×
02.03.2020
220.018.07d1

Результат интеллектуальной деятельности: СВЧ - мостовой измеритель температуры

Вид РИД

Изобретение

№ охранного документа
0002715496
Дата охранного документа
28.02.2020
Аннотация: Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. Заявлен СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты, второй СВЧ-генератор с варакторной перестройкой частоты, третий СВЧ-генератор с варакторной перестройкой частоты, четвертый СВЧ-генератор с варакторной перестройкой частоты, второй источник питания, измеритель разности частот и частотомер. Причем вводы питания первого, второго, третьего и четвертого СВЧ-генераторов подключены к первому источнику питания, варактор третьего СВЧ-генератора подключен ко второму источнику питания, термопреобразователь через усилитель соединен с варактором четвертого СВЧ-генератора, вывод энергии третьего СВЧ-генератора соединен с первым входом измерителя разности частот и входом частотомера, вывод энергии четвертого СВЧ-генератора подключен ко второму входу измерителя разности частот, выход которого является выходом устройства. Технический результат - повышение точности измерения температуры. 1 ил.

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники.

Известно устройство, реализующее способ терморезистивного измерения температуры (см. RU 2198384 С2, 10.02.2003), содержащее катушку индуктивности (индуктор), находящейся вблизи проводящей поверхности исследуемого объекта (с зазором между катушкой и поверхностью исследуемого объекта), источник питания переменным током частотой. Согласно данному техническому решению, катушка индуктивности в этом случае, с точки зрения электротехники, представляется как воздушный трансформатор первичной и вторичной обмотками, имеющими активные и индуктивные сопротивления. Подача в катушку переменного тока с частотой, обеспечивает проникновение электромагнитной волны в металлическую стенку объекта на глубину, равную или меньшую толщины стенки объекта. После этого измеряют активное сопротивление катушки при известной температуре объекта и при искомой температуре. Затем по преобразованию измеренных активных сопротивлений при известной и искомой температуре, коэффициента сопротивления материала объекта измерения, известной температуры объекта и сопротивления катушки до помещения ее рядом с объектом измерения, вычисляют искомую температуру.

Недостатком этого известного технического решения является невысокая точность измерения из-за изменений активных сопротивлений в зависимости от температуры окружающей среды.

Наиболее близким техническим решением к предлагаемому, является принятое автором за прототип устройство для измерения температуры (см. RU 2190198 С2, 09.04.2001). Данное устройство содержит термопреобразователь сопротивления с тремя линиями связи, измерительный усилитель с двумя входами, формирователь тока, включающий операционный усилитель с токозадающим резистором и источником питания, резистор установки нуля, задатчик тока, цифроаналоговый преобразователь и сумматор. Суть работы устройства заключается в том, что формирователем тока создает в линии связи ток, протекающий через термопреобразователь сопротивления и резистор установки нуля. При этом величина этого тока определяется напряжением источника питания и сопротивлением токозадающего резистора. В результате на входах измерительного усилителя формируются напряжения, связанные с сопротивлением термрпреобразователя сопротивления при начальной температуре и сопротивлением термопреобразователя, вызванном изменением (отклонением) температуры от начальной, сопротивлениями линии связи и сопротивлением резистора установки нуля. В итоге на выходе усилителя получают напряжение, которое при определенных условиях, дает возможность вычислить изменение сопротивления термопреобразователя, т.е. определить измеряемую температуру.

К недостатку этого устройства можно отнести температурную погрешность, связанную с изменением сопротивлений линии связи из-за колебания температуры окружающей среды.

Техническим результатом данного устройства является повышение точности измерения температуры.

Технический результат достигается тем, что в СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты, второй СВЧ-генератор с варакторной перестройкой частоты, третий СВЧ-генератор с варакторной перестройкой частоты, четвертый СВЧ-генератор с варакторной перестройкой частоты, второй источник питания, измеритель разности частот и частотомер, причем вводы питания первого, второго, третьего и четвертого СВЧ-генераторов подключены к первому источнику питания, варактор третьего СВЧ-генератора подключен ко второму источнику питания, термопреобразователь через усилитель соединен с варактором четвертого СВЧ-генератора, вывод энергии третьего СВЧ-генератора соединен с первым входом измерителя разности частот и входом частотомера, вывод энергии четвертого СВЧ-генератора подключен ко второму входу измерителя разности частот, выход которого является выходом устройства.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что благодаря СВЧ-мосту, вычисление частоты перестраиваемого по частоте СВЧ-генератора в зависимости от изменения температуры контролируемого объекта, дает возможность измерить искомую температуру.

