×
01.02.2020
220.017.fc3e

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ СТОМАТОЛОГИЧЕСКОГО ОСТЕОИНТЕГРИРУЕМОГО ИМПЛАНТАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицинской технике, в частности к стоматологии, и может быть использовано в хирургической и ортопедической стоматологии для реабилитации больных с частичной или полной потерей зубов. Способ изготовления стоматологического остеоинтегрируемого имплантата, содержащего внекостную и внутрикостную части, состоит в выполнении на наружной поверхности внутрикостной части элементов в виде упорной резьбы с постоянным профилем по всей длине внутрикостной части, и элементов микроретенции, выполненных в виде поверхностного слоя толщиной от 100 до 200 мкм с развитым микрорельефом, приближенным к микроархитектонике кости, при этом основу имплантата выполняют из циркония, закрепляют имплантат на подвижную ось, пространство вблизи имплантата насыщают кислородом, облучают это пространство постоянным ультрафиолетовым светом с длиной волны, лежащей в диапазоне от 160 до 240 нм, придают имплантату возвратно-поступательное и вращательное движение, причем при возвратно-поступательном направлении перемещают имплантат в продольном прямом и обратном направлениях на расстояние, равное длине внутрикостной части имплантата, и в процессе перемещения и вращения имплантата облучают поверхность его внутрикостной части лазерным излучением с длинами волн, лежащими в диапазоне от 914 до 1342 нм, причем при облучении лазерный луч направляют перпендикулярно продольной оси имплантата. Использование изобретения позволяет повысить биосовместимость и твердость имплантата, не превышая твердости альвеолярной кости пациента. 1 ил., 1 пр.

Изобретение относится к области медицины, в частности к области стоматологии, и может быть использовано в хирургической и ортопедической стоматологии для реабилитации больных с частичной или полной потерей зубов.

Из предшествующего уровня техники известен способ изготовления стоматологического имплантата, включающего внекостную и внутрикостную часть, заключающийся нанесении на имплантат пористого слоя физиологически адаптированного пластика с катализатором, стимулирующим остеогенез. В качестве катализаторов используются различные материалы (карбонат кальция, силикат магния или алюминия и т.д.). Наряду с другими компонентами используется костная ткань. Толщина слоя 200-400 нм, открытые поры и сообщающиеся каналы имеют диаметр 50-200 нм [1].

Способ обладает следующими недостатками:

- связь пористого слоя из различных материалов с материалом, из которого выполнена основа имплантата, недостаточно прочная;

- катализаторы не могут в полной мере стимулировать остеогенез, потому что данный процесс обеспечивают только остеогенные детерминированные продромальные клетки или, в некоторых случаях, костный морфологический белок.

Известен способ изготовления остеоинтегрируемого стоматологического имплантат, который выполняют из металла, на наружную поверхность внутрикостной части которого нанося глухие углубления, являющиеся элементами макроретенции, и создают шероховатости, являющиеся элементами микроретенции. Наружная поверхность опорной внутрикостной части за счет элементов макроретенции и микроретенции увеличивает площадь контакта с костью на 50% [2].

Известный способ имеет следующие недостатки:

- шероховатости на внутрикостной поверхности имплантата могут включать элементы частиц рабочего агента (окись алюминия, кремний и др.), посредством которого была обработана поверхность и получены элементы микроретенции, указанные включения способны негативно влиять на процесс остеоинтеграции;

- микрорельеф поверхности не позволяет добиваться первичной стабильности в неплотной кости (тип III-IV).

Наиболее близким к заявляемому способу является способ, описанный в патенте [3] Способ-прототип, заключается в том, что на стоматологический имплантат, изготовленный из упрочненного сплава титана ВТ1-0, относящегося к разряду GRADE 4 (ASTM F67), имеющий внекостную часть и внутрикостную часть, на которой выполняют на наружной поверхности элементы макроретенции и микроретенции; при этом элементы макроретенции выполняют в виде упорной резьбы с постоянным профилем по всей длине внутрикостной части, а элементы микроретенции выполняют в виде поверхностного слоя толщиной от 10 до 200 мкм с развитым микрорельефом, приближенным к микроархитектонике кости. При этом микрорельеф наружной поверхности, приближенный к микроархитектонике кости, получают обработкой поверхности имплантата ионным (электронным) пучком - МИП наносекундной или микросекундной длительности с плотностью энергии в пучке 1-40 Дж/см2 и числом импульсов от 10 до 100 в атмосфере аргона или при остаточном давлении 0,1-1 Па без последующего отжига.

Недостатком способа-прототипа является то, что имплантат выполняют из упрочненного сплава титана ВТ1-0, относящегося к разряду GRADE 4 (ASTM F67), который относительно низкую остеоинтеграцию с альвеолярной костью, которая обусловлена двумя причинами: низкой биосовместимостью сплава титана ВТ 1-0 с костью пациента, а также тем, что твердость поверхности внутрикостной части имплантата после обработки ее электронным или ионным пучком имеет твердость, превышающую твердость альвеолярной кости пациента.

Задачей изобретения является создание имплантата из более биосовместимого материала, чем сплав ВТ1-0, с созданием поверхностного слоя на имплантате, твердость которого не превышала бы твердость альвеолярной кости пациента с микроархитектоникой близкой к микроархитектонике кости.

