×
07.03.2020
220.018.0a5b

Результат интеллектуальной деятельности: Активный элемент на основе графена для газоанализаторов электропроводного типа

Вид РИД

Изобретение

Аннотация: Использование: для определения концентрации веществ в газах. Сущность изобретения заключается в том, что в качестве активного элемента электродов газоанализаторов используют графеновый материал, состоящий из волокон, образуемых свободным графеном, не связанным с физической подложкой из какого-либо другого материала. Технический результат: обеспечение возможности создания универсального газоанализатора для мониторинга малого содержания примесей различных газов. 2 ил., 3 табл.

Изобретение относится к измерительной технике, конкретно, к активным элементам на основе графена для газоанализаторов электропроводного типа, которые могут быть использованы для определения концентрации воды и кислорода в газах (аргоне, азоте, гелии), а также мониторинга окружающей среды на предмет определения состава газов и наличия вредных примесей аммиака, диоксида серы, метана, ацетилена, силана, хлора, и других газов для автоматического контроля технологических и химических процессов, взрывобезопасности, экологического контроля, в медицинских, военных целях и т.д.

Для измерения и контроля концентрации газов известны различные типы газоанализаторов, работающих на основе объемных (трехмерных) материалов, используемых в качестве активных элементов. Газоанализаторы, основанные на принципе ИК-поглощения являются специфическими, очень чувствительными и долговечными, но дорогими. Электрохимические газоанализаторы более дешевые, чем ИК-газоанализаторы, но имеют среднюю чувствительность и обладают низкой долговременной стабильностью. Газоанализаторы, работающие по принципу изменения теплопроводности, не очень селективны и нечувствительны, но являются долговременными и относительно низкими по стоимости.

Датчики, основанные на измерении электропроводности и удельного сопротивления являются точными, надежными, простыми в конструктивном исполнении и недорогими приборами. В них данные о концентрации газа, проходя через электроды с активными элементами, преобразуются непосредственно в электрический сигнал для регистрации которого используют измерительные приборы с достаточно простыми в настройке и эксплуатации электронными схемами. При этом активный элемент газоанализатора должен иметь достаточную химическую устойчивость, не образовывать соединений с адсорбируемыми молекулами, а также удовлетворять следующим основным критериям: высокая селективность и чувствительность, малое энергопотребление, небольшие габариты, высокая термическая и химическая стабильность, низкая себестоимость в условиях серийного производства.

Этим требованиям удовлетворяют углеродные материалы, состоящие из углеродных нанотрубок (УТ), в частности, графен, который представляет значительный интерес для использования в качестве сенсоров в газоанализирующих устройствах вследствие чрезвычайно высокого отношения поверхности к объему, поскольку изменение электропроводности активных чувствительных элементов при адсорбции на них газов тем больше, чем больше их удельная поверхность.

В отличие от всех известных трехмерных материалов графен, как двумерный материал, имеет наибольшую удельную поверхность (2630 м2/г) и существенно изменяет свои электропроводящие свойства в зависимости от молекул адсорбированного газа. Графен представляет собой полупроводник, в котором адсорбция некоторых молекул (например, NH3) может снижать его проводимость, а адсорбция других (например, NO2) увеличивать его проводимость. При этом, величина изменения проводимости (сопротивления) коррелируется с концентрацией молекул газа и возвращается к исходному значению после десорбции молекул газа [J. D. Fowler et al., Practical Chemical Sensors from Chemically Derived Graphene, ACS Nano, 3 (2009) 301; J.T. Robinson и др., Reduced Graphen Oxide Molecular Sensors, Nano Lett. 8 (2008) 3137; W. Yuan и др., Graphene-based gas sensors, J. Mater. Chem. A1 (2013) 10078]. Молекулярные газоанализаторы на основе графена, в отличие от трехмерных материалов, в которых молекулярная диффузия в объеме протекает медленно, могут восстанавливаться до первоначального сопротивления с высокой скоростью. Существенным преимуществом газоанализаторов на основе графена является его малый размер, что является несомненным достоинством при изготовлении переносных с автономным питанием и простых в обслуживании приборов для измерения и контроля концентрации газов.

Известен газоанализатор для измерения концентрации двуокиси углерода в различных средах (в воздухе помещения, в выхлопах промышленных установок и литий-ионных аккумуляторных батареях), активным элементом в котором является однослойный или многослойный графен, который может быть нелегирован или легирован различными элементами (например, азотом, бором, серой) (патент US №2015377824, МПК G01N 27/4073, 2015).

