×
14.03.2020
220.018.0bed

Результат интеллектуальной деятельности: Способ напыления защитных покрытий для интерметаллического сплава на основе гамма-алюминида титана

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам защиты легированных сплавов на основе титаналюминидов с преобладающей фазой γ-TiAl. Сплавы этого типа отличаются малой плотностью, высокой удельной прочностью и стойкостью к окислению и предназначены для изготовления конструкций, работающих при высоких температурах и нагрузках. На поверхность изделия из упомянутого сплава наносят порошок с содержанием компонентов, мас. %: Со 20-26, Cr 18-23, Al 6-11, Y 0.3-0.9, Та 2-6, Ni – остальное, с применением технологии высокоскоростного газопламенного напыления. Соотношение керосина и кислорода выбирают 1:1, давление в камере сгорания составляет более 4,9 МПа, скорость подачи порошка - 12-16 г/мин. Дистанция напыления составляет 250-350 мм, а скорость передвижения по поверхности сплава 0.3-0,7 м/с. Получают покрытие толщиной не менее 150 мкм. Способ обеспечивает повышение термостойкости сплава на основе TiAl до 920°С, высокие механические свойства при комнатной температуре и температуре эксплуатации. 2 ил., 1 табл., 1 пр.

Изобретение относится к способам защиты, в частности к способам защиты легированных сплавов на основе алюминидов титана с преобладающей фазой γ-TiAl и защитным покрытиям для них. Сплавы этого типа отличаются малой плотностью, высокой удельной прочностью и хорошей стойкостью к окислению, и предназначены для конструкционных применений при высоких температурах и нагрузках. В частности, такие сплавы с защитными покрытиями перспективны для изготовления турбины низкого давления газотурбинных двигателей.

Инновационные гамма-алюминиды титана, релевантные современному уровню техники (так называемые сплавы 3-го поколения), содержат 28.5-29.3 масс. % алюминия, и в качестве легирующих добавок переходные металлы, стабилизирующие первичную β-Ti фазу (также известную как В2-фаза), с которой начинается кристаллизация расплавов. Помимо Nb и Cr, используются такие β-стабилизаторы, как Мо, Та, Zr, W. Их применение приводит к сохранению в затвердевшем литом сплаве относительно малой объемной фракции стабилизированной В2-фазы, пластичной при высоких температурах.

Благодаря этому, механические свойства β-стабилизированных сплавов предусматривают возможность их эксплуатации при температурах до 800°С. Помимо надлежащих механических свойств при высоких температурах для применения в качестве материала деталей турбины низкого давления современных авиационных турбин необходимо поддержание баланса прочности и пластичности сплавов при комнатной температуре при котором сохраняется плотность сплава не более 4,2 г/см3.

В настоящий момент наилучшими характеристиками обладает интерметаллический сплав на основе TiAl, описанный в RU 2633135 С1 (опубл. 11.10.2017 г.), с содержанием компонентов в массовых %: алюминия 28.5-29.3, ниобия 11.2-15.4, хрома 1.2-3.7, циркония 2.2-4.3, бора 0.03-0.13, лантана ≤0.67, титан - остальное. В литом состоянии сплав имеет мелкодисперсную изотропную микроструктуру, плотность не более 4,2 г/см3, обладает повышенными прочностными характеристиками при температурах до 800°С и предельным удлинением более 1% при испытаниях на разрыв при комнатной температуре.

Основным недостатком данного сплава является недостаточная жаростойкость при температурах эксплуатации.

Традиционно для защиты деталей горячего тракта газотурбинных двигателей от воздействия высоких температур используются жаростойкие покрытия. На данный момент самыми распространенными материалами жаростойких покрытий являются сплавы из систем M-Cr-Al-Y (М=Ni, Со, Fe). В ходе эксплуатации деталей с жаростойкими покрытиями на их поверхности образуется защитная пленка (слой оксидов роста). Для обеспечения долговечности жаростойкого покрытия, пленка должна состоять преимущественно из α-Аl2О3, а ее формирование должно быть медленным, фазово-однородным и бездефектным. Такая пленка имеет очень низкую анионную проводимость, благодаря чему создает превосходный диффузионный барьер, замедляя дальнейшее окисление жаростойкого покрытия.

