×
23.02.2020
220.018.05b1

Способ селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (КОРС), их применение в качестве жидкого органического носителя водорода и водородный цикл на его основе

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования и представляющих собой продукты селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол, которые применяют в качестве жидких органических носителей водорода (ЖОНВ). Способ осуществляют в присутствии сульфидного Co-PMoS/AlO или Co-BMoS/AlO катализатора, при давлении водорода 3,0-5,0 МПа, кратности циркуляции водорода 300-600 нл/л сырья, температуре 370-390°C, объемная скорость подачи сырья 0,5-2,0 ч. Причем водородный цикл ЖОНВ включает связывание водорода при температурах от 200 до 260°C и его высвобождение при температурах от 300 до 380°C в процессе применения продуктов селективного гидрирования в присутствии гетерогенного катализатора. При этом гетерогенный катализатор включает носитель AlO и нанесенную на него Pt в количестве от 0,1 до 1,0 мас.%, или Pd в количестве от 0,5 до 2,0 мас.%, или Ni в количестве от 5 до 12 мас.%. Технический результат заключается в получении недефицитного крупнотоннажного ЖОНВ. 3 н. и 2 з.п. ф-лы, 4 табл., 40 пр.
Реферат Свернуть Развернуть

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования, и представляющих собой продукты селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (КОРС).

Непрерывный рост потребности в стироле для производства полистирольных пластиков, синтетических смол для различных отраслей промышленности приводит к существенному повышению мощностей по его производству. Современные масштабы производства стирола даже при постоянном совершенствовании технологических процессов обуславливают образование значительных количеств (десятки тысяч тонн) отходов -кубовых остатков реакционных смол (КОРС) [Филимонова О.Н. Переработка и применение кубовых остатков ректификации стирола // Успехи современного естествознания, 2010, №2, с. 115-116]. Вопросом утилизации КОРС различные организации занимаются не один десяток лет, но до сих пор он остается актуальным.

Кубовые остатки ректификации стирола по составу можно условно представить тремя группами веществ - мономеры, полимеры и продукты органического синтеза. В результате исследований было идентифицировано около 95% веществ, входящих в состав КОРС. В зависимости от способов получения стирола, режима работы реактора, срока службы катализатора, режима работы колонн ректификации, применяемой ингибирующей системы и времени пребывания в отгонных аппаратах, состав КОРС меняется довольно в широких пределах. Содержание стирола в кубовом остатке ректификации может изменяться от 10 до 50%, а полистирола - 15-70%[Филимонова О.Н. Переработка и применение кубовых остатков ректификации стирола. Издательство: Академия Естествознания. Год издания: 2009].

Соединения, входящие в состав КОРС, могут служить носителями водорода после гидрирования двойных связей олефиновых заместителей и удаления кислорода (входящего в состав гидрохинона и других соединений, составляющих «не идентифицированные легкие вещества» и «высококипящий тяжелый остаток») [Филимонова О.Н. Переработка и применение кубовых остатков ректификации стирола. Издательство: Академия Естествознания. Год издания: 2009]. Это производится на стадии селективного гидрирования, после чего стабилизированный продукт может быть использован в качестве жидкого органического носителя водорода.

Аналогичные технические решения отсутствуют.

Известен метод применения жидких при комнатной температуре носителей водорода [US 2015/0266731 A1, Pub. Date: Sep.24, 2015]. Недостатком этого метода является ограниченность выбора ароматических соединений, являющихся жидкими при комнатной температуре. Большинство перспективных в качестве носителей водорода полициклических ароматических углеводородов являются твердыми при нормальных условиях и жидкими при температурах использования.

Наиболее близким к предлагаемому является метод использования полициклических ароматических углеводородов, таких как дибензилтолуол, бензилтолуол [US 9,879,828 В2. Date of Patent: Jan. 30, 2018], где описывается обратимое преобразование в технически значимых условиях, от температуры окружающей среды до 350°С и при давлениях от вакуума до 300 бар. Недостатком данного метода является использование синтетических углеводородов, что снижает их доступность и повышает цену.