Согласно данному изобретению непрерывный слой графена может быть получен эксфолитацией (расслоением) графита, или путем эпитаксиального осаждения углерода на карбид кремния (SiC), или с помощью химического осаждения из газовой фазы. Для повышения сорбирующей способности в процессе анализа и десорбирующей способности при регенерации сенсора газоанализатора после проведения анализа, внешний слой графена обрабатывают соединениями класса халькогенидов, в частности, (CuO), (Сu2O), (CuS), (Cu2S), (ТiO2) и/или Сo3О4) методом химического либо электрохимического осаждения. В качестве материала для электродов используют электропроводящие материалы, как металлы (Au, Ni, Ti, Сu и другие металлы), так и неметаллы (графит, Si, легированный карбид кремния и т.п.).

К преимуществам газового газоанализатора с описанным активным элементом относятся его низкая стоимость, химическая стойкость, долговременная стабильность, высокий уровень селективности, низкая инерционность. Благодаря большой площади поверхности графенового сенсора чувствительность газоанализатора составляет менее 1 ррm. Недостатком описанного газоанализатора является ограничение возможности его использования только для анализа углекислого газа, сложность изготовления, в частности трудоемкость метода соединения частиц графена между собой, и необходимость осуществления дополнительной стадии функциализации графена с использованием халькогенидов металлов.

Известен графеновый газоанализатор для анализа содержания аммиака, который включает графеновый элемент, допированный на молекулярном уровне диоксидом азота (патент US №20170315075, МПК C01N 27/125, 2018). Концентрацию NH3 определяли путем измерения проводимости графенового элемента с помощью пары электродов напряжения и пары токовых электродов. Слой графена синтезировали методом газового осаждения на поверхностно окисленную кремниевую подложку, покрытую слоем SiO2 толщиной 300 нм с последующим осаждением на сформированный графеновый слой металлов (Сr - 5 nm /Аu - 45 nm), методом электроннолучевого испарения. Проведенное допирование повышает чувствительность газоанализатора более чем на порядок, обеспечивает малое время отклика, возможность проведения анализа при комнатной температуре и простое микроэлектронное интегрирование.

К недостаткам описанного газоанализатора относятся: возможность анализа только одного типа газа, высокая стоимость материалов и затрат на производство активного элемента.

Наиболее близким по технической сущности и принятым за прототип является газоанализатор с использованием в качестве чувствительного сенсора графена с протяженными дефектами (патент US №2012212242, МПК G01R 27/08, 2012,), что, по данным авторов, повышает чувствительность химического газоанализатора, поскольку искусственно созданные дефекты в сотообразной решетке графена (линии, кластеры, волны, зерна, трещины, каналы и т.д. длиной более, чем 30 нанометров с расстоянием между дефектами менее 50 мкм), влияют на его электрические свойства. В патенте рассматривают газоанализаторы, включающие как однослойный, так и графен из нескольких слоев.

Графен с протяженными дефектами готовили путем первоначального выращивания графена на медной фольге толщиной 35,5 мкм методом газового осаждения (Li et.al. Science 324 (5932) pp.1312-1314), которую предварительно отжигали при 1000°С в токе водорода или аргона в течение 60 минут, а затем выдерживали в токе метана (900 SCCM) и водорода (50 SCCM) в течение 20 минут при 1000°С и давлении 2 торр. Этот процесс приводил к росту поликристаллического графена на меди с размером зерна порядка сотен нанометров, что подтверждали методом КР спектроскопии.

Нанесение графена на электроды газоанализатора, изготовленные из Сr или Ti толщиной 5 нм и слоя золота толщиной от 100 до 300 нм, осуществляли методом оптической электронной литографии. Слой графена с одной стороны медной фольги покрывали полимерной пленкой ПММА, а с другой стороны удаляли плазменным травлением. Затем медную фольгу удаляли травлением в 1М растворе хлорида железа (FeCl3) в деионизованной воде. Оставшийся после травления на пленке ПММА графен переносили в деионизированную воду для промывки от остатков примесей. После промывки пленку ПММА со слоем графена переносили на сенсорную подложку с электродами. При этом, в процессе механического переноса на пленке графена образовывались складки, играющие роль протяженных дефектов. После выдержки в течение 30 минут графен приклеивали к сенсорным подложкам. Далее пленку ПММА удаляли растворением в растворе смеси метанола и метиленхлорида в объемных соотношениях 1/1. На конечной стадии для удаления остатков ПММА графен очищали в среде водорода и аргона при 400°С.