Жаростойкие покрытия традиционно наносят несколькими способами - осаждение из газовой фазы в вакууме и газотермическое напыление на воздухе. Каждый из этих методов обладает своими преимуществами и недостатками, которые являются следствием радикального отличия в механизме формирования и микроструктуре получаемых покрытий. Немаловажными преимуществами технологии газотермического напыления является возможность нанесения покрытий на крупногабаритные детали, высокая производительность, а также сравнительно низкая стоимость оборудования и нанесения жаростойких покрытий. Главным преимуществом вакуумных методов нанесения жаростойких покрытий является высокое качество (отсутствие пор, оксидных включений).

Среди методов газотермического напыления для нанесения жаростойких покрытий наибольшее распространение получили методы плазменного и высокоскоростного напыления. Процесс высокоскоростного (сверхзвукового) газопламенного напыления характеризуется высокой кинетикой процесса, скорость истечения газа составляет 1000-2000 м/с, при этом осаждаемый материал не расплавляется полностью, а лишь частично. В результате формируется плотное покрытие с пористостью менее 3%, имеющее высокую адгезию к подложке, практически без оксидных включений характерных для классического газопламенного или плазменного напыления. Нагрев порошка происходит за счет энергии сгорания топлива (керосин, ацетилен, пропан) в окислителе (кислороде, воздухе), а ускорение - за счет высокого давления в камере сгорания, за которой установлено сопло Лаваля (Фигура 1).

Известен способ получения многослойного защитного покрытия лопаток турбомашин из титановых сплавов, описанный в RU 2667191 С1 (опубл. 17.09.2018 г.), включающий вакуумно-плазменное конденсационное осаждение в качестве легирующих элементов хрома, алюминия и иттрия на поверхность лопаток и термическую обработку, отличающийся тем, что сначала осуществляют вакумно-плазменное конденсационное осаждение первого слоя из легирующих элементов сплава системы алюминий - кремний, а затем второго слоя из легирующих элементов сплава системы алюминий - хром - иттрий -никель, при этом термическую обработку проводят последовательно после получения каждого слоя при температуре не выше 850°С, причем первый слой защитного покрытия получают составом, содержащим масс. %: кремний 0,1-1,65; алюминий - остальное, а второй слой - составом, содержащим масс. %: алюминий 5-12, хром 20-25, иттрий 0,01-3,0, никель - остальное.

Основным недостатком данного решения является сложность процесса: необходимо нанести двухслойное покрытие, а также выполнить термическую обработку после нанесения каждого слоя покрытия.

Известен способ высокоскоростного газопламенного напыления на интерметаллические сплавы жаростойких покрытий на основе сплавов TiAl-Cr-Nb-Ta [Sienkiewicz, J., Kuroda, S., Murakami, H. et al. Microstructure and Oxidation Performance of TiAl-(Cr, Nb, Та) Coatings Fabricated by Warm Spray and High-Velocity Oxy-Fuel SprayingJ Therm Spray Tech (2019) 28: 563]. Такие покрытия обладают необходимой жаростойкостью вплоть до 750°С на базе 100 часов - на поверхности покрытия обнаружены оксиды титана и алюминия при отсутствии следов окисления на границе сплав-покрытие.

Основным недостатком данного решения является труднодоступность материалов покрытий такого класса, а также относительно невысокая максимальная температура эксплуатации.

Наиболее близким аналогом является способ получения защитного покрытия, описанный в RU 2619419 C2 (опубл. 15.05.2017 г.). Способ нанесения покрытия из алюминида титана на металлическое изделие включает холодное напыление алюминида титана на изделие для формирования покрытия из алюминида титана, причем покрытие из алюминида титана включает тонкую гамма/альфа2 структуру, а алюминид титана, нанесенный на изделие холодным напылением, имеет состав, включающий 45 масс. % титана и 50 масс. % алюминия.

Термин «металлический» в данном случае включает металлы, металлические сплавы, композиционные металлы и интерметаллические материалы. В варианте осуществления заявленного изобретения холодное напыление алюминида титана осуществляют из порошкового твердого сырья порошка сплава. Благодаря нанесению покрытия обеспечивается высокая стойкость к высокотемпературному окислению поверхности.

Основным недостатком данного решения является относительно невысокая максимальная температура эксплуатации покрытия.

Техническим результатом предлагаемого изобретения является повышение термостойкости (до 920°С) сплава на основе TiAl с содержанием компонентов в массовых %: алюминия 28.5-29.3, ниобия 11.2-15.4, хрома 1.2-3.7, циркония 2.2-4.3, бора 0.03-0.13, лантана ≤0.67, титан - остальное и придание ему тем самым необходимых механических свойств при комнатной температуре и температуре эксплуатации.