Катализаторы, содержащие платину и палладий, готовили адсорбционной пропиткой носителя из водных растворов в присутствии конкурента (уксусной кислоты) в количестве 0,4-0,6 мл ледяной СН3СООН на 10 мл пропиточного раствора. Объем пропиточного раствора был постоянным и составлял 10 мл. Носитель, предварительно прокаленный γ-Al2O3, в количестве 5 г, заливался пропиточным раствором на 24 часа. После стадии сорбции пропиточный раствор сливался с готового катализатора. Катализаторы сушили при 80, 100 и 110°С. Катализаторы, содержащие никель готовили пропиткой по влагоемкости. Активация (восстановление) катализатора проводилась непосредственно в реакторе.

Эксперименты по гидрированию-дегидрированию смеси ароматических углеводородов проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 200-260°С и ОСПС=4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 300-380°С. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4 по массе.

Состав олигомеров стирола и продуктов селективного гидрирования, а так же параметры процесса представлены в таблице 1. В таблице приняты следующие обозначения: t - температура процесса селективного гидрирования (°С), Р - давление в процессе селективного гидрирования (МПа), ОСПС - объемная скорость подачи сырья (ч-1), K - кратность циркуляции водородсодержащего газа в процессе селективного гидрирования (нм33 сырья), димер стирола (2-С), продукты селективного гидрирования димера стирола (ПГ(2-С)), тример стирола (3-С), продукты селективного гидрирования тримера стирола (ПГ(3-С)), тетрамер стирола (4-С), продукты селективного гидрирования тетрамера стирола (ПГ(4-С)), пентамер стирола (5-С), продукты селективного гидрирования пентамера стирола (ПГ(5-С)), ТОС - тяжелые олигомеры стирола, ТПГОС - тяжелые продукты селективного гидрирования олигомеров стирола.

Состав кубового остатка реакционных смол и продуктов их селективного гидрирования, а так же параметры процесса представлены в таблице 2. В таблице приняты следующие обозначения: t - температура процесса селективного гидрирования (°С), Р - давление в процессе селективного гидрирования (МПа), ОСПС - объемная скорость подачи сырья (ч-1), K - кратность циркуляции водородсодержащего газа в процессе селективного гидрирования (нм33 сырья), С - стирол, α-МС (β-МС) - α-метилстирол (β-метилстирол), ЭБ - этилбензол, ПС - полистирол, ПГПС - продукты селективного гидрирования полистирола, НЛВ - не идентифицированные летучие вещества, ВТО - высококипящий тяжелый остаток, ПГВТО - продукты селективного гидрирования высококипящего тяжелого остатка, ИПБ - изопропилбензол, НПБ - нормальный пропилбензол, ДВБ - дивинилбензол, ДЭТБ - диэтилбензол, Н - нафталин, ПГН - продукты гидрирования нафталина, ДФ - дифенил, ДФМ -дифенилметан, ДФЭ - дифенилэтан, ДБ - дибензил, Ф - фенантрен, ПГФ - продукты гидрирования фенантрена.

Составы катализаторов селективного гидрирования, параметры их термообработки и сульфидирования представлены в таблице 3. Порядковые номера в таблице соответствуют номерам в таблицах 1 и 2.

Результаты применения стабилизированных гидрогенизатов в качестве жидких органических носителей водорода и состав катализаторов для проведения процесса представлены в таблице 4. Порядковые номера в таблице соответствуют номерам в таблицах 1 и 2.

При этом спектр квалифицированного использования кубовых остатков реакционных смол (КОРС) расширяется.