При сравнительном эксперименте по воздействию паров толуола и 1,2-дихлорбензола на изготовленный сенсор и бездефектный сенсор было установлено, что отклик на присутствие паров была на порядок быстрее, чем у бездефектного сенсора, что доказывает повышенную чувствительность газоанализаторов при наличии дефектов в структуре графена.

К недостаткам известного способа относятся его сложность, многостадийность, нетехнологичность, а также невозможность формирования воспроизводимых дефектов графена. Кроме того, не представлены данные по чувствительности полученного газоанализатора к различным газовым средам.

Для исключения вышеуказанных недостатков была поставлена задача по разработке нового активного элемента на основе графена для создания недорогого, простого в исполнении универсального газоанализатора электропроводного типа для мониторинга малого содержания примесей различных газов в окружающей среде, а также воды и кислорода в инертных газах, который не уступал бы по своим характеристикам газоанализаторам на основе графена, известным из уровня техники.

Поставленная задача достигается тем, что в качестве активного элемента газоанализатора электропроводного типа для определения газовых примесей и водяных паров в газе используют объемный материал в виде переплетенных между собой графеновых микротрубок, не связанный с физической подложкой из какого-либо другого материала.

Активный элемент на основе графена газоанализаторов электропроводного типа, отличающийся тем, что в качестве активного элемента газоанализаторов используют объемный материал в виде переплетенных между собой графеновых микротрубок, не связанный с физической подложкой из какого-либо другого материала.

Использование предлагаемого активного элемента на основе свободного графена позволяет создать недорогой, универсальный, простой в исполнении высокоскоростной газоанализатор с временем срабатывания менее 3 с, не требующий использования высокотехнологичной дорогостоящей техники и трудоемких технологий, таких, как электронной литографии, вакуумного осаждения, нанесения дополнительных полимерных слоев, химического травления.

Синтез графенового материала проводили по методике, описанной нами ранее (патент РФ №2611509, МПК С01В 31/02, 2017), следующим образом: порошок полиакрилонитрила, полученный методом суспензионной полимеризации, окисляют на воздухе при температуре 200-250°С. Затем окисленный полиакрилонитрил термообрабатывают при 1300-1800°С в атмосфере инертного газа. В результате формируется легко отделяемый от подложки сплошной слой объемного материала, состоящего из плотно переплетенных графеновых микротрубок диаметром 0,5-3 мкм.

Для формирования сенсора графеновый материал разрезают на фрагменты размером 5×5 мм, которые приклеивают к медным электродам на стеклотекстолитовых подложках проводящим клеем, содержащим частицы Ag. Далее определяют значения сопротивления графенового материала при низких величинах разности потенциалов (не более 1 мВ) и силе тока, протекающего через образец, не более 0,2 мА. Выбор таких малых напряжений и токов для исследования обусловлен необходимостью исключить влияние нагрева от выделяющегося джоулева тепла

Для иллюстрации работы газоанализатора с активным элементом на основе свободного графена была создана система подготовки испытательных газовых смесей, схема которой представлена на фиг. 1.

В систему подготовки испытательных газовых смесей входит: 1 - вакуумная камера с сенсором; 2 - нано вакуумметр; 3 - вакуумный измерительный разъем; 4 - смеситель с вентилями; 5 - ресивер; 6 - баллон с основным газом; 7 - редуктор; 8 - емкость с водой; 9 - регулятор потока паров воды; 10 - баллон с примесным газом; 11 - регулятор потока газа.

Для измерения электрофизических характеристик графеновых образцов в газовых средах и в условиях радиационного облучения был создан измерительный стенд на основе модулей системы КАМАК с цифровым источником малых напряжений и высокоточным аналого-цифровым преобразователем малых значений напряжения, а также высокоточного цифрового измерителя малых значений токов, структурная схема которого изображена на фиг. 2, где: 1 - вакуумная камера с сенсором; 12 - микроамперметр; 13 - гальванометр микроамперметра; 14 - внутреннее сопротивление микроамперметра; 15 - микровольтметр; 16 - цифроаналоговый преобразователь; 17 - аналого-цифровой преобразователь; 18 - крейт-контроллер; 19 - крейт КАМАК; 20 - компьютер.

