×
04.02.2020
220.017.fd08

Результат интеллектуальной деятельности: Способ определения расхода жидкости в трубопроводе

Вид РИД

Изобретение

№ охранного документа
0002712782
Дата охранного документа
31.01.2020
Аннотация: Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта, электромагнитного явления и коррекционной обработки электрических сигналов. Отличительная особенность способа заключается в установке на измерительном участке трубопровода датчиков на расстояние λ. Полученные на выходе датчиков электрические сигналы усиливаются усилителями и подаются на коррелятор, состоящий из блока регулируемой задержки, перемножителя, фильтра нижних частот и экстремального регулятора. На выходе перемножителя выделяются низкочастотное напряжение, пропорциональное корреляционной функции R(τ), где τ - текущая временная задержка. Изменением текущей временной задержки τ обеспечивают максимальное значение коррекционной функции R(τ). Экстремальный регулятор поддерживает значение коррекционной функции R(τ) на максимальном уровне, воздействуют на управляющий вход блока регулируемой задержки. Максимальное значение коррекционной функции R(τ) обеспечивается при τ=τ. Определяют скорость V движущейся жидкости на измерительном участке трубопровода ее расход Q=S⋅V, где S - сечение измерительного участка трубопровода. Технический результат - расширение функциональных возможностей способа путем определения скорости движущейся жидкости. 2 ил.

Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта, электромагнитного явления и коррекционной обработки электрических сигналов.

Известны способы определения расхода жидкости, основанные на использовании трибоэлектрического эффекта и электромагнитного явления (авт. свид. СССР №№172.073, 224.826, 317.902, 1.185.090, 1.185.093, 1.394.041, 1.482.264, 1.649.279, 1.812.433; патенты РФ №№2.005.995, 2.023.985, 2.084.833, 2.190.190, 2.190.833, 2.242.721, 2.511.628, 2.574.321, 2.656.621; патенты США №№4.210.022, 4.339.958, 4.704.907; патенты Великобритании №№1.165.398, 2.166.550; патент ФРГ №2.756.837; патент Японии №56-54.566; Кремлевский П.П. Расходомеры и счетчики количества Л.: Машиностроение, 1989; Никитин В.И. Современные проблемы измерения малых расходов жидкости и газа. Измерительная техника, 1982, №2 и др.).

Из известных способов наиболее близким к предлагаемому является «Способ определения расхода жидкости в трубопроводе» (патент РФ №2.656.621, G01F 1/58, 2017), который и выбран в качестве прототипа.

Известный способ основан на использовании трибоэлектрического эффекта и электромагнитного явления. Трибоэлектрический эффект заключается в том, что трении жидкости о внутреннюю поверхность измерительного участка трубопровода, выполненного из полимерного материала с высокой трибоэлектрической способностью, протекающая жидкость заряжается отрицательно, а измерительный участок - положительно. При этом форма внутреннего сечения измерительного участка 9 трубопровода 1 в виде сужающихся и расширяющихся конусов обеспечивает увеличение степени трибоэлектризации и повышенный заряд протекающей жидкости. Однако противоположные заряды снижают степень поляризации протекающей жидкости. Для нейтрализации положительных зарядов измерительный участок 9 трубопровода 1 снабжают механическим заземлением 10.

Для создания большей турбулентности движения жидкости и повышения ее поляризации внутри измерительного участка 9 трубопровода 1 можно установить направляющие лопатки 11.

Известный способ обеспечивает повышение точности и чувствительности к малым расходам жидкости путем создания большей турбулентности движущейся жидкости и повышения ее поляризации, но не позволяет определять скорость движения жидкости.

Технической задачей изобретения является расширение функциональных возможностей способа путем определения скорости движущейся жидкости.

