×
28.02.2020
220.018.06b4

Результат интеллектуальной деятельности: Универсальная гелиотермоэлектростанция

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплоэлектроэнергетике и может быть использовано для утилизации тепловой энергии природных источников, а именно для прямой трансформации солнечной энергии в электрическую в различных условиях. Гелиотермоэлектростанция содержит прямоугольную плоскость, собранную из прямоугольных секций, каждая из которых представляет собой фототеплотрубнотермоэлектрический преобразователь, покрытый гидроизоляционной пленкой, внутри которой помещены фотоэлемент, присоединенный своей тыльной стороной к теплотрубному теплообменнику, выполненному в форме прямоугольного корпуса, крышка и днище которого покрыты изнутри решеткой, выполненной из полос капиллярного материала, частично заполненного рабочей жидкостью, в полости корпуса решетки крышки и днища соединены между собой вертикальными фитилями, также частично заполненными рабочей жидкостью и покрытыми цилиндрическим кожухами с треугольными прорезями, выполненными на их верхних и нижних торцах и прикрепленными к крышке и днищу корпуса. Изобретение обеспечивает эффективности универсальной гелиотермоэлектростанции 7 ил.

Предлагаемое изобретение относится к теплоэлектроэнергетике и может быть использовано для утилизации тепловой энергии природных источников, а именно, для прямой трансформации солнечной энергии в электрическую в различных условиях.

Известна теплотрубная гелиотермоэлектростанция, включающая поддон с отверстием в днище, закрытый сверху крышкой, выполненной из материала с высокой тепловодностью и покрытой фотоэлементами, внутренняя сторона которой покрыта решеткой, выполненной из полос пористого материала, при этом отверстие поддона соединено с верхним торцом вертикальной трубы, нижний торец которой заглушен, выполненной из материала с высокой тепловодностью, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная вышеупомянутым пористым материалом, верхний и нижний торцы подъемной трубы отступают от нижнего торца вертикальной трубы и внутренней поверхности крышки поддона на расстояние ∆, образуя щели, пространство которых также заполнено пористым материалом, соприкасающимся с нижним торцом внизу и решеткой верхней крышки вверху, причем стенка вертикальной трубы выполнена с вертикальными гофрами, внутри каждого гофра размещены вертикальные пазы длиной L, в каждый из которых вставлен вертикальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 900 а сами проволочные отрезки расположены параллельно друг другу, образуя П–образные ряды, нижние крайние проволочные отрезки каждой пары П–образных рядов термоэлектрических преобразователей, соединены между собой перемычками, сверху каждая пара П–образных рядов, соединены между собой через электрические конденсаторы, первый и последний из которых и фотоэлементы соединены с выходными коллекторами, накопительным блоком и потребителем [Патент РФ №2630363, МПК E 04 C2/26, 2017].

Основными недостатками известной теплотрубной гелиотермоэлектростанции являются ее жесткая привязка к определенному участку местности, что резко ограничивает диапазон ее использования и снижает эффективность.

Более близким к предлагаемому изобретению является походная гелиотермоэлектростанция, включающая ковер (плоскость), собранный из прямоугольных секций, каждая из которых представляет собой фототермоэлектрический преобразователь, покрытый гидроизоляционной пленкой, внутри которой помещены фотоэлемент, присоединенный своей тыльной стороной к наружной стороне корпуса термоэлектрического преобразователя, выполненного из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 900 и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а сами парные проволочные отрезки расположены параллельно друг другу, образуя П–образные ряды, крайние проволочные отрезки крайних П–образных рядов термоэлектрических преобразователей и фотоэлементы через свои клеммы в каждом вертикальном ряду фототермоэлектрических преобразователей ковра соединены между собой последовательно через электрические конденсаторы, перемычки с выходными коллекторами, выходные клеммы которых, в свою очередь, соединены с накопительным блоком [Патент РФ №2622425, МПК E 04 C2/26, 2017].

Основным недостатком известной походной гелиотермоэлектростанции является невозможность использования тепла, выделяющегося из фотоэлементов при генерации электричества, что снижает ее эффективность.