Работа газоанализатора продемонстрирована примерами, результаты испытаний которых приведены в таблицах 1, 2 и 3.

Пример 1. Определение содержания паров воды в аргоне.

Сенсор, представляющий собой электроды с активным элементом на основе графена, помещали в вакуумную камеру 1 установки, блок-схема которой показана на фиг. 1, и через соединительные провода внутри камеры и вакуумный измерительный разъем 3 подсоединяли к внешнему измерительному стенду, изображенному на фиг. 2.

Далее вокруг электродов в вакуумной камере газоанализатора создавали газовые среды аргона как чистого при атмосферном давлении, так и с различным содержанием паров воды. Для этого в камере 1, в смесителе 4 и ресивере 5 с помощью системы вакуумирования создавали вакуум 101 Па.

Для проведения измерений в среде чистого аргона в камеру 1 из баллона 6 через редуктор 7 напускали аргон до давления 1атм (105 Па). И проводили измерения с помощью измерительного стенда (фиг. 2).

Для проведения измерений в среде аргона с заданным содержанием паров воды первоначально из емкости 8, через регулятор потока 9 в смеситель 4 и ресивер 5 напускали пары воды до заданного давления. Далее получали смесь аргона с водой. Для этого из баллона 6 через редуктор 7 в смеситель 4 и ресивер 5 напускали аргон до давления 1 атм (105 Па). Затем полученную газовую смесь из смесителя и ресивера напускали в измерительную камеру 1. Время изменения давления при напуске газа в измерительную камеру от вакуума до давления 1атм составляло менее 3 с. После чего проводили измерения с помощью измерительного стенда (фиг. 2).

Изменение содержания паров воды в аргоне вызывает соответствующее изменение электрического сопротивления при различных значения разности потенциалов (напряжения). Результаты измерений приведены в таблице 1.

Пример 2. Определение содержания примесей кислорода в азоте.

Сенсор, представляющий собой электроды с активным элементом на основе графена, помещали в вакуумную камеру 1 по примеру 1.

Далее, вокруг электродов в вакуумной камере газоанализатора создавали газовые среды азота как чистого при атмосферном давлении, так и с различным содержанием кислорода. Для этого в камере 1, в смесителе 4 и ресивере 5 с помощью системы вакуумирования создавали вакуум 101 Па.

Для проведения измерений в среде чистого азота в камеру 1 из баллона 6 через редуктор 7 напускали азот до давления 1 атм (105 Па) и проводили измерения.

Для проведения измерений в среде азота с заданным содержанием кислорода первоначально из баллона 10, через регулятор потока газа 11 в смеситель 4 и ресивер 5 напускали кислород до заданного давления. Далее получали смесь азота с кислородом. Для этого из баллона 6 через редуктор 7 в смеситель 4 и ресивер 5 напускали азот до давления 1атм (105 Па). Затем полученную газовую смесь из смесителя и ресивера напускали в измерительную камеру 1. Время изменения давления при напуске газа в измерительную камеру от вакуума до давления 1атм составляло менее 3 с. После чего проводили измерения с помощью измерительного стенда (фиг. 2).

Изменение содержания кислорода в азоте вызывает соответствующее изменение электрического сопротивления при различных значения разности потенциалов (напряжения). Результаты измерений приведены в таблице 2.

Пример 3. Определение содержания примесей аммиака в азоте.

Датчик, представляющий собой электроды с активным элементом на основе графена, помещали в вакуумную камеру 1 по примеру 1.

Далее, вокруг электродов в вакуумной камере газоанализатора создавали газовые среды азота как чистого при атмосферном давлении, так и с различным содержанием аммиака. Для этого в камере 1, в смесителе 4 и ресивере 5 с помощью системы вакуумирования создавали вакуум 101 Па.

Для проведения измерений в среде азота с заданным содержанием аммиака первоначально из баллона 10, через регулятор потока газа 11 в смеситель 4 и ресивер 5 напускали аммиак до заданного давления. Далее получали смесь азота с аммиаком. Для этого из баллона 6 через редуктор 7 в смеситель 4 и ресивер 5 напускали азот до давления 1 атм (105 Па). Затем полученную газовую смесь из смесителя и ресивера напускали в измерительную камеру 1. Время изменения давления при напуске газа в измерительную камеру от вакуума до давления 1атм составляло менее 3 с. После чего проводили измерения с помощью измерительного стенда (фиг. 2). Изменение содержания аммиака в азоте вызывает соответствующее изменение электрического сопротивления при различных значения разности потенциалов (напряжения). Результаты измерений приведены в таблице 3.

