Способ приготовления нанесенных полиметаллических катализаторов (варианты): пат. 2294240 Рос. Федерация: МПК / Собянин В.А., Снытников П.В., Козлов Д.В., Воронцов А. В., Коренев С. В., Губанов А. И., Юсенко К. В., Шубин Ю. В., Венедиктов А. Б., патентообладатель Институт Катализа Имени Г.К. Борескова СО РАН, Институт неорганической химии имени А.В. Николаева СО РАН. - № 2005105230A: заявл. 24.02.2005, опубл. 27.02.2007, Бюл. №6]. Способ включает стадию нанесения комплексных солей на субстрат, сушку полупродукта и его последующий обжиг для получения готового продукта. Стадия нанесения комплексных солей подразумевает следующие технологические операции: нанесение прекурсора, несущего катионную часть, из соединений, содержащих в своем составе несколько лигандов, выбранных из: аммиака, галогенид-ионов, гидрокисл-иона, молекул воды или оксидов азота; сушку полупродукта; нанесение прекурсора, несущего анионную часть, из соединений, содержащих в своем составе несколько лигандов, выбранных из: галогенид-ионов; гидрокисл- или цианид-иона; молекул воды, оксидов азота и катионов, например, аммония; очередную сушку полупродукта; восстановление нанесенных компонентов в жидкой среде с использованием гидрозина, формальдегида, гипофосфита натрия или борогидрида натрия.

Одним из недостатков этого метода является использование такого типа комплексных солей, что осуществление восстановления катионов драгоценных металлов до нульвалентного состояния возможно только на отдельной технологической стадии, осуществляемой после стадии сушки.

Техническая проблема заключается в том, что сложная организация технологического процесса подразумевает большой расход энергии и значительное количество технологических растворов для утилизации, в том числе содержащих опасные химические соединения – сильные восстановители.

Авторы изобретения установили, что можно значительно упростить технологию получения полиметаллических катализаторов, изменив состав комплексных солей Pd и Rh.

Технический результат предлагаемого изобретения – получение биметаллических палладий-родиевых катализаторов с высокой каталитической активностью при снижении затрат энергии и количества технологических растворов для утилизации.

Технический результат достигается тем, что исходный носитель обрабатывают раствором специально приготовленного многокомпонентного прекурсора: двойных комплексных солей (ДКС) с общей формулой [M1L1]x[M2L2]yXz, где M1, M2 = Rh или Pd; L1 и L2 = углерод или азотсодержащие лиганды, например, C2O42–, этилендиамин, аммиак; X=противоионы (например, NO2, NO3, CO32– и др.); x, y и z – стехиометрические коэффициенты. Термическое разложение соединений, содержащих в своем составе лиганды, обладающие высокими восстановительными свойствами, позволяет получать наноразмерные биметаллические сплавы RhxPd1-x непосредственно на этапе термической обработки, что делает возможным исключение стадии восстановления в жидкой среде.

Суть способа приготовления биметаллического палладий-родиевого катализатора состоит в последовательности стадий нанесения многокомпонентного прекурсора на носитель и последующей термической обработки.

Сущность изобретения поясняется фигурами, где изображено:

- на Фиг. 1 – таблица с данными по каталитической активности и термическая стабильность образцов по Примерам 1-9.

На первой стадии исходный носитель (Al2O3, CeO2, CexZr1-xO2 и др.) обрабатывают раствором двойной комплексной соли (далее ДКС) таким образом, что на носителе осаждается координационное соединение, состоящие из комплексного катиона и комплексного аниона. В качестве катионов, например, могут быть использованы катионы [Rh(NH3)6]3+, [RhEn3]3+ и [PdEn2]2+, где En – этилендиамин, а в качестве анионов, например, могут быть использованы [PdOx2]2– и [RhOx3]3–, где Ox –
оксалат-анион C2O42–.

На второй стадии проводят термообработку нанесенной на поверхность носителя двойной комплексной соли. Термообработка заключается в сушке в воздушной среде при комнатной температуре в течение 8-20 ч., сушке в воздушной среде при температуре 100-115 °С в течение 3-9 ч., обжиге при температуре не менее 500 °С в течение 0.65-1.5 ч. в восстановительной, инертной или окислительной среде для перевода металлов-комплексообразователей в форму биметаллического сплава.