Технический результат заключается в получении недефицитного крупнотоннажного жидкого органического носителя водорода по способу селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (КОРС), в присутствии сульфидного Co6-PMo12S/Al2O3 или Co6-BMo12S/Al2O3 катализатора, при давлении водорода 3,0-5,0 МПа, кратности циркуляции водорода 300-600 нл/л сырья, температуре 370-390°C, ОСПС (объемная скорость подачи сырья 0,5-2,0 ч-1), где катализатор включает носитель - Al2O3, и нанесенную на него фосфорномолибденовую гетерополикислоту H3PMo12O40⋅nH2O, или боромолибденовую гетерополикислоту H5BMo12O40⋅nH2O, подвергается термической обработке в окислительной или нейтральной среде при температуре от 100 до 350°C, а затем сульфидированию при температуре от 400 до 600°C в смеси 10-80% H2S в Н2, которая пропускается с расходом 1-5 л/час через катализатор объемом 50 см3; в применении продуктов селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (КОРС) в качестве жидких органических носителей водорода, водородный цикл, включающий связывание водорода и его высвобождение при использовании продуктов селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (КОРС) в качестве жидкого органического носителя водорода, полученного, в присутствии гетерогенного катализатора, где гетерогенный катализатор включает носитель - Al2O3, и нанесенную на него Pt, или Pd, или Ni, причем содержание платины Pt находится в пределах 0,1 до 1,0% масс., 7 содержание палладия Pd находится в пределах 0,5 до 2,0% масс., содержание никеля Ni находится в пределах 5 до 12% масс., при этом связывание водорода осуществляется при температурах от 200 до 260°C, а освобождение водорода осуществляется при температурах от 300 до 380°C.

ПРИМЕРЫ

Пример 1. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №1, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 3,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №1 (таблица 1) в присутствии катализатора 0,1% масс. Pt/Al2O3 гидрировали* при температуре 200°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 300°С, при этом выделилось 5,61 г Н2 на 100 г ЖОНВ**.

* - Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4 по массе.

** - на массу ненасыщенного водородом ЖОНВ.

Пример 2. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №2, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 4,0 МПа, ОСПС 0,6 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №2 (таблица 1) в присутствии катализатора 0,5% масс. Pd/Al2O3 гидрировали* при температуре 205°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 305°С, при этом выделилось 5,59 г Н2 на 100 г ЖОНВ**.

Пример 3. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №3, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 5,0 МПа, ОСПС 0,7 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №3 (таблица 1) в присутствии катализатора 5,0% масс. Ni/Al2O3 гидрировали* при температуре 210°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 310°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 4. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №4, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 3,0 МПа, ОСПС 0,8 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №4 (таблица 1) в присутствии катализатора 0,2% масс. Pt/Al2O3 гидрировали* при температуре 215°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 315°С, при этом выделилось 5,58 г Н2 на 100 г ЖОНВ**.

Пример 5. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №5, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 4,0 МПа, ОСПС 0,9 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №5 (таблица 1) в присутствии катализатора 0,7% масс. Pd/Al2O3 гидрировали* при температуре 220°С. По результатам проведенного процесса было поглощено 1,13 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 5,61 г Н2 на 100 г ЖОНВ**.

Пример 6. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №6, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 5,0 МПа, ОСПС 1,0 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №6 (таблица 1) в присутствии катализатора 5,5% масс. Ni/Al2O3 гидрировали* при температуре 225°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 325°С, при этом выделилось 5,61 г Н2 на 100 г ЖОНВ**.

Пример 7. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №7, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 3,0 МПа, ОСПС 1,1 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №7 (таблица 1) в присутствии катализатора 0,3% масс. Pt/Al2O3 гидрировали* при температуре 230°С. По результатам проведенного процесса было поглощено 1,13 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 5,62 г Н2 на 100 г ЖОНВ**.

Пример 8. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №8, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 4,0 МПа, ОСПС 1,2 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №8 (таблица 1) в присутствии катализатора 0,9% масс. Pd/Al2O3 гидрировали* при температуре 235°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 335°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 9. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №9, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 5,0 МПа, ОСПС 1,3 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №9 (таблица 1) в присутствии катализатора 6,0% масс. Ni/Al2O3 гидрировали* при температуре 240°С. По результатам проведенного процесса было поглощено 1,13 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 5,62 г Н2 на 100 г ЖОНВ**.