Техническим результатом предлагаемого изобретения являются повышение эффективности универсальной гелиотермоэлектростанции.

Технический результат достигается универсальной гелиотермоэлектростанцией, содержащей прямоугольную плоскость, собранную из прямоугольных секций, каждая из которых представляет собой фототеплотрубнотермоэлектрический преобразователь, покрытый гидроизоляционной пленкой, внутри которой помещены фотоэлемент, соединенный перемычками с коллекторами одноименных зарядов и присоединенный своей тыльной стороной к теплотрубному теплообменнику, выполненному в форме прямоугольного корпуса, крышка и днище которого покрыты изнутри решеткой, выполненной из полос капиллярного материала, частично заполненного рабочей жидкостью, в полости корпуса решетки крышки и днища соединены между собой вертикальными фитилями, также частично заполненными рабочей жидкостью и покрытыми цилиндрическим кожухами с треугольными прорезями на их верхних и нижних торцах и прикрепленными к крышке и днищу корпуса, причем внутренняя поверхность крышки и днища корпуса теплотрубного теплообменника, покрытые решеткой, составляют зоны испарения и конденсации, соответственно, а фитили образуют зону транспорта, к наружной стороне днища теплотрубного теплообменника примыкают плоские термоэлектрические преобразователи, к внешней стороне которых прижаты радиаторы, перемычки с коллекторами одноименных зарядов плоских термоэлектрических преобразователей и фотоэлементов, в свою очередь, соединены с накопительным блоком.

На фиг. 1–7 представлена универсальная гелиотермоэлектростанция (УГТЭС): на фиг. 1, 2 – общий вид и разрез УГТЭС; на фиг. 3,4 – фототеплотрубнотермоэлектрический преобразователь (ФТТТЭП) и его разрез; на фиг. 5–7 – основные узлы ФТТТЭП.

Предлагаемая универсальная гелиотермоэлектростанция (УГТЭС) содержит плоскость 1, собранную из прямоугольных секций, каждая из которых представляет собой фототеплотрубнотермоэлектрический преобразователь (ФТТТЭП) 2, покрытый гидроизоляционной пленкой 3, внутри которой помещены фотоэлемент 4, соединенный перемычками 5 с коллекторами одноименных зарядов 6, 7 и присоединенный своей тыльной стороной к теплотрубному теплообменнику (ТТТО) 8, выполненному в форме прямоугольного корпуса 9, крышка и днище которого покрыты изнутри решеткой 10, выполненной из полос капиллярного материала, частично заполненного рабочей жидкостью, в полости корпуса 9 решетки 10 крышки и днища соединены между собой вертикальными фитилями 11, также частично заполненными рабочей жидкостью и покрытыми цилиндрическим кожухами 12 с треугольными прорезями на их верхних и нижних торцах и прикрепленными к крышке и днищу корпуса 9, причем внутренняя поверхность крышки и днища корпуса 9, покрытые решеткой 10, составляют зоны испарения и конденсации 13 и 14, соответственно, а фитили 11 образуют зону транспорта 15, к наружной стороне днища ТТТО 8 примыкают плоские термоэлектрические преобразователи (ПТЭП) 16 (например, элементы Пелтье), к внешней стороне которых прижаты радиаторы 17, перемычки 5 с коллекторами одноименных зарядов 6, 7 термоэлектрических преобразователей 16 и фотоэлементов 4, в свою очередь, соединены с накопительным блоком (на фиг. 1–7 не показан).