В случае низкой растворимости ДКС используют вариант нанесения, который состоит в последовательной пропитке носителя сначала раствором комплексной соли, содержащим только катионную часть ДКС (например [Rh(NH3)6](NO3)3), с последующим высушиванием в воздушной среде при комнатной температуре в течение 8-20 ч, затем в воздушной среде при температуре 70-95 °С в течение 3-9 ч. Затем высушенный образец пропитывают раствором комплексной соли, содержащим только анионную часть (например, (NH4)2[PdOx2]), с последующим высушиванием в воздушной среде при комнатной температуре в течение 8-20 ч, затем в воздушной среде при температуре 100-115 °С в течение 3-9 ч. В результате на поверхности носителя формируется необходимая ДКС, подвергающаяся восстановлению на стадии обжига при температуре не менее 500 °С в течение 0.65-1.5 ч. в восстановительной, инертной или окислительной среде.

Вид и характер противоионов не влияют на достижение технического результата. В качестве противоионов может быть использован любой анион, но наиболее предпочтительно использовать те противоионы, что не являются каталитическими ядами для будущих катализаторов, например, NH4+ и NO3 группы.

В предлагаемом подходе использование углеродсодержащих лигандов, которые являются хорошими восстановителями, позволяет восстанавливать благородные металлы-комплексообразователи до нульвалентного состояния даже в инертной и окислительной атмосферах. Побочные продукты легко удаляются в процессе синтеза в виде газообразных продуктов, не образуя соединений, загрязняющих поверхность катализатора и блокирующих активные частицы.

Предлагаемый способ приготовления биметаллического палладий-родиевого катализатора через образование ДКС на поверхности носителя позволяет максимально упростить процесс его приготовления и достичь селективного образования высокодисперсных биметаллических частиц RhxPd1-x на поверхности носителя.

Сущность изобретения может быть проиллюстрирована следующими примерами.

Пример 1.

Приготовление катализатора на основе оксида алюминия, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (Al2O3) при комнатной температуре прикапывают при тщательном перемешивании 15.0 мл 2.5·10-3 М раствора [RhEn3]2[PdOx2]3. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 8 ч, затем в воздушной среде при температуре 100 °С в течение 3 ч. Термообработку образца проводят в воздушной среде при 500 °C в течение 40 минут.

Далее измеряют каталитическую активность и термическую стабильность образцов в проточном реакторе в условиях форсированного термического старения. Реакционный поток, состоящий из 0.15 об. % CO, 14.0 об. % O2, 0.01 об.% NO, 0.01 об.% углеводородов (метан, пропилен, толуол) и азота (остальное), подают в реактор со скоростью 334 мл/мин. Каждый образец подвергают 7 циклам нагрева-охлаждения, варьируя конечную температуру цикла (320 °С для первых двух циклов, 600 °С для последующих двух циклов и 800 °С для последних трех циклов). Скорость подъема температуры во всех случаях составляет 10 °С/мин. Концентрацию СО измеряют при помощи проточного газового анализатора ULTRAMAT 6 фирмы Siemens. В качестве критерия каталитической активности и термической стабильности образцов используют температуру 50% превращения CO (Т50) в третьем, пятом и седьмом каталитическом цикле. Критерием термической стабильности используют разницу между активностью в седьмом и третьем цикле.

Полученные данные приведены в таблице 1.

Пример 2.

Приготовление катализатора на основе смешанного оксида церия и циркония, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (CexZr1-xO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 3.8·10-3 М раствора [PdEn2]3[RhOx3]2. Молярное соотношение Pd:Rh на поверхности носителя составляет 3:2. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 20 ч, затем в воздушной среде при температуре 115 °С в течение 9 ч. Термообработку образца проводят в воздушной среде при 600 °C в течение 1.5 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 3.

Приготовление катализатора на основе оксида церия, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (CeO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 3.8·10-3 М раствора [Rh(NH3)6]2[PdOx2]3. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 4.

Приготовление катализатора на основе оксида алюминия, содержащего 1.2 мас.% Pd и 0.8 мас.% Rh. К 10.0 г носителя (Al2O3) при комнатной температуре прикапывают при тщательном перемешивании 15.0 мл 0.05 М раствора [RhEn3](NO3)3. Далее пропитанный носитель сушат на воздухе при комнатной температуре в течение 12-16 ч, затем в сушильном шкафу при температуре 80-90 °С в течение 6 ч. После сушки образец охлаждают до комнатной температуры и прикапывают при тщательном перемешивании 15.0 мл 0.075 М раствора (NH4)2[PdOx2]. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 16 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят н в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 5.

Приготовление катализатора на основе смешанного оксида церия и циркония, содержащего 1.2 мас.% Pd и 0.8 мас.% Rh. К 10.0 г носителя (CexZr1-xO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 0.11 М раствора [PdEn2](NO3)2. Далее пропитанный носитель сушат на воздухе при комнатной температуре в течение 12-16 ч, затем в сушильном шкафу при температуре 80-90 °С в течение 6 ч. После сушки образец охлаждают до комнатной температуры и прикапывают при тщательном перемешивании 10.0 мл 0.75 М раствора (NH4)3[RhOx3]. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 6.