Пример 10. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №10, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 3,0 МПа, ОСПС 1,4 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №10 (таблица 1) в присутствии катализатора 0,4% масс. Pt/Al2O3 гидрировали* при температуре 245°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 345°С, при этом выделилось 5,58 г Н2 на 100 г ЖОНВ**.

Пример 11. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №11, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 4,0 МПа, ОСПС 1,5 ч-1 и кратности циркуляции водородсодержащего газа 500

нм33 сырья. Стабильный гидрогенизат №11 (таблица 1) в присутствии катализатора 1,1% масс. Pd/Al2O3 гидрировали* при температуре 250°С.По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 5,61 г Н2 на 100 г ЖОНВ**.

Пример 12. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №12, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 5,0 МПа, ОСПС 1,6 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №12 (таблица 1) в присутствии катализатора 6,5% масс. Ni/Al2O3 гидрировали* при температуре 255°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 365°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 13. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №13, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 3,0 МПа, ОСПС 1,7 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №13 (таблица 1) в присутствии катализатора 0,5% масс.Pt/Al2O3 гидрировали* при температуре 260°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 360°С, при этом выделилось 5,59 г Н2 на 100 г ЖОНВ**.

Пример 14. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №14, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 4,0 МПа, ОСПС 1,8 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №14 (таблица 1) в присутствии катализатора 1,3% масс. Pd/Al2O3 гидрировали* при температуре 265°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 365°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 15. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №15, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 5,0 МПа, ОСПС 1,9 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №15 (таблица 1) в присутствии катализатора 7,0% масс. Ni/Al2O3 гидрировали* при температуре 270°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 370°С, при этом выделилось 5,59 г Н2 на 100 г ЖОНВ**.

Пример 16. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №16, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 3,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №16 (таблица 1) в присутствии катализатора 0,6% масс. Pt/Al2O3 гидрировали* при температуре 275°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 375°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 17. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №17, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 4,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №17 (таблица 1) в присутствии катализатора 1,5% масс. Pd/Al2O3 гидрировали* при температуре 280°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,59 г Н2 на 100 г ЖОНВ**.

Пример 18. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №18, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 5,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №18 (таблица 1) в присутствии катализатора 12,0% масс. Ni/Al2O3 гидрировали* при температуре 285°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,58 г Н2 на 100 г ЖОНВ**.

Пример 19. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №19, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 3,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №19 (таблица 1) в присутствии катализатора 1,0% масс. Pt/Al2O3 гидрировали* при температуре 290°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 20. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №20, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 4,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №20 (таблица 1) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали* при температуре 300°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 21. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №21, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 3,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №21 (таблица 2) в присутствии катализатора 5,0% масс. Ni/Al2O3 гидрировали* при температуре 200°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 300°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 22. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №22, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 4,0 МПа, ОСПС 0,6 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №22 (таблица 2) в присутствии катализатора 0,8% масс. Pt/Al2O3 гидрировали* при температуре 205°С. По результатам проведенного процесса было поглощено 1,06 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 305°С, при этом выделилось 5,32 г Н2 на 100 г ЖОНВ**.

Пример 23. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №23, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 5,0 МПа, ОСПС 0,7 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №23 (таблица 2) в присутствии катализатора 0,5% масс. Pd/Al2O3 гидрировали* при температуре 210°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 310°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

Пример 24. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №24, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 3,0 МПа, ОСПС 0,8 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №24 (таблица 2) в присутствии катализатора 8,5% масс. Ni/Al2O3 гидрировали* при температуре 215°С. По результатам проведенного процесса было поглощено 1,06 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 315°С, при этом выделилось 5,33 г Н2 на 100 г ЖОНВ**.

Пример 25. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №25, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 4,0 МПа, ОСПС 0,9 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №25 (таблица 2) в присутствии катализатора 0,1% масс. Pt/Al2O3 гидрировали* при температуре 220°С. По результатам проведенного процесса было поглощено 1,06 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 5,32 г Н2 на 100 г ЖОНВ**.