Наличие в заявляемом способе совокупности перечисленных существующих признаков, позволяет решить задачу измерения температуры, на основе вычисления частоты перестраиваемого по частоте СВЧ-генератора в зависимости от изменения температуры контролируемого объекта с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже представлена функциональная схема предлагаемого устройства. Устройство содержит первый источник питания 1, первый СВЧ-генератор с варакторной перестройкой частоты 2, второй СВЧ-генератор с варакторной перестройкой частоты 3, третий СВЧ-генератор с варакторной перестройкой частоты 4, четвертый СВЧ-генератор с варакторной перестройкой частоты 5, второй источник питания 6, термопреобразователь 7, усилитель 8, измеритель разности частот 9 и частотомер 10.

Устройство работает следующим образом. В основе работы предлагаемого устройства лежит мостовой метод измерения физических величин. Согласно предлагаемому устройству на базе четырех 2, 3, 4 и 5 СВЧ-генераторов с варакторной перестройкой частоты, строят измерительный мост. В одну из двух диагоналей моста включают первый источник питания 1 (осуществление электрического питания генераторов). Варактор третьего СВЧ-генератора 4, соединяют со вторым источником питания 6, а варактор четвертого СВЧ-генератора 5 - с выходом усилителя 8. Кроме того, выводы энергии третьего СВЧ-генератора и четвертого СВЧ-генератора, соединяют с первым и вторым входами измерителя разности частот 9 соответственно. Дополнительно вывод энергии третьего СВЧ-генератора соединяют с входом частотомера 10.

С помощью первого источника питания осуществляют питание всех четырех СВЧ-генераторов одновременно (ввод питания генераторных диодов). После этого на выводах энергии всех генераторов устанавливают электромагнитные колебания равными частотами и мощностями (вводы питания варакторов всех генераторов отключены). Далее выходной сигнал (информационный сигнал об искомом параметре) термопреобразователя 7, например, термоЭДС термопары, падают на вход усилителя 8. После усиления информационного сигнала о температуре в последнем, он поступает на варактор (ввод питания варактора) четвертого СВЧ-генератора. В силу этого четвертый СВЧ-генератор перестраивается по частоте, возрастает его частота. Другими словами частотный баланс СВЧ-моста нарушается. В данном случае для уравновешивания моста, на варактор (ввод питания варактора) третьего СВЧ-генератора, со второго источника питания, подают напряжение. Благодаря этому, третий СВЧ-генератор тоже перестраивается по частоте, т.е. его частота также становится больше, чем при отключенном состоянии его варактора. Для фиксации процесса уравновешения данного частотного моста, электромагнитные колебания третьего СВЧ-генератора и четвертого СВЧ-генератора (выводы энергии), подают на первый и второй входы измерителя разности частот соответственно. Здесь при равенстве поступивших на входы измерителя разности частот сигналов по частоте, обусловливает на его выходе нулевой сигнал. В данном случае, так как в зависимости от характера изменения температуры, сначала перестраивается по частоте (уменьшение или возрастание частоты) четвертый СВЧ-генератора, то слежение за изменением сигнала (сигнал нулевой частоты) на выходе измерителя разности частот с последующей перестройкой частоты третьего СВЧ-генератора (увеличение или уменьшение частоты благодаря изменению выходного напряжения второго источника питания), даст возможность во всех случаях, обеспечить нулевой сигнал по частоте, т.е. добиться уравновешивания СВЧ-моста.

При уравновешивании СВЧ-моста (мост сбалансирован), частотомером 10 измеряется частота третьего СВЧ-генератора (вывод энергии) и потом по формуле вычисляется искомое значение температуры

f4=f2⋅f3/f1,

где f1, f3 - частоты колебаний первого и второго СЧВ - генераторов соответственно (варакторы отключены), f2 - частота колебаний третьего СВЧ-генератора при его варакторной перестройке, f4 - частота колебаний четвертого СВЧ-генератора при его варакторной перестройке из-за изменения температуры контролируемого объекта.

Таким образом, в предлагаемом техническом решении, при равновесии СВЧ-моста, вычисление частоты перестраиваемого по частоте СВЧ-генератора в зависимости от изменения температуры контролируемого объекта, дает возможность, повысит точность измерения температуры.

В данном мостовом измерителе в качестве СВЧ-генераторов могут быть использованы лавинно-пролетные генераторы (ГЛПД - 2).

Предлагаемый мост помимо измерения температуры успешно может быть использован и для измерения других физических величин, например, тока и напряжения. Кроме того, одним из преимуществ данного СВЧ-моста по сравнению прототипа, является возможность передачи информационного сигнала (частоты) дистанционно на расстояние.

СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, отличающийся тем, что в него введены первый СВЧ-генератор с варакторной перестройкой частоты, второй СВЧ-генератор с варакторной перестройкой частоты, третий СВЧ-генератор с варакторной перестройкой частоты, четвертый СВЧ-генератор с варакторной перестройкой частоты, второй источник питания, измеритель разности частот и частотомер, причем вводы питания первого, второго, третьего и четвертого СВЧ-генераторов подключены к первому источнику питания, варактор третьего СВЧ-генератора подключен ко второму источнику питания, термопреобразователь через усилитель соединен с варактором четвертого СВЧ-генератора, вывод энергии третьего СВЧ-генератора соединен с первым входом измерителя разности частот и входом частотомера, вывод энергии четвертого СВЧ-генератора подключен ко второму входу измерителя разности частот, выход которого является выходом устройства.
СВЧ - мостовой измеритель температуры
СВЧ - мостовой измеритель температуры
Источник поступления информации: Роспатент

Showing 171-180 of 276 items.
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3a23

Устройство для идентификации стадии жизненного цикла тематики научных лабораторий

Изобретение относится к устройству для идентификации стадий жизненного цикла тематики научных лабораторий. Технический результат заключается в автоматизации определения конкретной стадии жизненного цикла исследований. Устройство содержит с первого по десятый входные регистры, с первого по...
Тип: Изобретение
Номер охранного документа: 0002647644
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.432a

Бесконтактный радиоволновый уровнемер

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности измерения в предлагаемом уровнемере - достигается тем, что он содержит последовательно соединенные модулятор, генератор...
Тип: Изобретение
Номер охранного документа: 0002649665
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4378

Способ измерения уровня и проводимости электропроводящей среды и устройство для его осуществления

Изобретения относятся к электрическим методам измерения и предназначены для определения уровня и проводимости электропроводящей жидкости в резервуарах в условиях неконтролируемого изменения ее проводимости. Предлагаемый способ измерения и устройство для его осуществления позволяют исключить эту...
Тип: Изобретение
Номер охранного документа: 0002649672
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.470b

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических,...
Тип: Изобретение
Номер охранного документа: 0002650605
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4741

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к...
Тип: Изобретение
Номер охранного документа: 0002650611
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.491d

Гибридный летательный аппарат

Изобретение относится к области воздухоплавательной техники. Гибридный летательный аппарат содержит оболочку и двигатели с воздушными винтами. Оболочка выполнена в форме тора и имеет внутренний жесткий каркас, при этом в центральном отверстии тора, перпендикулярно плоскости каркаса, установлена...
Тип: Изобретение
Номер охранного документа: 0002651305
Дата охранного документа: 19.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5686

Способ искусственной перекачки физиологической жидкости

Изобретение относится к кардиологии и может быть использовано для перекачивания крови. Способ осуществляется с помощью насоса, в котором используют волнообразное движение текучей среды в замкнутом объеме, создаваемое сжатием и растяжением пьезоэлементов путем подачи переменного трехфазного...
Тип: Изобретение
Номер охранного документа: 0002654618
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5721

Устройство для измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др. Устройство содержит генератор СВЧ, передающую и приемную...
Тип: Изобретение
Номер охранного документа: 0002654929
Дата охранного документа: 23.05.2018
Showing 11-14 of 14 items.
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
16.05.2023
№223.018.5dad

Устройство для определения концентрации выхлопных газов в газоходе дизельных автомобилей и очистки от газов

Изобретение относится к очистке отработавших газов дизельных двигателей внутреннего сгорания и регенерации сажевых фильтров. Предложенное устройство содержит сажевый фильтр, первый СВЧ-генератор, второй СВЧ-генератор, усилитель и компаратор. При этом в него введены первый элемент ввода...
Тип: Изобретение
Номер охранного документа: 0002757745
Дата охранного документа: 21.10.2021
03.06.2023
№223.018.76af

Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу

Изобретение относится к области приборостроения, в частности к способам измерения расхода потоков веществ. Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу, заключается в том, что поток контролируемой среды нагревают микроволновым излучением. Сначала...
Тип: Изобретение
Номер охранного документа: 0002748325
Дата охранного документа: 24.05.2021
05.06.2023
№223.018.7730

Устройство для молниеотвода от привязного коптера

Изобретение относится к средствам защиты объектов различного назначения при прямом или близком воздействии молниевых разрядов, электромагнитных импульсов (ЭМИ), коротких замыканий и коммутаций энергооборудования, в частности к средствам молниезащиты, беспилотных летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002767515
Дата охранного документа: 17.03.2022
+ добавить свой РИД