Для достижения указанного технического результата в предлагаемом способе получения защитных покрытий для интерметаллического сплава на основе гамма-алюминида титана, включающем нанесение покрытия с содержанием компонентов в массовых %: кобальт 20-26, хром 18-23, алюминий 6-11, иттрий 0.3-0.9, тантал 2-6, никель - остальное, путем высокоскоростного газопламенного напыления при соотношении керосина и кислорода - 1:1 и давлении в камере сгорания более 4,9 МПа со скоростью подачи порошка - 12-16 г/мин и дистанции напыления - 250-350 мм при скорости передвижения по поверхности сплава - 0.3-0,7 м/с, и толщине покрытия не менее 150 мкм.

Изобретение поясняется чертежом, где на фигуре 1 изображена схема высокоскоростного пистолета.

На фигуре 2 изображены фотографии поперечного сечения образца интерметаллического сплава с покрытием толщиной 150 мкм после проведения испытаний на термостойкость (электронная микроскопия). а) общий вид; б) распределение элементов; в) распределение алюминия.

С целью получения покрытий указанного состава, обладающих высокой плотностью (более 97%), выполнена оптимизация технологических параметров высокоскоростного газопламенного напыления.

Для отработки режимов высокоскоростного напыления использован метод планирования эксперимента. В качестве переменных параметров приняты: расход керосина (К), отношение керосин к кислороду (О), дистанция напыления (Д) и масса подаваемого порошка (П).

По заданной величине подачи порошка (П) подбирали расход транспортирующего газа. Для выбора оптимального режима анализировали: микроструктуру покрытий, пористость, наличие окисленных частиц, трещин, включений и коэффициент использования материала (КИМ).

По данным металлографического исследования, покрытия, полученные методом высокоскоростного напыления должны характеризоваться высокой плотностью и отсутствием дефектов микроструктуры (каверн, трещин, расслоений). При варьировании технологических параметров (-1, 0, +1 - минимальное, среднее и максимальное значение) изменяется толщина покрытия, КИМ, содержание окисленных и внедренных (не полностью расплавленных) частиц.

По заданному расходу керосина и отношению керосина к кислороду рассчитан необходимый расход кислорода. Опытным путем установлено, что оптимальное соотношение керосина к кислороду должно быть стехиометрическим.

На основе данных исследования микроструктуры покрытий и сопоставления их с параметрами напыления был проведен анализ вариабельности. На КИМ больше всего влияет подача порошка (П), причем с увеличением подачи (П: +1) он падает: не все частицы подаваемого порошка успевают прогреться и размягчиться в высокоскоростном потоке для формирования покрытия при ударе о подложку. Таким образом, для повышения эффективности использования порошка необходимо поддерживать его подачу на минимальном уровне (П: -1). На пористость и содержание окисленных частиц больше всего влияет расход керосина (К) вне зависимости от соотношения керосина к кислороду (О). С увеличением подачи керосина (К: +1) и пропорциональным увеличением подачи кислорода в микроструктуре покрытий растет количество окисленных частиц и снижается количество нерасплавленных частиц. Это связано с тем, что тепловая энергия газовой струи увеличивается и частицы порошка лучше прогреваются в ней. Повышение температуры частиц при нахождении в окислительной атмосфере, в свою очередь, ведет к интенсивному окислению поверхности. Для снижения содержания окисленных частиц в покрытии необходимо поддерживать подачу керосина на минимальном уровне (К: -1).

С целью получения покрытий указанного состава, обладающих высокой плотностью (более 97%), выполнена оптимизация технологических параметров высокоскоростного газопламенного напыления. В результате оптимизации получены следующие параметры:

- Соотношение керосина и кислорода - 1

При снижении соотношения повышается пористость и шероховатость покрытий, при повышении - количество включений не полностью расплавленных частиц.

- Давление в камере сгорания, МПа - более 4,9

Выбрано максимальное давление в камере сгорания, доступное на данной установке. При понижении давления в камере сгорания снижается скорость потока, соответственно снижается скорость частиц в потоке, которая влияет на прочность сцепления получаемых покрытий.

- Скорость подачи порошка, г/мин - 12-16

При снижении скорости подачи порошка, падает производительность процесса нанесения покрытия, при повышении - растут напряжения в покрытии, что может привести к его отслоению.

- Расстояние до стойки, мм - 250-350 мм

При снижении расстояния до стойки (250 мм и менее) растет тепловложение в подложку, что может вызвать ее разрушение, при повышении (350 мм и более) - покрытие перестает формироваться из-за охлаждения частиц.

- Поверхностная скорость, м/с - 0,3-0,7

При снижении поверхностной скорости (0,3 и менее) растет тепловложение в подложку, что может вызвать ее разрушение, при повышении (0,7 и более) - падает производительность.