Пример 26. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №26, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 5,0 МПа, ОСПС 1,0 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №26 (таблица 2) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали* при температуре 225°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 325°С, при этом выделилось 5,35 г Н2 на 100 г ЖОНВ**.

Пример 27. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №27, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 3,0 МПа, ОСПС 1,1 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №27 (таблица 2) в присутствии катализатора 9,0% масс. Ni/Al2O3 гидрировали* при температуре 230°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 28. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №28, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 4,0 МПа, ОСПС 1,2 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №28 (таблица 2) в присутствии катализатора 1,0% масс. Pt/Al2O3 гидрировали* при температуре 235°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 335°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

Пример 29. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №29, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 5,0 МПа, ОСПС 1,3 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №29 (таблица 2) в присутствии катализатора 0,5% масс. Pd/Al2O3 гидрировали* при температуре 240°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 5,33 г Н2 на 100 г ЖОНВ**.

Пример 30. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №30, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 3,0 МПа, ОСПС 1,4 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №30 (таблица 2) в присутствии катализатора 9,5% масс. Ni/Al2O3 гидрировали* при температуре 245°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 345°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 31. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №31, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 4,0 МПа, ОСПС 1,5 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №31 (таблица 2) в присутствии катализатора 0,1% масс. Pt/Al2O3 гидрировали* при температуре 250°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 32. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №32, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 5,0 МПа, ОСПС 1,6 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №32 (таблица 2) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали* при температуре 255°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 355°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

Пример 33. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №33, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 3,0 МПа, ОСПС 1,7 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №33 (таблица 2) в присутствии катализатора 10,0% масс. Ni/Al2O3 гидрировали* при температуре 260°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 360°С, при этом выделилось 5,35 г Н2 на 100 г ЖОНВ**.

Пример 34. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №34, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 4,0 МПа, ОСПС 1,8 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №34 (таблица 2) в присутствии катализатора 0,2% масс. Pt/Al2O3 гидрировали* при температуре 265°С. По результатам проведенного процесса было поглощено 1,06 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 365°С, при этом выделилось 5,32 г Н2 на 100 г ЖОНВ**.

Пример 35. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №35, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 5,0 МПа, ОСПС 1,9 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №35 (таблица 2) в присутствии катализатора 0,7% масс. Pd/Al2O3 гидрировали* при температуре 270°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 370°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 36. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №36, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 3,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №36 (таблица 2) в присутствии катализатора 10,5% масс. Ni/Al2O3 гидрировали* при температуре 275°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 375°С, при этом выделилось 5,33 г Н2 на 100 г ЖОНВ**.

Пример 37. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №37, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 4,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №37 (таблица 2) в присутствии катализатора 0,3% масс. Pt/Al2O3 гидрировали* при температуре 280°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

Пример 38. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №38, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 5,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №38 (таблица 2) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали* при температуре 285°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

Пример 39. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №39, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 3,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №39 (таблица 2) в присутствии катализатора 12,0% масс. Ni/Al2O3 гидрировали* при температуре 290°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 40. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №40, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 4,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №40 (таблица 2) в присутствии катализатора 1,0% масс. Pt/Al2O3 гидрировали* при температуре 300°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

Источник поступления информации: Роспатент

Showing 1-10 of 191 items.
20.04.2016
№216.015.35e3

Способ получения композиционных материалов для строительства на основе переработанных отходов

Изобретение может быть использовано при производстве композиционных материалов, которые могут быть применены в строительстве, рекультивации полигонов твердых бытовых отходов и полигонов промышленных отходов, для технической и биологической рекультивации нарушенных земель. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002581178
Дата охранного документа: 20.04.2016
13.01.2017
№217.015.8b89

Способ оценки огнестойкости стальной фермы здания

Изобретение относится к области пожарной безопасности зданий и сооружений. Сущность:осуществляютпроведение технического осмотра, инструментальное измерение геометрических характеристик элементов фермы в их опасных сечениях; выявление условий опирания и крепления элементов фермы, схем обогрева...
Тип: Изобретение
Номер охранного документа: 0002604478
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8c1b