В процессе проведенных испытаний было установлено, что измеряемые значения электрического сопротивления изменялись практически мгновенно, сразу по окончании процесса напуска газа в вакуумную камеру, при этом время срабатывания газоанализатора составляет менее 3 с.

Приведенные примеры иллюстрируют, но не исчерпывают возможности использования предлагаемого активного элемента в универсальных газоанализирующих устройствах электропроводного типа для определения состава широкого спектра газовых смесей и содержания паров воды в различных газах.

Активный элемент на основе графена электродов для газоанализаторов электропроводного типа, отличающийся тем, что в качестве активного элемента электродов газоанализаторов используют графеновый материал, состоящий из волокон, образуемых свободным графеном, не связанным с физической подложкой из какого-либо другого материала.
Активный элемент на основе графена для газоанализаторов электропроводного типа
Активный элемент на основе графена для газоанализаторов электропроводного типа
Активный элемент на основе графена для газоанализаторов электропроводного типа
Источник поступления информации: Роспатент

Showing 41-45 of 45 items.
15.05.2023
№223.018.5a78

Универсальная пластичная смазка

Настоящее изобретение относится к смазочным материалам, в частности к пластичным смазкам, которые могут применяться для обеспечения работы различных узлов трения механизмов в широком интервале температур. Предложена универсальная пластичная смазка на синтетической основе, в качестве которой...
Тип: Изобретение
Номер охранного документа: 0002769692
Дата охранного документа: 05.04.2022
16.05.2023
№223.018.633e

Способ получения волокон смешанного шпинельно-гранатового состава

Изобретение относится к способам получения волокон смешанного оксидного состава MgAlO/YAlO для создания высокотемпературных керамокомпозитов с улучшенными механическими свойствами. Способ заключается в расплавном формовании полимерных волокон при 80-180°С из волокнообразующих...
Тип: Изобретение
Номер охранного документа: 0002776286
Дата охранного документа: 18.07.2022
16.05.2023
№223.018.640c

Способ получения триэтилалюминия

Изобретение относится к способу получения триэтилалюминия путем взаимодействия алюминия, водорода, затравки триэтилалюминия и этилена при повышенных температуре и давлении в две стадии, где на первой стадии проводят гидрирование алюминия, на второй стадии проводят алкилирование этиленом. При...
Тип: Изобретение
Номер охранного документа: 0002773423
Дата охранного документа: 03.06.2022
16.05.2023
№223.018.641b

Способ глубокой очистки бензола от тиофена

Изобретение относится к способу глубокой очистки бензола от тиофена ректификацией. Способ характеризуется тем, что процесс проводят в двух колоннах непрерывного действия под вакуумом при остаточном давлении вверху колонн 13 кПа, причем эффективность первой колонны 140 теоретических тарелок и...
Тип: Изобретение
Номер охранного документа: 0002773400
Дата охранного документа: 03.06.2022
16.05.2023
№223.018.6428

Способ разделения смеси алкилхлорсиланов и хлористого алкила

Изобретение относится к способу разделения смеси пыли кремния, абгазов процесса, хлористого алкила и алкилхлорсиланов. Способ характеризуется тем, что разделяемая смесь переменного состава поступает в кубовую часть ректификационной колонны, работающей с полным возвратом флегмы, и на колонне...
Тип: Изобретение
Номер охранного документа: 0002773401
Дата охранного документа: 03.06.2022
Showing 91-100 of 139 items.
10.04.2019
№219.017.0418

Способ получения аниона декагидро-клозо-декабората

Изобретение может быть использовано для получения аниона декагидро-клозо-декабората (BН ), соли которого применяют при электролитическом никелировании металлических изделий. Для получения указанного аниона берут раствор ундекабората натрия NaBH в диглиме, прибавляют трибутиламин, полученный...
Тип: Изобретение
Номер охранного документа: 0002378195
Дата охранного документа: 10.01.2010
19.04.2019
№219.017.2f25