Примеры:

На поверхность образцов из интерметаллического сплава на основе TiAl с содержанием компонентов в массовых %: алюминия 28.5-29.3, ниобия 11.2-15.4, хрома 1.2-3.7, циркония 2.2-4.3, бора 0.03-0.13, лантана ≤0.67, титан - остальное, методом высокоскоростного газопламенного напыления по оптимизированным параметрам нанесено защитное покрытие с содержанием компонентов в массовых %: кобальт 20-26, хром 18-23, алюминий 6-11, иттрий 0.3-0.9, тантал 2-6, никель - остальное.

В первом примере толщина покрытия составила 10 мкм (пример 1). Во втором -50 мкм (пример 2). В третьем - 150 мкм (пример 3).

Образцы сплава с нанесенным покрытием подвергли испытаниям на жаростойкость в следующих условиях: изотермическую выдержку образцов проводят в воздушной муфельной печи LT 40/12 (Nabertherm, Германия) при температуре (920±5)°С в течение 100 часов в атмосфере воздуха. Скорость нагрева поддерживается на уровне ~ 8°С/мин. После 100 часов выдержки образцы охлаждали в печи и подвергали тщательному исследованию.

По данным проведенных исследований, нанесение на указанный интерметаллический сплав покрытия указанного состава и плотности толщиной 10 мкм (пример 1) не обеспечивает полной защиты сплава от окисления в данных условиях из-за несплошности.

Нанесение на поверхность сплава покрытия указанного состава и плотности толщиной 50 мкм (пример 2) и 150 мкм (пример 3) - позволяет полностью предотвратить воздействие кислорода на указанный интерметаллический сплав.

В то же время, на плотности толщиной 150 мкм (пример 3) наблюдается наилучшие однородность. Результаты исследования поперечного сечения сплава с покрытием (пример 3) представлены ниже (фигура 2).

Проведенные исследования показали, что на границе сплав-покрытие отсутствуют следы окисления, покрытие (пример 3) полностью выполняет свою функцию. Нанесение покрытия большей толщины нецелесообразно с экономической точки зрения.

По данным рентгенофазового анализа поверхности покрытия (пример 3), выполненного после испытаний, приведены в таблице 1.

Проведенные рентгенофазовые исследования показали, что скорость окисления покрытия (пример 3) в данных условиях крайне мала, таким образом, покрытие полностью выполняет свою функцию.

Проведенные испытания при одностороннем газовом нагреве до 920°С подтвердили термостойкость покрытий.

Способ получения защитного покрытия на интерметаллическом сплаве на основе гамма-алюминида титана, включающий нанесение порошка, содержащего компоненты в следующем соотношении, мас.%: кобальт 20-26, хром 18-23, алюминий 6-11, иттрий 0.3-0.9, тантал 2-6, никель - остальное, путем высокоскоростного газопламенного напыления при соотношении керосина и кислорода 1:1 и давлении в камере сгорания более 4,9 МПа, при этом скорость подачи порошка составляет 12-16 г/мин, а дистанции напыления - 250-350 мм при скорости передвижения по напыляемой поверхности сплава 0.3-0,7 м/с, до получения покрытия толщиной не менее 150 мкм.
Способ напыления защитных покрытий для интерметаллического сплава на основе гамма-алюминида титана
Способ напыления защитных покрытий для интерметаллического сплава на основе гамма-алюминида титана
Источник поступления информации: Роспатент

Showing 121-130 of 322 items.
29.12.2017
№217.015.f3eb

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов, обеспечивающее снижение температуры синтеза и повышение...
Тип: Изобретение
Номер охранного документа: 0002637705
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f57e

Полиолефиновый композит, наполненный углеродными нанотрубками, для повышения электропроводности, модифицированный смесью полисилоксанов

Изобретение относится к области полимерных композиционных материалов, предназначенных для изготовления полимерматричных композитов, требующих повышенных значений электропроводности. Теплоэлектропроводный полиолефиновый композит, наполненный углеродными нанотрубками, содержит полиолефиновый...
Тип: Изобретение
Номер охранного документа: 0002637237
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f5e3

Биоактивная полимерная нить для осуществления послойной 3d-печати

Изобретение относится к композиционному материалу, выполненному в форме нити, на основе термопластичного полимера с добавлением биоактивного керамического компонента и может быть использовано для осуществления 3D-печати биорезорбируемых конструкций медицинского назначения методом наплавления...
Тип: Изобретение
Номер охранного документа: 0002637841
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f605