Поставленная задача решается тем, что способ определения расхода жидкости в трубопроводе, заключающийся, в соответствии с ближайшим аналогом, в том, что выделяют напряженность поля в любой точке по периметру измерительного сечения трубопровода, связанную с электрическим зарядом жидкости, преобразуют ее с помощью трансформатора тока, охватывающего трубопровод, в электрический сигнал, пропорциональный расходу, при этом измерительный участок трубопровода выполняют из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением, имеющим форму последовательных соединенных сужающихся и расширяющихся конусов, и снабжают его металлическим заземлением, обеспечивая тем самым высокую степень поляризации движущейся жидкости, и направляющими лопатками, которые устанавливают в начале измерительного участка, обеспечивая тем самым закручивание движущейся жидкости и повышенную степень ее поляризации, отличается от ближайшего аналога тем, что устанавливают на измерительном участке два датчика, на расстояние λ друг от друга, формируют в них электрические сигналы, усиливают их, перемножают между собой, предварительно пропустив первый электрический сигнал через блок регулируемой задержки, выделяют низкочастотное напряжение, пропорциональное корреляционной функции R(τ), где τ - текущая временная задержка, изменением текущей временной задержки τ обеспечивают максимальное значение корреляционной функции R(τ), фиксируют временную задержку τ равную транспортному запаздыванию τт электрического сигнала второго датчика по отношению к электрическому сигналу первого датчика (τ=τт), поддерживают корреляционную функцию R(τ) на максимальном уровне, воздействуя на управляющий вход блока регулируемой задержки, и определяют скорость V движущейся жидкости на измерительном участке трубопровода

и ее расход Q=S-V,

где S - сечение измерительного участка трубопровода.

Предлагаемый способ реализуется устройством, структурная схема которого представлена на фиг. 1. На фиг. 2 изображен разрез трубопровода 1.

Устройство содержит трубопровод 1, на котором коаксиально установлено ферритовое кольцо 2 с обмоткой 3, помещенный в экран 4 с щелью 5. Обмотка 3 подключена к измерительному блоку 6, состоящему из усилителя 7 и регистратора 8. Трубопровод 1 содержит измерительный участок 9, выполненный из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением, имеющим форму последовательно соединенных сужающихся и расширяющихся конусов, и снабженный металлическим заземлением 10.

Сильную положительную трибоэлектрическую зарядную тенденцию имеют многие полимерные материалы, например политетрафторэтилен, нейлон и другие. В качестве металлического заземления используют металлические кольца 10, имеющие контакт с землей. В начале измерительного участка 9 установлены направляющие лопатки 11, обеспечивающие закручивание движущейся жидкости и повышенную степень ее полярности.

На измерительном участке 9 установлены датчики 12 и 13 на расстоянии λ (измерительная база), к которым подключены усилители 14 и 15 электрических сигналов. К усилителю 14 последовательно подключены блок 17 регулируемой задержки, перемножитель 18, второй вход которого соединен с выходом второго усилителя 15 электрического сигнала, фильтр 19 нижних частот и экстремальный регулятор 20, выход которого соединен с вторым входом блока 17 регулируемой задержки. Перемножитель 18, блок 17 регулируемой задержки, фильтр 19 нижних частот и экстремальный регулятор 20 образуют коррелятор 16. Шкала блока 17 регулируемой задержки непосредственно связана с индикатором 21 скорости движущейся жидкости.

Предлагаемый способ осуществляют следующим образом.

Движущая жидкость со скоростью V трется о внутреннюю стенку трубопровода 1. Вследствие трибоэлектрического эффекта возникает разность потенциалов. При этом движущаяся жидкость электризуется с отрицательным знаком электрических зарядов и является током (конвективным), вокруг которого возникает магнитное поле, величина которого пропорциональна скорости (расходу) измеряемой жидкости. В этом проявляется электромагнитное явление. Одновременно с этим на внутренней стенке трубопровода 1 образуются заряды противоположного знака по сравнению со знаком заряда движущейся жидкости. Степень поляризации значительно возрастает на измерительном участке 9 трубопровода 1 за счет двух факторов.

Первый фактор обусловлен тем, что измерительный участок 9 выполнен из полимерного материала и с внутренним переменным сечением, имеющим форму последовательно соединенных сужающихся и расширяющихся конусов. В качестве такого материала может быть использован нейлон, политетрафторэтилен и другие полимеры.

Второй фактор обусловлен тем, что в начале измерительного участка 9 установлены направляющие лопатки 11, которые обеспечивают закручивание движущейся жидкости по винтообразной траектории. Это повышает степень турбулентности и поляризации движущейся жидкости, что объясняется тем, что все внутренние слои жидкости начинают соприкасаться с внутренней поверхностью измерительного участка 9.