Способ и устройство комбинированной защиты малоразмерных объектов

Изобретение предназначено для защиты малоразмерных наземных объектов. Способ заключается в постановке в атмосфере маскирующих аэрозольных завес, эффективных в видимом, ИК- и РЛ-диапазонах длин волн электромагнитного излучения (ЭМИ), и на подстилающей поверхности нескольких локально...
Тип: Изобретение
Номер охранного документа: 0002351877
Дата охранного документа: 10.04.2009
19.04.2019
№219.017.30ca

Способ глубокой очистки моносилана

Изобретение может быть использовано в производстве поли- и монокристаллического кремния высокой чистоты. Моносилан подвергают ректификации для удаления углеводородов, кипящих выше моносилана. Затем очищают моносилан от этилена на активном оксиде алюминия или на модифицированном платиной,...
Тип: Изобретение
Номер охранного документа: 0002410326
Дата охранного документа: 27.01.2011
29.04.2019
№219.017.40c8

Устройство для улавливания нанопорошков

Предлагается устройство для улавливания частиц нанопорошков металлов, их оксидов и сплавов с размерами частиц менее 1 мкм, предназначенных для использования в качестве активных наполнителей в полимерных и композитных материалах. Устройство содержит корпус в виде цилиндрической...
Тип: Изобретение
Номер охранного документа: 0002397140
Дата охранного документа: 20.08.2010
29.04.2019
№219.017.4608

Способ получения полидисперсных металлических пленок

Изобретение относится к радиотехнической, атомной и медицинской промышленности и может быть использовано для получения наполнителей современных композиционных защитных материалов, поглощающих электромагнитные и радиационные излучения. В реактор загружают порошок растворимого в воде химического...
Тип: Изобретение
Номер охранного документа: 0002447191
Дата охранного документа: 10.04.2012
09.05.2019
№219.017.4e39

Способ защиты объектов бронетанковой техники и устройство для его осуществления

Изобретение предназначено для защиты транспортных средств гражданского и военного назначения, преимущественно бронетанковой техники, от целеуказывающих и атакующих средств противника, действующих в широком диапазоне электромагнитного излучения: видимом, инфракрасном (ИК) и радиоволновом (РЛ). В...
Тип: Изобретение
Номер охранного документа: 0002321816
Дата охранного документа: 10.04.2008
18.05.2019
№219.017.53d0

Способ получения симметричных метилфенилдисилоксанов и гексафенилдисилоксана дегидроконденсацией триорганосиланов

Изобретение относится к химии и технологии получения симметричных гексаорганодисилоксанов. Предложен способ получения симметричных метилфенилдисилоксанов и гексафенилдисилоксана общей формулы [RRSi]O, где R - СН; R - СН; n=0÷2, дегидроконденсацией индивидуальных триорганосиланов вида RRSiH, в...
Тип: Изобретение
Номер охранного документа: 0002687736
Дата охранного документа: 16.05.2019
18.05.2019
№219.017.595c

Способ непрерывного получения моносилана

Изобретение может быть использовано в производстве полупроводникового кремния. Моносилан непрерывно получают из галогенида кремния и гидрида металла при их стехиометрическом соотношении в жидкой реакционной среде в одном вертикальном аппарате колонного типа, секционированном по высоте на...
Тип: Изобретение
Номер охранного документа: 0002414421
Дата охранного документа: 20.03.2011
29.05.2019
№219.017.63a7

Многоканальная ионизационная камера и прибор для мониторирования пучков заряженных частиц

Изобретение относится к области физики ядра и элементарных частиц. Сущность: камера включает в себя многоканальный катод, состоящий из изолированных металлических дорожек, нанесенных на полиимидную пленку; второй катод, выполненный из полиимидной пленки, покрытой с одной стороны сплошным слоем...
Тип: Изобретение
Номер охранного документа: 0002279693
Дата охранного документа: 10.07.2006
29.05.2019
№219.017.68ea

Устройство и способ получения высокодисперсного диоксида кремния

Изобретение относится к технологии получения высокодисперсного порошка диоксида кремния методом сжигания жидких кремнийсодержащих соединений (прекурсора) в пламени горючих газов. Устройство для получения порошка диоксида кремния с регулируемой дисперсностью состоит из блока горения (I) с...
Тип: Изобретение
Номер охранного документа: 0002435732
Дата охранного документа: 10.12.2011
+ добавить свой РИД