В основу работы предлагаемой УГТЭС положено свойство фотоэлементов 4 при воздействии на них солнечных лучей преобразовывать воспринятую солнечную энергию в электрическую и тепловую энергии [А. с. СССР №1603152, МПК F24 J2/32, 1990]. При этом использование ТТТО 8 для охлаждения фотоэлементов 4 позволяет многократно увеличить скорость процесс теплообмена по сравнению со скоростью аналогичного процесса с использованием обычных теплообменниках, что обусловлено высокими значениями коэффициента теплопередачи в процессах испарения и конденсации. [А. Н. Плановский, П. И. Николаев. Процессы и аппараты химической и нефтехимической технологии. – М.: Химия, 1987, с. 146; В. В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. – Минск: Выш. школа, 1988, с.106; Тепловые трубы и теплообменники: от науки к практике. Сборник научн. трудов. М.: – 1990, с. 22]. Так как при нагреве верхних поверхностей ПТЭП 16 происходит конденсация пара рабочей жидкости в ТТТО 8 и охлаждение наружных поверхностей радиаторами 17, то на них устанавливаются разные температуры, в результате чего в ТЭП 16 появляется термоэлектричество [С.Г. Калашников. Электричество. – М: «Наука», 1970, с. 502–506]. При этом, треххслойная компоновка ФТТТЭП 2 (сверху – фотоэлемент 4, посредине – ТТТО 8, снизу – ПТЭП 16 позволяет одновременно производить съем тепла с фотоэлементов 4 с высокой скоростью и нагревать ПТЭП 16 при требуемой для них температуре также с высокой скоростью, генерируя дополнительное количество электричества.

УГТЭС работает следующим образом. Количество ФТТТЭП 2, входящих в плоскость 1, определяется в зависимости от наружных условий места установки УГТЭС (космическое или воздушное пространство, поверхность земли, воды, температуры, вида наружного грунта, снежного или ледяного покрытия) и требуемой мощности. Сборку УГТЭС осуществляют перед ее размещением, после чего плоскость 1 ориентируют на месте установки по солнечному освещению и соединяют с потребителем (на фиг.1–7 не показан). Местом установки УГТЭС могут быть: космическое или воздушное пространство, наружная поверхность грунта, снежная, ледяная или водная поверхности (на фиг. 1–7 не показаны). При этом, в зависимости от места установки в ТТТО 8 используется различные виды рабочей жидкости, а именно, в районах жаркого климата можно использовать в качестве рабочей жидкости обычную воду, в умеренных и холодных районах – водные растворы диэтиленгликоля, в воздушном и космическом пространстве – жидкий аммиак или водные растворы аммиака.

После установки УГТЭС наружная поверхность фотоэлементов 4 ФТТТЭП 2 нагревается солнечными лучами, генерируя электричество, а нижняя поверхность фотоэлементов 4 охлаждается в результате контакта с крышкой ТТТО 8 и нагревает ее, отдавая тепло, выделившееся в результате генерации электричества. При нагреве крышки корпуса 9 происходит испарение рабочей жидкости в ячейках решетки 10, находящейся в фитилях 11 и капиллярном материале решетки 10, которые транспортирует рабочую жидкость в зону испарения 13 (внутреннюю поверхность крышки корпуса 9, находящаяся в ячейках решетки 10) через треугольные прорези цилиндрических кожухов 12, в результате чего образуется пар. При этом покрытие решеткой 10, выполненной из полос капиллярного материала и образующей ячейки на внутренней поверхности крышки корпуса 9 предотвращает образование паровой пленки на ней и таким образом, интенсифицирует процесс испарения. Образовавшийся пар заполняет паровое пространство полости ТТТО 8 и конденсируется в зоне конденсации 14, а именно, в ячейках решетки 10 на внутренней поверхности днища корпуса 9, покрытой решеткой 10, что также уменьшает толщину пленки конденсата на ней и, таким образом, интенсифицирует процесс конденсации. Образовавшийся конденсат поглощается капиллярным материалом полос решетки 10, соединенной с фитилями 11 зоны транспорта 15 через треугольные прорези на нижних кромках цилиндрических кожухов 12, транспортируется фитилями 11 к крышке корпуса 9 и через треугольные прорези кожухов 12 распределяется решеткой 10 по внутренней поверхности крышки корпуса 9, после чего цикл повторяется. При этом процесс теплообмена с горячей и холодной средами протекает со скоростью многократно превышающей скорость аналогичного процесса в обычных теплообменниках, обусловленной высокими значениями коэффициента теплопередачи в процессах испарения и конденсации. Одновременно, тепло конденсации рабочей жидкости передается через днище корпуса 9 ТТТО 8 передается ПТЭП 16, нагревая их, за счет чего происходит равномерный нагрев их внутренней поверхности. Так как наружная поверхность ПТЭП 16 снабжена радиаторми 17, а снаружи температура среды значительно ниже и равна tС создается значительная разность температур между температурой наружной поверхности ТЭП 16 tП и температурой среды (tП– tС), в результате чего между ними происходит процесс теплообмена. Создаваемая разность температур между зонами нагрева и охлаждения в ПТЭП 16 вызывает в них эмиссию электронов и возникновение в них термоэлектричества. Полученное электричество в фотоэлементах 4 и термоэлектричество ПТЭП 16 через перемычки 5 и коллекторы одноименных зарядов 6, 7 (расположение перемычек 5 и коллекторов 6, 7 на фиг. 1–7 показано условно) поступает в накопительный блок и потребителю (на фиг.1–7 не показаны).