Образующиеся положительные заряды нейтрализуют некоторые отрицательные заряды жидкости в соответствии с законом Кулона, что значительно снижает степень поляризации движущейся жидкости. Для нейтрализации положительных зарядов измерительный участок 9 трубопровода 1 снабжены заземленными механическими кольцами 10. Заряды положительного знака внутренней поверхности измерительного участка 9 трубопровода 1 стекают сначала на металлические кольца 10, а затем на землю. Движущаяся жидкость представляет собой систему движущихся отрицательных зарядов и является током (конвективным), вокруг которого возникает магнитное поле, величина которого пропорциональна скорости V (расходу) измеряемой жидкости.

Величина напряженности Н магнитного поля равна

где У - величина конвективного тока;

Г - расстояние от поверхности трубопровода до его оси.

При движении жидкости по трубопроводу 1 возникает переменное магнитное поле вокруг измерительного участка 9 трубопровода 1. Это поле создает в обмотке 3, намотанной на ферритовое кольцо 2, ЭДС. Сигнал с выхода обмотки 3 поступает на вход измерительного блока 3, в котором сигнал усиливается в усилителе 7 и фиксируется в регистраторе 8. Величина сигнала пропорциональна скорости V (расходу) жидкости.

На измерительном участке 9 трубопровода 1 устанавливают датчики 12 и 13 на расстояние λ друг от друга (измерительная база), в качестве которой могут быть использованы электроды. Полученные на выходе датчиков 12 и 13 электрические сигналы u1(t) и u2(t) ≈ u1(t-τ) усиливаются усилителями 14 и 15 и подаются на коррелятор 16, состоящий из блока 17 регулируемой задержки, перемножителя 18, фильтра 19 нижних частот и экстремального регулятора 20. На выходе перемножителя 18 фильтром 19 нижних частот выделяются низкочастотное напряжение, пропорциональное корреляционной функции

где Т - период интегрирования интегратора (фильтра нижних частот) или постоянная времени слаживающего фильтра, Т=RC;

τ - текущая временная задержка.

Изменением текущей временной задержки τ обеспечивают максимальное значение коррекционной функции R(τ). Экстремальный регулятор 20 поддерживает значение коррекционной функции R(τ) на максимальном уровне, воздействуют на управляющий вход блока 17 регулируемой задержки. Шкала блока 17 регулируемой задержки градуируется непосредственно в значениях скорости движения жидкости

где τт - транспортное запаздывание сигнала второго датчика 13 по отношение к сигналу первого датчика 12.

Максимальное значение коррекционной функции R(τ) обеспечивается при τ=τт.

Определив и зная сечение S трубопровода, можно определить расход Q движущейся жидкости по формуле

Таким образом, предлагаемой способ по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает не только повышение точности и чувствительности к малым расходам жидкости, но и определение скорости движущейся жидкости.

Это достигается созданием большей турбулентности движущейся жидкости и повышением ее поляризации за счет закручивания движущейся жидкости по винтообразной траектории. Указанное обстоятельство объясняется тем, что почти все внутренние слои движущейся жидкости начинают соприкасаться с внутренней поверхностью измерительного участка 9 трубопровода 1.

За счет установки на измерительном участке 9 двух датчиков 12 и 13, в качестве которого могут быть использованы электроды, на расстоянии λ друг от друга (измерительная база) и корреляционной обработки электрических сигналов, формируемых датчиками, можно определить скорость движущейся жидкости а зная сечение S измерительного участка 9, можно определить расход движущейся жидкости Q=SV. Следовательно, к определению расхода движущейся жидкости используют два подхода. Первый подход основан на использовании трибоэлектрического эффекта и электромагнитного явления. Второй подход основан на использовании двух датчиков, в качестве которых могут быть электроды, и коррекционной обработки электрических сигналов, формируемых датчиками.

Указанные два подхода обеспечивают определение расхода жидкости в широком диапазоне возможных значений.

Практическая реализация способа не вызывает технических затруднений.