Способ оценки огнестойкости железобетонной фермы здания

Изобретение относится к области пожарной безопасности зданий и сооружений, в частности оно может быть использовано для классификации железобетонных ферм зданий по показателям сопротивления их воздействию пожара. Сущность изобретения: испытание растянутых и сжатых элементов железобетонной фермы...
Тип: Изобретение
Номер охранного документа: 0002604820
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.916f

Способ получения диэфиров 5,7-диметил-3-карбокси-1-адамантилуксусной кислоты

Изобретение относится к способу получения диэфиров 5,7-диметил-3-карбокси-1-адамантилуксусной кислоты, которые могут быть использованы в качестве ключевых компонентов базовых основ синтетических индустриальных масел. Способ получения диэфиров заключается во взаимодействии...
Тип: Изобретение
Номер охранного документа: 0002605936
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a12e

Способ замены каменного столба здания

Изобретение относится к области строительства и может быть использовано при реконструкции, усилении и восстановлении сильно поврежденных несущих конструкций зданий, более конкретно для замены аварийной кладки столбов. Технический результат - обеспечение прочности и устойчивости каменных...
Тип: Изобретение
Номер охранного документа: 0002606478
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a365

Устройство для замены каменного столба здания

Изобретение относится к области строительства и может быть использовано при ремонте, усилении и реконструкции зданий, более конкретно для замены аварийного каменного столба. Технический результат заключается в повышении жесткостных, прочностных и деформативных характеристик каменной...
Тип: Изобретение
Номер охранного документа: 0002607124
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ae0b

Способ очистки сточных вод

Изобретение может быть использовано для очистки сточных вод от ионов хрома, хлоридов, жиров, СПАВ и взвешенных веществ. Для осуществления способа сточные воды подают в устройство цилиндрической формы (1), сначала в отстойник (2), далее во флотатор (3) с зоной флотации и зоной отстаивания во...
Тип: Изобретение
Номер охранного документа: 0002612724
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.ae9e

Состав для повышения нефтеотдачи пласта

Изобретение относится к нефтедобывающей промышленности, в частности к составам для повышения нефтеотдачи пласта, и предназначено для использования при разработке и эксплуатации нефтяных месторождений. Состав для повышения нефтеотдачи пласта, включающий неионогенное и анионоактивное...
Тип: Изобретение
Номер охранного документа: 0002612773
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.aea0

Способ получения нерацемического 1-(адамант-1-ил)-2-(2-нитро-1-фенилэтил)бутан-1,3-диона

Изобретение относится к способу получения нерацемического 1-(адамант-1-ил)-2-(2-нитро-1-фенилэтил)бутан-1,3-диона формулы I. Способ осуществляют путем энантиоселективного присоединения 1-(адамант-1-ил)бутан-1,3-диона к ω-нитростиролу в присутствии комплекса никеля формулы II в соответствии с...
Тип: Изобретение
Номер охранного документа: 0002612966
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b000

Способ работы парогазовой установки электростанции

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Технический результат - повышение надежности и экономичности работы парогазовой установки электростанции. Предлагается способ работы парогазовой установки электростанции, по которому органическое...
Тип: Изобретение
Номер охранного документа: 0002611138
Дата охранного документа: 21.02.2017
Showing 1-10 of 43 items.
27.06.2013
№216.012.4fc1

Способ приготовления катализаторов и катализатор для глубокой гидроочистки нефтяных фракций

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Описан способ приготовления катализатора, включающий пропитку...
Тип: Изобретение
Номер охранного документа: 0002486010
Дата охранного документа: 27.06.2013
20.09.2013
№216.012.6a87

Состав и способ синтеза катализатора гидродеоксигенации кислородсодержащего углеводородного сырья

Изобретение относится к катализаторам и их получению. Описан катализатор гидродеоксигенации кислородсодержащего углеводородного сырья или совместной гидроочистки нефтяных фракций и кислородсодержащих соединений, полученных из растительного (возобновляемого) сырья, содержащий соединения...
Тип: Изобретение
Номер охранного документа: 0002492922
Дата охранного документа: 20.09.2013
10.11.2013
№216.012.7ca8