Приготовление катализатора на основе оксида церия, содержащего 1.2 мас.% Pd и 0.8 мас.% Rh. К 10.0 г носителя (CeO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 0.075 М раствора [Rh(NH3)6](NO3)3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 90°С в течение 6 ч. После сушки образец охлаждают до комнатной температуры и прикапывают при тщательном перемешивании 10.0 мл 0.11 М раствора (NH4)2[PdOx2]. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 7.

Способ по примеру 1, отличающийся тем, что термообработку образцов проводят в токе смеси 5 об.% водорода в аргоне при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 8.

Способ по примеру 1, отличающийся тем, что термообработку образцов проводят в токе азота при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 9 (сравнительный).

Приготовление катализатора на основе оксида алюминия, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (Al2O3) при комнатной температуре прикапывают при тщательном перемешивании 15.0 мл совместного раствора нитратов родия и палладия с концентрацией 0.05 М Rh и 0.075 М Pd. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат на воздухе при комнатной температуре в течение 12-16 ч, затем в сушильном шкафу при температуре 105 °С в течение 6 ч. Термообработку образца проводят на воздухе при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Источник поступления информации: Роспатент

Showing 1-10 of 207 items.
20.08.2016
№216.015.4acb

Способ удаления мелких частиц из крупнозернистого слоя сыпучих материалов

Изобретение относится к области разделения компонентов дисперсной сыпучей среды, различающихся размером, и может быть использовано в сельском хозяйстве для удаления посторонних примесей при очистке сельскохозяйственных зерновых культур (пшеница, рожь, ячмень и др.) от мелкодисперсной среды...
Тип: Изобретение
Номер охранного документа: 0002594494
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e31

Реактор для аэробной ферментации биомассы

Изобретение используется в сельском и лесном хозяйстве. Цилиндрический термостатированный корпус реактора установлен вертикально и содержит трубу загрузочного устройства, соединенную через подшипниковые узлы с кольцевой пустотелой трубой мешалки, на выходе которой подключена гребенка с...
Тип: Изобретение
Номер охранного документа: 0002595143
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e4e

Система управления тепловым режимом в комплексе "печь ванюкова - котел-утилизатор"

Изобретение относится к области металлургии и может быть использовано, например, в печи Ванюкова. Система дополнительно снабжена корректирующим регулятором соотношения шихта/кислородно-воздушная смесь по температуре в котле-утилизаторе, датчиком температуры котла-утилизатора, установленным на...
Тип: Изобретение
Номер охранного документа: 0002595188
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f6a

Способ упрочнения поверхности деталей обработкой трением с перемешиванием вращающимся инструментом

Изобретение относится к упрочнению плоских поверхностей заготовок. Осуществляют перемещение вращающегося упрочняющего инструмента по всей поверхности механически обработанной заготовки с установленными нагрузкой и скоростью по заданной траектории. Используют упрочняющий инструмент с рабочим...
Тип: Изобретение
Номер охранного документа: 0002595191
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.548e

Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра

Изобретение относится к гамма-спектрометрам с неорганическими сцинтилляторами, имеющими зависимость световыхода от энергии образованных в них гамма-квантами вторичных электронов. Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра включает преобразование с помощью...
Тип: Изобретение
Номер охранного документа: 0002593617
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5571

Способ получения извести

Изобретение относится к технологиям производства извести различного назначения, включая производство строительных материалов, и рекомендуется для предприятий мощностью от 10 до 300 тыс т в год. Технический результат заключается в повышении химической активности, улучшении технических и...
Тип: Изобретение
Номер охранного документа: 0002593396
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5d60

Валковый пресс для брикетирования

Изобретение относится к области обработки давлением и может быть использовано в оборудовании для брикетирования. Валковый пресс содержит станину, на которой размещены с возможностью вращения от привода валки. Валки выполнены с рядом формующих ячеек в форме плоского овала, последовательно...
Тип: Изобретение
Номер охранного документа: 0002590435
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e53

Брикет для легирования алюминиевого сплава

Изобретение относится к брикетам для легирования при выплавке алюминиевых сплавов. Брикет содержит стружку сплава алюминия с медью и частицы меди в количестве 20-40 мас.% от общей массы брикета. Частицы меди могут быть использованы в виде стружки. Обеспечивается погружение брикета в расплав при...
Тип: Изобретение
Номер охранного документа: 0002590441
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5fd3

Способ обработки металлов

Изобретение относится к области обработки металлов давлением. Способ включает формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с...
Тип: Изобретение
Номер охранного документа: 0002590437
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.669c