Тем самым функциональные возможности известного способа расширены.


Способ определения расхода жидкости в трубопроводе
Способ определения расхода жидкости в трубопроводе
Способ определения расхода жидкости в трубопроводе
Способ определения расхода жидкости в трубопроводе
Источник поступления информации: Роспатент

Showing 21-30 of 106 items.
10.03.2014
№216.012.aa44

Полупроводниковый газовый сенсор

Изобретение относится к аналитическому приборостроению и может быть использовано в газоанализаторах, газосигнализаторах и газовых пожарных извещателях для контроля довзрывных концентраций взрыво-пожароопасных газов и газовых смесей. Полупроводниковый газовый сенсор содержит корпус 1 реакционной...
Тип: Изобретение
Номер охранного документа: 0002509303
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ad0c

Способ дистанционного обнаружения вещества

Использование: предлагаемая система относится к радиотехническим средствам, использующим магнитный резонанс для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ в составе предъявленных для исследования предметов, а также поляризационную селекцию и фазовый анализ для поиска и...
Тип: Изобретение
Номер охранного документа: 0002510015
Дата охранного документа: 20.03.2014
27.03.2014
№216.012.af39

Псевдослучайная кодовая шкала

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угла поворота вала в код. Технический результат - повышение информационной надежности псевдослучайной кодовой шкалы за счет формирования с нее корректирующих...
Тип: Изобретение
Номер охранного документа: 0002510572
Дата охранного документа: 27.03.2014
10.06.2014
№216.012.cbde

Силоизмерительный датчик

Изобретение относится к контрольно-измерительной технике и может быть использовано для постоянного измерения усилий в различных резьбовых соединениях строительных элементов и конструкций. Техническим результатом изобретения является повышение чувствительности и точности силоизмерительного...
Тип: Изобретение
Номер охранного документа: 0002517961
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d096

Система идентификации автотранспорта и оповещения водителя для предотвращения аварий на железнодорожном переезде

Изобретение относится к средствам обеспечения безопасности на железнодорожных переездах. Система идентификации автотранспорта и оповещения водителя для предотвращения аварий на железнодорожном переезде содержит размещенную в районе переезда аппаратуру обнаружения и контроля за движением...
Тип: Изобретение
Номер охранного документа: 0002519169
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d57b

Автономная сигнально-пусковая система пожаротушения

Предлагаемая система относится к противопожарной технике, а более конкретно к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием, и может быть использована для противопожарной защиты различных объектов и одновременной передачи сигналов...
Тип: Изобретение
Номер охранного документа: 0002520429
Дата охранного документа: 27.06.2014
27.08.2014
№216.012.ed61

Устройство обнаружения людей под завалами и поиска взрывчатых и наркотических веществ

Предлагаемое устройство относится к контрольно-поисковым средствам, а именно к устройствам обнаружения местоположения людей, оказавшихся под завалами, образовавшимися в результате стихийного (землетрясения, торнадо, цунами и др.) или иного бедствия, и поиска взрывчатых и наркотических веществ,...
Тип: Изобретение
Номер охранного документа: 0002526588
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ed67

Способ дистанционного обнаружения вещества

Использование: для дистанционного обнаружения вещества посредством магнитного резонанса. Сущность изобретения заключается в том, что выполняют поляризационную селекцию и фазовый анализ для поиска и обнаружения запрещенных веществ, упакованных в неметаллическую оболочку. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002526594
Дата охранного документа: 27.08.2014
20.09.2014
№216.012.f500

Способ преобразования матрично расположенных шариковых выводов микросхем из бессвинцового припоя в оловянно-свинцовые околоэвтектического состава и припойная паста для его реализации

Изобретение относится к радиоэлектронике и может быть использовано для преобразования матрично расположенных шариковых выводов микросхем из бессвинцового припоя в оловянно-свинцовые околоэвтектического состава при дальнейшем поверхностном монтаже электрорадиоэлементов и интегральных схем на...
Тип: Изобретение
Номер охранного документа: 0002528553
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f502

