×
13.02.2020
220.018.01ee

Результат интеллектуальной деятельности: РЕНТГЕНОКОНТРАСТНОЕ БИОАКТИВНОЕ СТЕКЛО И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002714035
Дата охранного документа
11.02.2020
Аннотация: Изобретение относится к медицине, а именно к композиции рентгеноконтрастного биостекла и способу ее получения, и может быть использовано в ортопедии и челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия или в стоматологии в качестве добавки в пломбировочный материал, и позволит визуально контролировать позиционирование имплантата или пломбы как на стадии размещения, так и с течением времени. Технический результат изобретения заключается в упрощении способа получения биостекла, содержащего рентгеноконтрастную добавку - оксид вольфрама, обладающий меньшей растворимостью, и менее токсичный. Рентгеноконтрастное биоактивное стекло содержит следующие компоненты, мас.%: SiO 40,5-44,5, NaО 22,0-24,3, CaO 22,0-24,3, РО 5,5-5,9, WO1,0-10,0. Его получают смешением олеата кальция, олеата натрия, трибутилфосфата и тетраэтоксисилана в скипидаре, добавлением экстракта вольфрама, полученного экстракцией три-н-октиламина из солянокислого раствора вольфрама, нагреванием для удаления растворителя при 150-200°С, и проведением пиролиза при температуре 1250-1300°С в течение 30 мин. 3 пр.

Изобретение относится к медицине, а именно к композиции рентгеноконтрастного биостекла и может быть использовано в ортопедии и челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия или в стоматологии в качестве добавки в пломбировочный материал, и позволит визуально контролировать позиционирование имплантата или пломбы как на стадии размещения, так и с течением времени.

Биоактивные стекла относятся к классу керамики, способной взаимодействовать с тканями организма (предпочтительно костными тканями). Они состоят в основном из диоксида кремния, оксида натрия, оксида кальция и оксида фосфора, причем известно что оптимальные биологические свойства проявляются при содержании (в мас. %) 45% SiO2 - 24,5%, Na2O - 24,5%, CaO - 6% Р2О5 (Hench L.L. // J.Mater Sci: Mater Med, V. 17, P. 967-978, 2006). Биостекло запускает реакции организма, отвечающие за восстановление костного дефекта. Это происходит за счет медленного растворения компонентов биостекла под воздействием среды организма. С одной стороны, в ходе растворения на поверхности формируется биологически активный слой нанокристаллического гидроксиапатита, что обеспечивает прочное связывание с костными тканями организма. С другой стороны, продукты растворения (ионы кальция и кремния) стимулируют пролиферацию остеогенных клеток для воспроизводства новых тканей. Вследствие низких механических характеристик, таких как прочность на излом и хрупкость, биостекла редко используются сами по себе. Например, для структурных элементов в ортопедии предпочитают использовать металлические сплавы или синтетические полимеры. Покрытие имплантатов слоем биостекла решает проблему биосовместимости чужеродных материалов, так как защищая поверхность сплава от коррозии или деструкции, биостекло препятствует выходу потенциально токсичных веществ в среду организма. Покрытие имплантантов слоем биостекла проводят способами окунания или термическим напылением.

В стоматологии в клиническую практику активно внедряются новые эндогерметики на основе биостекол из гидроксида кальция и фосфата кальция.

Препараты хорошо себя зарекомендовали в силу низкой водорастворимости, так как образуют пробку верхушечного отверстия корня, а также выраженного бактериостатического эффекта. Помимо этого, за счет окклюзии корневого канала они индуцируют образование твердых тканей зуба, апикальной пробки, что в дальнейшем служит биологическим барьером от тканей периодонта.

Для визуализации процессов введения имплантата и последующего контроля за восстановлением костной ткани в ортопедии, челюстно-лицевой хирургии, стоматологии применяют контрастирование материалов. Для этого широко используют соли йода, бария, оксиды тантала, висмута, никеля, стронция.

Известно рентгеноконтрастное стекло для наполнителей композиционных стоматологических материалов (пат. РФ №2028980, опубл. 20.02.1995, бюл. №5), имеющее следующий состав, мас. %: Al2O3 12-30; ВаО 7-27,5; B2O3 1-9; СоО 0,0001-0,0003; NiO 0,001-0,003; Nd2O3 0,003-0,03; Er2O3 0,0004-0,007; SiO2 остальное. Недостатком таких рентгеноконтрастных стекол является то, что они имеют сложный дорогостоящий состав, включают токсичные оксиды кобальта, бария, никеля, а главное, не содержат гидроксиапатит и поэтому проигрывают в биологических свойствах, а также уступают в водорастворимости. Помимо этого, данный материал не подходит для применения в ортопедии.