При этом, хотя в зимнее время верхняя поверхность ФТТТЭП 2 нагревается солнечными лучами меньше, чем в летнее время, в этот период нижняя поверхность ПТЭП 16 охлаждается значительно больше, чем в летнее за счет более низкой температуры поверхности грунта (снега, льда, воды) и поэтому величина разности температур (tП– tС) и генерируемого термоэлектричества в ПТЭП 16 может быть также значительной.

Величина разности электрического потенциала на токовыводах коллекторов одноименных зарядов фототеплотрубнотермоэлектрического преобразователя, сила электрического тока зависят от продолжительности и интенсивности солнечного облучения, температуры и других характеристик наружной среды, характеристик и количества фотоэлементов, рабочей жидкости в теплотрубном теплообменнике, характеристик и количества плоских термоэлектрческих преобразователей и радиаторов. Полученный электрический ток можно использовать для обслуживания различных технических устройств, а также обогрева и освещения временных жилых и производственных помещений.

Таким образом, предлагаемая универсальная гелиотермоэлектростанция обеспечивает, как в летнее, так и в зимнее время, на земле, в воздушном ил космическом пространстве утилизацию солнечной энергии, тепла и холода окружающей среды (воздушного или космического пространства, грунта, снега, льда, воды) с получением электрической энергии, которую можно использовать для обслуживания различных технических устройств, обогрева и освещения временных жилых и производственных помещений без затраты топлива, загрязнения окружающей среды, создания шумового эффекта и выделения теплового излучения, что, в конечном счете, повышает эффективность работы электростанции.

Универсальная гелиотермоэлектростанция, содержащая плоскость, собранную из прямоугольных секций, покрытых гидроизоляционной пленкой, каждая из которых состоит из фототермоэлектрического преобразователя, соединенного перемычками с коллекторами одноименных зарядов и накопительным блоком, внутри которого помещены фотоэлемент и термоэлектрический преобразователь, снабженного тепловой трубой и радиаторами, отличающаяся тем, что каждая прямоугольная секция представляет собой фототеплотрубнотермоэлектрический преобразователь, внутри которого между фотоэлементом и плоским термоэлектрическим преобразователем, помещен теплотрубный теплообменник, выполненный в форме прямоугольной плоскости, крышка и днище корпуса которой покрыты изнутри решеткой, выполненной из полос капиллярного материала, частично заполненного рабочей жидкостью, в полости корпуса решетки крышки и днища соединены между собой вертикальными фитилями, также частично заполненными рабочей жидкостью и покрытыми цилиндрическим кожухами с треугольными прорезями, выполненными на их верхних и нижних торцах и прикрепленными к крышке и днищу корпуса.
Универсальная гелиотермоэлектростанция
Универсальная гелиотермоэлектростанция
Источник поступления информации: Роспатент

Showing 151-160 of 320 items.
21.11.2018
№218.016.9f07

Устройство для гранулирования удобрений

Изобретение относится к устройству для гранулирования удобрений и может быть использовано в сельскохозяйственной промышленности. Устройство содержит цилиндрическую емкость со штуцерами вывода готового продукта и подвода теплоносителя через форсунки. Емкость разделена на загрузочную камеру со...
Тип: Изобретение
Номер охранного документа: 0002672755
Дата охранного документа: 19.11.2018
30.11.2018
№218.016.a1c7