Устройство для дистанционного измерения давления

Предлагаемое устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении в различных отраслях промышленности. Техническим результатом изобретения является повышение точности измерения давления. Устройство для дистанционного измерения...
Тип: Изобретение
Номер охранного документа: 0002528555
Дата охранного документа: 20.09.2014
Showing 21-30 of 194 items.
27.10.2013
№216.012.7afd

Способ обнаружения и идентификации разыскиваемых транспондеров из множества пассивных транспондеров и система для его осуществления

Предлагаемые способ и система относятся к системам радиочастотной идентификации подвижных и неподвижных объектов (RFID-системы). Технической задачей изобретения является расширение функциональных возможностей известных технических решений путем автоматического определения местоположения...
Тип: Изобретение
Номер охранного документа: 0002497147
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7f5e

Способ дистанционного обнаружения вещества

Предложен способ поиска и обнаружения наркотиков и взрывчатых веществ, находящихся в неметаллической оболочке и в укрывающих средах. Техническим результатом является повышение точности определения местоположения наркотического вещества. В веществе возбуждают магнитный резонанс с последующим...
Тип: Изобретение
Номер охранного документа: 0002498279
Дата охранного документа: 10.11.2013
27.11.2013
№216.012.84f4

Способ и система радиочастотной идентификации и позиционирования железнодорожного транспорта

Группа изобретений относится к области организации и управления движением на железных дорогах. Способ радиочастотной идентификации и позиционирования железнодорожного транспорта состоит в том, что на каждом участке пути располагают, как минимум, две радиочастотные метки. Первую метку размещают...
Тип: Изобретение
Номер охранного документа: 0002499714
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.91e1

Автоматический беспилотный диагностический комплекс

Предлагаемый комплекс относится к области диагностической техники и может быть использован для систематического дистанционного контроля источников радиоизлучений (ИРИ) и состояния магистральных газопроводов и нефтепроводов, а именно для раннего обнаружения нарушений герметичности, повреждений и...
Тип: Изобретение
Номер охранного документа: 0002503038
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9586

Когерентно-импульсный радиолокатор

Предлагаемое устройство относится к области радиолокации, в частности к системам, предназначенным для распознавания различия между неподвижными и подвижными объектами, а также для определения величины и знака доплеровской частоты. Достигаемый технический результат - повышение чувствительности и...
Тип: Изобретение
Номер охранного документа: 0002503972
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.958e

Система для определения колебаний водной поверхности

Изобретение относится к области геофизики и может быть использовано для сейсмической разведки районов, покрытых водой. Система содержит приемники 1.i (i=1, 2, …, n) колебаний атмосферного давления (микробарографы), схему 2 сравнения, систему 3 оповещения, блок 4 памяти, первый 5 и второй 6...
Тип: Изобретение
Номер охранного документа: 0002503980
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9924

Региональная информационная система связи

Изобретение относится к системам дуплексной радиосвязи и может быть использована для передачи сигналов управления и синхронизации с пункта контроля и управления большой группе территориально-распределенных объектов, а также для сбора информации с указанных объектов для централизованного...
Тип: Изобретение
Номер охранного документа: 0002504903
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9e1e

Устройство считывания информации с подвижных объектов железнодорожных составов

Изобретение относится к области управления железнодорожным транспортом. Устройство считывания информации с подвижных объектов железнодорожных составов содержит считывающее устройство, кодовые датчики и размещенные на локомотиве приемоответчики, блок питания и управления, генератор и блок приема...
Тип: Изобретение
Номер охранного документа: 0002506186
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f8d

Автоматический беспилотный диагностический комплекс

Изобретение относится к области диагностической техники и может быть использовано для систематического дистанционного контроля состояния магистральных газопроводов и хранилищ, а именно для раннего обнаружения нарушений герметичности, повреждений и утечки в газопроводе, и направлено на...
Тип: Изобретение
Номер охранного документа: 0002506553
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a31f

Индукционный датчик положения

Относится к измерительной технике и может быть использовано для измерения линейных перемещений с помощью преобразователя перемещения индукционного типа. Техническим результатом заявленного изобретения является существенное повышение надежности работы индукционного датчика положения. Технический...
Тип: Изобретение
Номер охранного документа: 0002507474
Дата охранного документа: 20.02.2014
+ добавить свой РИД