Описан состав стоматологического рентгеноконтрастного стекла (пат. ЕР №0634373, опубл. 18.01.1995), содержащий (мас. %): SiO2 45-65; Al2O3 5-20; SrO 15-35; В2О3 5-20; F2O 0-2. Недостатком состава является высокое содержание рентгеноконтрастных добавок. Отсутствие гидроксиапатита приводит к худшим показателям водорастворимости и биосовместимости, чем у кальций-фосфатных стекол. Помимо этого, способ изготовления включает тщательное измельчение и просеивание компонентов, что требует специального оборудования.

Известны состав и способ получения рентгеноконтрастного стекла (пат. BY №13965, опубл. 28.02.2011), содержащий (мас. %) 20-45% SiO2, 5-35% Al2O3, 10-30% SrO, 1-10% В2О3, 2-20% F, 1-10% WO3. Для получения стекла указанного состава шихту со всеми компонентами перемешивают в шаровой мельнице и плавят в муфельной печи при температуре 1300-1500°C.

К недостаткам этого состава относятся присутствие в качестве рентгеноконтрастной добавки токсичного оксида бора, и отсутствие оксидов кальция и фосфора, необходимых для придания биоактивных свойств. Также к недостаткам способа получения относятся необходимость измельчения шихты в шаровой мельнице и высокая температура плавления.

В качестве прототипа выбрано рентгеноконтрастное биостекло (з. US №20120148646, опубл. 14.06.2012), в котором рентгеноконтрастное вещество распределено в/на частицах стекла в виде частиц меньшего размера. В качестве рентгеноконтрастных веществ могут быть использованы Bi2O3, ТаО, Ta2O5, WO3, ВаО. В частном случае исполнения материал получают следующим образом. Смесь гексаметилдисилоксана, 2-этилгексаноата натрия, 2-этилгексаноата кальция, трибутилфосфата и 2-этилгексаноата висмута гомогенизируют и растворяют в ксилоле. Полученный раствор фильтруют, инжектируют через капилляр, диспергируют пропусканием кислорода и подвергают пиролизу, воспламеняя в кислородно-метановом пламени. Продукты сгорания собирают на волоконном фильтре над пламенем с помощью вакуумного насоса.

К недостаткам известного биостекла можно отнести то, что заявленный материал, строго говоря, является не стеклом, а стеклокерамикой, состоящей из стеклофазы (матрицы) содержащей кристаллическую фазу наночастиц рентгеноконтрастной добавки. Композиция образуется при быстром сжигании органического раствора, содержащего исходные компоненты, что не позволяет получить стекло в аморфном состоянии. Растворение компонентов биокерамики в физиологической среде организма приводит к изменению состава среды, что может влиять на клеточную активность. В случае прототипа при растворении матрицы будет высвобождаться и попадать в организм оксид вольфрама в виде наночастиц. Про оксид вольфрама известно, что он избирательно убивает некоторые раковые клетки, но и для здоровых клеток оксид вольфрама тоже может представлять опасность.

Другим недостатком является то, что известный способ имеет высокую энергоемкость и пожароопасность, так как температура горения кислородно-метановой смеси составляет 3000°C, также к недостаткам прототипа относится использование вакуумного оборудования для улавливания частиц стекла из продуктов горения, а также необходимость вводить высокие концентрации

рентгеноконтрастного вещества в стекло для обеспечения приемлемой рентгеноконтрастности. Так, например, при концентрации оксида висмута 50 мас. % достигается рентгеноконтрастность равная ступени алюминиевого клина толщиной 4,7 мм.

Задачей предлагаемого изобретения является получение рентгеноконтрастного стекла, с низкой токсичностью и высокой рентгеноконтрастностью, простого и менее пожароопасного в приготовлении.

Технический результат предлагаемого изобретения заключается во включении оксида вольфрама в сетку биостекла, что обеспечивает меньшую растворимость, и, следовательно, меньшую токсичность, и в применении для его получения более простого способа. Указанный технический результат достигают введением в композицию экстракта оксида вольфрама (WO3), а также проведением отгонки органического растворителя, что обеспечивает снижение пожароопасности процесса, и получением стекломассы пиролизом при температуре 1250-1300°C. При этом осуществление процесса не требует сложного специального оборудования.