Катализатор гидроочистки масляных фракций и рафинатов селективной очистки и способ его приготовления

Изобретение относится к области катализа. Описан катализатор гидроочистки масляных фракций и рафинатов селективной очистки, характеризующийся следующим соотношением компонентов, % мас.: оксид молибдена (MOo) 12,0-20,0, оксид вольфрама (WO) 1,0-6,0, оксид никеля или оксид кобальта (NiO или CoO)...
Тип: Изобретение
Номер охранного документа: 0002497585
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ca9

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к области катализа. Описан катализатор гидроочистки нефтяных фракций, в котором в качестве носителя используется смесь оксида алюминия и борофосфата переменного состава, образующегося на стадии прокаливания носителя из HBO и HPO, при следующем содержании компонентов, %...
Тип: Изобретение
Номер охранного документа: 0002497586
Дата охранного документа: 10.11.2013
20.07.2014
№216.012.df89

Способ очистки циклогексанона

Изобретение относится к способам очистки циклогексанона. Описан способ очистки циклогексанона, полученного окислением циклогексана кислородом воздуха или дегидрированием циклогексанола, в котором процесс ректификации ведут в разрезной вакуумной ректификационной колоне (2 колонны), где дистиллят...
Тип: Изобретение
Номер охранного документа: 0002523011
Дата охранного документа: 20.07.2014
10.04.2015
№216.013.3bed

Способ гидрообработки рафинатов масляных фракций в присутствии системы катализаторов

Изобретение относится к способу гидрообработки рафинатов масляных фракций в присутствии системы катализаторов с последующей депарафинизацией растворителем продукта. Данная система катализаторов содержит оксиды никеля, кобальта, молибдена, вольфрама, алюминия. При этом гидрообработку масляных...
Тип: Изобретение
Номер охранного документа: 0002546829
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5e67

Способ приготовления катализаторов для глубокой гидроочистки нефтяных фракций

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Данный способ включает пропитку оксидно-алюминиевого носителя раствором соединений металлов VIII и VI групп при pH пропиточного раствора 1,5-5,0, вакуумирование носителя перед контактом его с...
Тип: Изобретение
Номер охранного документа: 0002555708
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6465

Катализатор, способ его приготовления и процесс селективного гидрообессеривания олефинсодержащего углеводородного сырья

Изобретение относится к катализатору селективного гидрообессеривания олефинсодержащего углеводородного сырья. Данный катализатор состоит из соединений металлов Со или Ni, Mo и Na или К, нанесенных на носитель. При этом предлагаемый катализатор содержит биметаллическое комплексное соединение...
Тип: Изобретение
Номер охранного документа: 0002557248
Дата охранного документа: 20.07.2015
27.11.2015
№216.013.94af

Состав и способ приготовления носителя и катализатора глубокой гидроочистки углеводородного сырья

Изобретение относится к катализатору глубокой гидроочистки углеводородного сырья, состоящему из одно или несколько биметаллических комплексных соединений металлов VIII и VIB групп, нанесенных на модифицированный носитель определенного состава. Катализатор имеет удельную поверхность 180-350 м/г,...
Тип: Изобретение
Номер охранного документа: 0002569682
Дата охранного документа: 27.11.2015
20.01.2016
№216.013.a3bf

Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья

Изобретение относится к катализатору гидрообессеривания углеводородного сырья, состоящему из гетерополисоединения, содержащего как минимум один из следующих гетерополианионов [CoMoOH], [Co(OH)MoO], [Ni(OH)MoO], [NiMoOH], [PMoO], [РМоО], [SiMoO], [Co(OH)WO], [PWO], [SiWO], [PMoWO] (где n=1-11),...
Тип: Изобретение
Номер охранного документа: 0002573561
Дата охранного документа: 20.01.2016
+ добавить свой РИД