Энергосберегающий пластинчатый теплообменник

Изобретение относится к теплотехнике, а именно к теплообменному оборудованию, и может быть использовано при воздушном охлаждении газов и жидкостей вне помещений без принудительной подачи охлаждающего воздуха. В пластинчатом теплообменнике содержится горизонтальный корытообразный кожух, днище и...
Тип: Изобретение
Номер охранного документа: 0002673631
Дата охранного документа: 28.11.2018
30.11.2018
№218.016.a1e2

Способ получения бензоата и замещенных бензоатов олова (iv) из вторичного сырья

Изобретение относится к усовершенствованному способу получения бензоата и замещенных бензоатов олова (IV) из вторичного сырья путем окисления соединений олова (II) соединениями меди (II) в бисерной мельнице вертикального типа с протоком воздуха через газовое пространство реактора и стеклянным...
Тип: Изобретение
Номер охранного документа: 0002673470
Дата охранного документа: 27.11.2018
30.11.2018
№218.016.a1eb

Адсорбер

Изобретение относится к технике очистки газов адсорбентами, а именно к газоочистному оборудованию, и может найти применение в химической, металлургической и других отраслях промышленности. Адсорбер включает вертикальный корпус, разделенный перфорированными зигзагообразными перегородками на...
Тип: Изобретение
Номер охранного документа: 0002673512
Дата охранного документа: 27.11.2018
30.11.2018
№218.016.a241

Способ комплексной терапии при сочетанной ишемии центральной гемодинамической системы, нижних конечностей, сердца и головного мозга

Изобретение относится к медицине и может быть использовано для комплексной терапии при сочетанной ишемии центральной гемодинамической системы, нижних конечностей, сердца и головного мозга. Сущность изобретения состоит в том, что в способе комплексной терапии при сочетанной ишемии центральной...
Тип: Изобретение
Номер охранного документа: 0002673481
Дата охранного документа: 27.11.2018
06.12.2018
№218.016.a43f

Устройство для термической обработки осадка сточных вод предприятий аграрно-промышленного комплекса

Изобретение предназначено для обезвоживания осадков, активного ила или отстоя промышленных и бытовых сточных вод и может быть использовано в водоснабжении и канализации. Устройство для термической обработки осадка сточных вод предприятий аграрно–промышленного комплекса включает осушительную...
Тип: Изобретение
Номер охранного документа: 0002674125
Дата охранного документа: 04.12.2018
27.12.2018
№218.016.ac68

Устройство и способ управления температурой в зоне резания

Изобретение относится к области высокоскоростной механической обработки деталей на оборудовании с ЧПУ. Управление охлаждением режущего инструмента включает измерение температуры в зоне резания посредством датчика температуры, сравнение измеренной температуры с заданным значением, а при их...
Тип: Изобретение
Номер охранного документа: 0002676114
Дата охранного документа: 26.12.2018
10.01.2019
№219.016.adf7

Автономный термоэлектрогенератор на трубопроводе

Изобретение относится к теплоэлектроэнергетике и может быть использовано для получения электрической энергии в процессе транспортирования в трубах различных теплоносителей, в частности для защиты трубопровода от электрохимической коррозии или электропривода задвижек. Термоэлектрогенератор...
Тип: Изобретение
Номер охранного документа: 0002676551
Дата охранного документа: 09.01.2019
13.01.2019
№219.016.aef6

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами и расположенную симметрично...
Тип: Изобретение
Номер охранного документа: 0002676827
Дата охранного документа: 11.01.2019
02.02.2019
№219.016.b690

Устройство для проветривания глубоких карьеров

Изобретение относится к горнодобывающей промышленности, в частности к устройству для проветривания глубоких карьеров. Технический результат заключается в поддержании нормированной энергоемкости процесса проветривания, устранении дополнительных потерь тепла. Устройство карьеров включает...
Тип: Изобретение
Номер охранного документа: 0002678737
Дата охранного документа: 31.01.2019
Showing 151-160 of 221 items.
30.11.2018
№218.016.a1c7