Способ производства чугуна дуплекс-процессом ромелт (варианты)

Изобретение относится к производству жидкого чугуна из бедных железных руд, содержащих 35-52% общего железа с отношением FeO/FeO больше 1,5 последовательно в двух печах барботажного типа, соединенных между собой желобом. В шлаковую ванну первой печи непрерывно загружают железную руду, уголь и...
Тип: Изобретение
Номер охранного документа: 0002637840
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f664

Способ получения электродов из сплавов на основе алюминида титана

Изобретение относится к области специальной металлургии, в частности к получению электродов из сплавов на основе алюминида титана. Способ включает получение литого интерметаллидного полуфабриката методом центробежного СВС-литья с использованием реакционной смеси при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002630157
Дата охранного документа: 05.09.2017
29.12.2017
№217.015.f66d

Система автоматического управления электрическим режимом плавильного агрегата с двумя источниками электронагрева с использованием интеллектуального датчика контроля агрегатного состояния расплавляемого металла

Изобретение относится к электрометаллургии и решает задачу управления режимом работы печного агрегата, содержащего два источника нагрева: сопротивлением и дугой постоянного тока. Технический результат - улучшение качества регулирования при нагреве материала в печи. Система автоматического...
Тип: Изобретение
Номер охранного документа: 0002630160
Дата охранного документа: 05.09.2017
29.12.2017
№217.015.f714

Манипулятор для замены погружного стакана на слябовой машине непрерывного литья заготовок

Изобретение относится к металлургии. Манипулятор содержит механизмы замены и уборки отработанного погружного стакана. Кинематическая схема механизма замены обеспечивает перемещение сменного погружного стакана по заданной траектории к разливочному устройству промежуточного ковша. Смена стаканов...
Тип: Изобретение
Номер охранного документа: 0002639089
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f732

Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения

Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления композиционных материалов на основе алюминиевого сплава с низким коэффициентом термического расширения для деталей автомобилестроения. Композиционный материал...
Тип: Изобретение
Номер охранного документа: 0002639088
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.fa36

Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов на основе сплавов редкоземельных металлов с железом и азотом, и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях...
Тип: Изобретение
Номер охранного документа: 0002639889
Дата охранного документа: 25.12.2017
29.12.2017
№217.015.fb13

Способ пирометаллургической переработки оксидных материалов

Изобретение относится к области черной металлургии. Способ включает подачу шихты, состоящей из перерабатываемого сырья, флюсов и углеродсодержащего материала, в плавильную зону двухзонной барботажной печи в предварительно расплавленные материал и флюс. Расплав передают в восстановительную зону,...
Тип: Изобретение
Номер охранного документа: 0002640110
Дата охранного документа: 26.12.2017
Showing 61-64 of 64 items.
07.07.2020
№220.018.306f

Устройство для нанесения металлополимерного покрытия

Изобретение относится к устройствам для нанесения металлополимерных покрытий и может быть использовано для изготовления, ремонта и упрочнения поверхностей в различных отраслях промышленности. Устройство для нанесения металлополимерного покрытия содержит пистолет-металлизатор, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002725785
Дата охранного документа: 06.07.2020
16.05.2023
№223.018.61ae

Деталь и сборочная единица соплового аппарата турбины высокого давления

Изобретение относится к области авиадвигателестроения, в частности к конструкции деталей и сборочных единиц (ДСЕ) соплового аппарата турбины высокого давления (СА ТВД) газотурбинного двигателя, преимущественно для высокоманевренных самолетов. Деталь сборочной единицы соплового аппарата турбины...
Тип: Изобретение
Номер охранного документа: 0002746196
Дата охранного документа: 08.04.2021
21.05.2023
№223.018.69af

Способ получения дискретно-армированного композитного материала

Изобретение относится к области технологий создания композиционных материалов, а именно к способу формирования в композиционном материале матрицы на основе подвергнутого термическому старению и низкотемпературной карбонизации полимера. Способ получения дискретно-армированного композитного...
Тип: Изобретение
Номер охранного документа: 0002794758
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6a18

Композитный материал для изготовления биполярных и монополярных пластин электрохимических ячеек и способ их изготовления

Изобретение относится к электрохимической промышленности, в частности к способу изготовления биполярных и монополярных пластин для электрохимических ячеек из высоконаполненных полимерных композитных материалов. Техническим результатом является получение биполярных и монополярных пластин...
Тип: Изобретение
Номер охранного документа: 0002795048
Дата охранного документа: 28.04.2023
+ добавить свой РИД