Поставленная задача решается следующим образом. Биоактивное стекло включает в себя оксиды кремния, натрия, кальция, фосфора и вольфрама. Для получения стекла используют раствор, содержащий тетраэтоксисилан, трибутилфосфат, олеат натрия в скипидаре, олеат кальция в скипидаре и экстракт вольфрама в бензольном растворе три-н-октиламина. Экстракцию вольфрама проводят следующим образом. В качестве исходной водной фазы используют раствор, содержащий 20 г/л W и 3,2 г/л HCl. Экстрагент - 20% бензольный раствор три-н-октиламина, предварительно обработанный водным раствором HCl, имеющим концентрацию 3,2 г/л. Органическую и водную фазы смешивают в равных объемах, и они контактируют в течение 0,5 часа при интенсивном перемешивании. После разделения фаз получают экстракт, содержащий 14 г/л вольфрама. После смешения компонентов биостекла выполняют отгонку растворителя при температуре 150-200°C. Затем проводят обжиг (пиролиз) в муфельной печи при температуре до достижения температуры 1250-1300°C.

Возможность осуществления изобретения подтверждается следующими примерами.

Пример 1. В 15 мл скипидара при нагревании растворяют 3,394 г олеата кальция и добавляют 0,297 мл трибутилфосфата. Отдельно в 15 мл скипидара при нагревании растворяют 3,101 г олеата натрия и добавляют 2,154 мл тетраэтоксисилана. Растворы смешивают и добавляют 5,030 мл экстракта вольфрама. Полученный раствор нагревают при температуре 150-200°C для удаления избытка органики. Затем пастообразную массу подвергают пиролизу, нагревая до 1250°C и выдерживают при этой температуре в течение 30 минут. В результате получают кальций-фосфатное стекло со следующим содержанием компонентов, мас. %:

Рентгеноконтрастность, определенная по стандарту ИСО 4049, соответствует ступени алюминиевого клина толщиной 4,7 мм.

Пример 2. В 15 мл скипидара при нагревании растворяют 3,257 г олеата кальция и добавляют 0,285 мл трибутилфосфата. Отдельно в 15 мл скипидара при нагревании растворяют 2,975 г олеата натрия и добавляют 2,067 мл тетраэтоксисилана. Растворы смешивают и добавляют 25,150 мл экстракта вольфрама. Полученный раствор нагревают при температуре 150-200°C для удаления избытка органики. Затем пастообразную массу подвергают пиролизу, нагревая до 1300°C и выдерживают при этой температуре в течение 30 минут. В результате получают кальций-фосфатное стекло со следующим содержанием компонентов, мас. %:

Рентгеноконтрастность по стандарту ИСО 4049 соответствует ступени алюминиевого клина толщиной 5 мм.

Пример 3. В 15 мл скипидара при нагревании растворяют 3,085 г олеата кальция и добавляют 0,270 мл трибутилфосфата. Отдельно в 15 мл скипидара при нагревании растворяют 2,819 г олеата натрия и добавляют 1,959 мл тетраэтоксисилана. Растворы смешивают и добавляют 50,300 мл экстракта вольфрама. Полученный раствор нагревают при температуре 150-200°C для удаления избытка органики. Затем пастообразную массу подвергают пиролизу, нагревая до 1300°C и выдерживают при этой температуре в течение 30 минут.

В результате получают кальций-фосфатное стекло со следующим содержанием компонентов, мас. %:

Рентгеноконтрастность по стандарту ИСО 4049 соответствует ступени алюминиевого клина толщиной 5,6 мм.

Источник поступления информации: Роспатент

Showing 91-100 of 125 items.
15.10.2019
№219.017.d5c4

Способ вскрытия флюорита

Изобретение относится к способам переработки минерального сырья, в частности флюорита и флюоритовых концентратов, с получением соединений фтора, используемых в качестве фторирующих агентов. Способ переработки сырья включает сульфатизацию, осуществляемую путем обжига с 20% избытком фторида...
Тип: Изобретение
Номер охранного документа: 0002702883
Дата охранного документа: 11.10.2019
17.10.2019
№219.017.d6ec

Способ получения защитных антикоррозионных покрытий на сплавах алюминия со сварными швами

Изобретение относится к способам получения защитных антикоррозионных покрытий на изделиях, конструкциях и сооружениях со сварными соединениями, выполненных из сплавов алюминия, преимущественно конструкционных, которые предназначены для эксплуатации в неблагоприятных условиях под воздействием...
Тип: Изобретение
Номер охранного документа: 0002703087
Дата охранного документа: 15.10.2019
22.10.2019
№219.017.d8d3