Энергосберегающий пластинчатый теплообменник

Изобретение относится к теплотехнике, а именно к теплообменному оборудованию, и может быть использовано при воздушном охлаждении газов и жидкостей вне помещений без принудительной подачи охлаждающего воздуха. В пластинчатом теплообменнике содержится горизонтальный корытообразный кожух, днище и...
Тип: Изобретение
Номер охранного документа: 0002673631
Дата охранного документа: 28.11.2018
06.12.2018
№218.016.a43f

Устройство для термической обработки осадка сточных вод предприятий аграрно-промышленного комплекса

Изобретение предназначено для обезвоживания осадков, активного ила или отстоя промышленных и бытовых сточных вод и может быть использовано в водоснабжении и канализации. Устройство для термической обработки осадка сточных вод предприятий аграрно–промышленного комплекса включает осушительную...
Тип: Изобретение
Номер охранного документа: 0002674125
Дата охранного документа: 04.12.2018
10.01.2019
№219.016.adf7

Автономный термоэлектрогенератор на трубопроводе

Изобретение относится к теплоэлектроэнергетике и может быть использовано для получения электрической энергии в процессе транспортирования в трубах различных теплоносителей, в частности для защиты трубопровода от электрохимической коррозии или электропривода задвижек. Термоэлектрогенератор...
Тип: Изобретение
Номер охранного документа: 0002676551
Дата охранного документа: 09.01.2019
13.01.2019
№219.016.aef6

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами и расположенную симметрично...
Тип: Изобретение
Номер охранного документа: 0002676827
Дата охранного документа: 11.01.2019
13.01.2019
№219.016.af32

Ленточный термоэлектрогенератор

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для трансформации тепловой энергии в электрическую, при отсутствии источников электроснабжения. Технический результат заключается в повышении эффективности ленточного термоэлектрогенератора. Ленточный...
Тип: Изобретение
Номер охранного документа: 0002676803
Дата охранного документа: 11.01.2019
07.02.2019
№219.016.b799

Устройство для предпускового обогрева стационарного двигателя внутреннего сгорания

Изобретение относится к машиностроению, а именно к системам подогрева двигателей внутреннего сгорания в зимнее время для дистанционного запуска. Устройство для предпускового обогрева стационарного двигателя внутреннего сгорания, включающее бак с горючей жидкостью, соединенный трубопроводами с...
Тип: Изобретение
Номер охранного документа: 0002679048
Дата охранного документа: 05.02.2019
09.02.2019
№219.016.b8df

Мобильное устройство для снижения теплового излучения выхлопных газов

Изобретение относится к области военной техники. Мобильное устройство для снижения теплового излучения выхлопных газов включает камеру смешения и диффузор. Диффузор соосно соединен с трубой распределителя, заглушенной с тыльного торца, боковая поверхность которой снабжена расположенными...
Тип: Изобретение
Номер охранного документа: 0002679274
Дата охранного документа: 06.02.2019
14.02.2019
№219.016.ba34

Теплохимический генератор

Изобретение относится к энергетике и может быть использовано в теплогенерирующих установках, работающих на природном газе. Техническим результатом является увеличение эффективности и уменьшение загрязнения окружающей атмосферы путем утилизации вредных газообразных выбросов. Теплохимический...
Тип: Изобретение
Номер охранного документа: 0002679770
Дата охранного документа: 12.02.2019
21.03.2019
№219.016.eb08

Устройство для гранулирования удобрений

Изобретение относится к производству гранулированного удобрения преимущественно из отходов производства, например дефекта сахарных заводов или смеси дефекта и чернозема, смываемого с корнеплодов свеклы. Технический результат достигнут тем, что устройство для гранулирования удобрений содержит...
Тип: Изобретение
Номер охранного документа: 0002682531
Дата охранного документа: 19.03.2019
29.03.2019
№219.016.ed1d

Устройство для автоматизированного расхода тепла на отопление в системах теплоснабжения

Изобретение относится к централизованному теплоснабжению жилых, общественных и промышленных зданий. Устройство для автоматизированного регулирования расхода тепла на отопление в системе теплоснабжения содержит подающий и обратный трубопроводы, перемычку с насосом смешивания, регулятор расхода...
Тип: Изобретение
Номер охранного документа: 0002682960
Дата охранного документа: 22.03.2019
+ добавить свой РИД