Волновая электростанция

Изобретение предназначено для выработки электрической энергии от движения волн в морях и океанах. Волновая электростанция содержит платформу на понтонах с размещенными на ней электрическим генератором и штангой с шестерней. На платформе с помощью стоек размещено дугообразное зубчатое коромысло....
Тип: Изобретение
Номер охранного документа: 0002592094
Дата охранного документа: 20.07.2016
Showing 1-10 of 44 items.
27.01.2013
№216.012.200f

Способ извлечения редкоземельных элементов из фосфогипса

Изобретение относится к технологии получения соединений редкоземельных элементов (РЗЭ) при комплексной переработке апатитов, в частности к извлечению РЗЭ из фосфогипса. Способ включает приготовление пульпы из фосфогипса и сорбцию редкоземельных элементов на сорбенте. Приготовление пульпы ведут...
Тип: Изобретение
Номер охранного документа: 0002473708
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.234b

Способ получения порошка оксида висмута (iii)

Изобретение может быть использовано в химической технологии. Способ получения порошка оксида висмута(III) включает окисление висмута кислородом во вращающемся реакторе с контролируемой атмосферой. При этом окислению подвергают смесь металлического висмута и порошка оксида висмута. Порошок...
Тип: Изобретение
Номер охранного документа: 0002474537
Дата охранного документа: 10.02.2013
27.03.2013
№216.012.30fe

Способ получения порошка оксида висмута (iii)

Изобретение может быть использовано в химической технологии. Способ получения порошка оксида висмута (III) включает окисление висмута кислородом во вращающемся реакторе с контролируемой атмосферой. Расплав висмута окисляют кислородом до получения оксидной смеси с содержанием висмута не более 93...
Тип: Изобретение
Номер охранного документа: 0002478080
Дата охранного документа: 27.03.2013
10.06.2013
№216.012.4896

Способ извлечения редкоземельных элементов из технологических и продуктивных растворов и пульп

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов. Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включает сорбцию...
Тип: Изобретение
Номер охранного документа: 0002484162
Дата охранного документа: 10.06.2013
10.08.2013
№216.012.5d51

Способ извлечения концентрата природного урана из сернокислых растворов подземного выщелачивания и установка для его осуществления

Изобретения относятся к гидрометаллургии и могут быть использованы для извлечения урана из продуктивных растворов и пульп, в частности для получения концентратов природного урана при сернокислотном подземном выщелачивании с использованием нитратно-сернокислотной десорбции анионита. Способ...
Тип: Изобретение
Номер охранного документа: 0002489510
Дата охранного документа: 10.08.2013
10.04.2014
№216.012.af69

Способ приготовления биметаллического катализатора окисления

Изобретение относится к области катализа. Описан способ приготовления биметаллического золотомедного катализатора окисления, включающий последовательные стадии нанесения предшественников металлов на носитель, и термообработки, в качестве предшественников золота и меди используют анионные и...
Тип: Изобретение
Номер охранного документа: 0002510620
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bea6

Способ извлечения висмута и германия из отходов производства кристаллов ортогерманата висмута

Изобретение относится к области гидрометаллургии рассеянных элементов, а именно к способу извлечения висмута и германия из вторичных источников сырья, образующегося при механической обработке оксидных материалов, в частности к способу извлечения висмута и германия из масло-абразивных отходов...
Тип: Изобретение
Номер охранного документа: 0002514546
Дата охранного документа: 27.04.2014
10.07.2014
№216.012.da14

Способ утилизации сбросных растворов в производстве тетрафторида урана

Изобретение относится к гидрометаллургии урана и может быть использовано для утилизации маточников, образующихся при получении тетрафторида урана из азотнокислых растворов с использованием процессов экстракции, реэкстракции и термообработки соединений урана, получаемых из реэкстрактов с...
Тип: Изобретение
Номер охранного документа: 0002521606
Дата охранного документа: 10.07.2014
20.08.2014
№216.012.ecec

Способ приготовления катализатора и способ получения пероксида водорода

Изобретение относится к способу получения катализатора окисления водорода молекулярным кислородом до пероксида водорода, включающему стадии нанесения предшественников металлов, а именно золота и палладия, на носитель и термообработки. При этом в качестве предшественников золота и палладия...
Тип: Изобретение
Номер охранного документа: 0002526460
Дата охранного документа: 20.08.2014
20.01.2016
№216.013.a134

Способ выщелачивания урана из руд

Изобретение относится к гидрометаллургическим способам переработки руд и может быть использовано для извлечения урана из рудных материалов подземным (ПВ) выщелачиванием. Новым в способе является дополнительная обработка предварительно приготовленного с нитритом натрия выщелачивающего раствора...
Тип: Изобретение
Номер охранного документа: 0002572910
Дата охранного документа: 20.01.2016
+ добавить свой РИД