Анодный материал для литий-ионного аккумулятора и способ его получения

Изобретение может быть использовано при получении анодного материала литий-ионных аккумуляторов, применяемых для энергообеспечения крупногабаритных энергоустановок гибридного и электрического автотранспорта, систем бесперебойного электроснабжения, робототехнических средств и автономных...
Тип: Изобретение
Номер охранного документа: 0002703629
Дата охранного документа: 21.10.2019
30.10.2019
№219.017.dbc1

Способ формирования композиционных покрытий на магнии

Изобретение относится к способу обработки магниевых сплавов, а именно к композиционным покрытиям, формируемым сочетанием плазменного электролитического оксидирования и распыления фторполимера, и может быть применено в машиностроении, в том числе автомобильной промышленности, приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002704344
Дата охранного документа: 28.10.2019
29.11.2019
№219.017.e781

Способ получения супергидрофобных покрытий с антиобледенительными свойствами на алюминии и его сплавах

Изобретение относится к получению на поверхности алюминия и его сплавов супергидрофобных покрытий, обладающих влагозащитными и антиобледенительными свойствами, и может быть использовано для обеспечения долговременной защиты от гололедно-изморозевых отложений и сопутствующей коррозии различных...
Тип: Изобретение
Номер охранного документа: 0002707458
Дата охранного документа: 26.11.2019
08.12.2019
№219.017.eaee

Способ получения гидрофобного нефтесорбента и устройство для его осуществления

Группа изобретений относится к производству дисперсных нефтесорбентов. Камеру гидрофобизации с загруженным пористым алюмосиликатным материалом вакуумируют до остаточного давления 10-60 кПа, обрабатывают материал в среде перегретого водяного пара. Температуру повышают до 500-550°С, поддерживая...
Тип: Изобретение
Номер охранного документа: 0002708309
Дата охранного документа: 05.12.2019
08.12.2019
№219.017.eb39

Способ получения гидрофобного нефтесорбента и устройство для его осуществления

Группа изобретений относится к производству дисперсных сорбентов нефтепродуктов. Камеру гидрофобизации с загруженным пористым алюмосиликатным материалом вакуумируют до остаточного давления 20-30 кПа, обрабатывают материал в среде перегретого водяного пара. Температуру повышают до 280-310°С,...
Тип: Изобретение
Номер охранного документа: 0002708362
Дата охранного документа: 05.12.2019
31.12.2020
№219.017.f45f

Способ получения композиционного материала для биорезорбируемого магниевого имплантата

Изобретение относится к способу получения материала с композиционным антикоррозионным покрытием для биосовместимых имплантатов с ограниченным сроком нахождения в организме, служащих для замены и/или регенерации поврежденных костных тканей, и может найти применение в имплантационной хирургии....
Тип: Изобретение
Номер охранного документа: 0002710597
Дата охранного документа: 30.12.2019
06.02.2020
№220.017.ffb5

Способ дезактивации отработанных ионообменных смол, загрязнённых радионуклидами цезия и кобальта

Изобретение относится к атомной энергетике. Способ дезактивации отработанной ионообменной смолы, загрязненной радионуклидами, включает обработку высокощелочным рН≥13 дезактивирующим раствором, содержащим 1-3 моль/л ионов натрия, очистку дезактивирующего раствора от радионуклидов цезия на...
Тип: Изобретение
Номер охранного документа: 0002713232
Дата охранного документа: 04.02.2020
13.02.2020
№220.018.0210

Способ восстановления повреждённых покрытий на титановых изделиях

Изобретение может быть использовано для восстановления эксплуатационных свойств изношенных изделий из титана и титановых сплавов и может быть использовано в различных отраслях промышленности, в том числе: в судостроении, авиационной, космической, автомобильной промышленностях. Способ...
Тип: Изобретение
Номер охранного документа: 0002714009
Дата охранного документа: 11.02.2020
Showing 31-32 of 32 items.
17.06.2023
№223.018.7dc0

Способ лечения аденокарциномы эрлиха методом лучевой терапии

Изобретение относится к области медицины, а именно онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Проводят локальное облучение новообразований тормозным излучением мощностью 6 МэВ суммарной очаговой дозой 20 Гр с предварительным...
Тип: Изобретение
Номер охранного документа: 0002781902
Дата охранного документа: 19.10.2022
17.06.2023
№223.018.80d7

Способ получения биостекла, легированного диоксидом циркония

Изобретение относится к способам получения биоактивного стекла, которое используется в медицине, в частности в травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии для восстановления функциональной целостности костной ткани. Предложен способ получения...
Тип: Изобретение
Номер охранного документа: 0002765471
Дата охранного документа: 31.01.2022
+ добавить свой РИД