Технический результат изобретения достигается за счет того, что в способе изготовления стоматологического остеоинтегрируемого имплантата, содержащего внекостную и внутрикостную части, состоящим в выполнении на наружной поверхности внутрикостной части элементов в виде упорной резьбы с постоянным профилем по всей длине внутрикостной части, и элементов микроретенции, выполненных в виде поверхностного слоя толщиной от 100 до 200 мкм с развитым микрорельефом, приближенным к микроархитектонике кости, основу имплантата выполняют из циркония, закрепляют имплантат на подвижную ось, пространство вблизи имплантата насыщают кислородом, облучают это пространство постоянным ультрафиолетовым светом с длиной волны, лежащей в диапазоне от 160 до 240 нм, придают имплантату возвратно-поступательное и вращательное движение, причем при возвратно-поступательном направлении перемещают имплантат в продольном прямом и обратном направлении на расстояние, равное длине внутрикостной части имплантата, и в процессе перемещения и вращения имплантата облучают поверхность его внутрикостной части лазерным излучением с длинами волн, лежащими в диапазоне от 914 до 1342 нм, причем при облучении лазерный луч направляют перпендикулярно продольной оси имплантата причем при облучении лазерный луч направляют перпендикулярно продольной оси имплантата.

Сущность изобретения поясняется графическим материалом, приведенном на фиг. 1.

На фиг. 1 введены следующие обозначения: 1- наружная поверхность внутрикостной части имплантата; 2 - наружная поверхность внекостной части имплантата; 3 - зажим имплантата; 4 - пружина зажима; 5 - ось; 6 - подшипник; 7 - держатель подшипника; 8 - лазер; 9 - луч лазера; 10 - ультрафиолетовая кварцевая лампа; 11 - натекатель; 12 - баллон с кислородом; 13 - камера.

Суть изобретения заключается в следующем. Известно, что до недавнего времени наиболее распространенными были зубные имплантаты, выполненные из титановых сплавов, что в частности и описывается в устройстве - прототипе. Однако титан обладает относительно низкой биосовместимостью, и у некоторых пациентов наблюдается на титан аллергия. Под действием электрогальванизма отделившие частицы титана соединяются с белками, и воспринимается иммунной системой как чужеродный белок.

Имплантаты из диоксида циркония лишены подобных недостатков. Из свойств циркония наибольший интерес представляют такие, как биологическая инертность, значительная стойкость к различным химическим воздействиям, высокие характеристики усталостной выносливости, склонность к «самозалечиванию» поверхностных дефектов, технологичность, прочность. Поэтому изделия из сплава циркония нашли широкое применение в стоматологической практике. Сплавы циркония используются в основном для производства дентальных имплантатов. Этим и обусловлен выбор диоксида циркония в заявляемом способе. Однако, часть поверхности имплантатов, которую вставляют в альвеолярную кость выполненные из циркония или его оксидов, обычно имеет твердость, значительно превышающую твердость альвеолярной кости. Это приводит к значительному ухудшению сцепления имплантата с альвеолярной костью. Поэтому для улучшения процессов соединения имплантата с альвеолярной костью на поверхности имплантатов создают шероховатость поверхности с помощью ее механической обработки, лазерной обработки и т.п. Однако для улучшения биологического сродства и достижения высоких показателей соединения с костью простого придания шероховатости на поверхности имплантата недостаточно, так как при этом биологическое сродство и высокие показатели соединения с костью являются труднодостижимыми.

В заявляемом способе значительного улучшения биологической совместимости имплантата изготовленного из циркония добиваются путем облучения его внутрикостной части 1 (фиг. 1) лазерным лучом в кислороде. Это позволяет создать на поверхности внутрикостной части 1, выполненной из циркония оксидный слой. Существенно повысить эффективность образования оксидного слоя на внекостной части 1 имплантата можно, если вблизи этой части имплантата вместо кислорода использовать озон.

Озон является более сильным окислителем, чем молекулярный кислород. Повышенная окислительная способность озона объясняется тем, что от его молекулы Оз легко отрывается один атом кислорода, который и принимает участие в реакциях окисления.

Известно, что получить озон в воздухе можно с помощью ультрафиолетового излучения с длиной волны, лежащей в диапазоне (160÷240) нм. Существенно интенсифицировать процесс образования озона можно, если облучать ультрафиолетом не воздух, а кислород. Образованный под действием ультрафиолета озон при прохождении через него лазерного луча разлагается на атомы и ионы кислорода. Цирконий начинает взаимодействовать с атомарным кислородом и интенсивно окисляться. Высокие градиенты температуры, возникающие на облучаемой внутрикостной поверхности имплантата, приводят к образованию на этой поверхности оксидного слоя, с многочисленными порами и мелкими трещинами, обладающего значительно меньшей твердостью, чем циркониевая основа имплантата. При установке указанного имплантата в альвеолярную кость поверхностный слой внутрикостной части имплантата действует в качестве буферного слоя, обеспечивающего сокращение разницы в степени твердости между костью и основой, вследствие чего указанная мягкая поверхность дополнительно улучшает характеристики, и процесс срастания с костью. При этом, поскольку на поверхностном слое имплантата создаются многочисленные микроретенции, то после установки имплантата в альвеолярную кость, костные клетки начинают входить в указанные поры и микротрещины в поверхностном слое. Вхождение костных клеток в микротрещины приводит к значительному увеличению площади поверхности контакта межу имплантатом и костью, что обеспечивает эффект межмолекулярного соединения и возможность получения улучшенных характеристик адгезии и соединения с костью.

Пример конкретного выполнения. Каркас зубного имплантата (фиг. 1) был выполнен из циркония. Внутрикостная часть 1 (дистальный конец) зубного имплантата была выполнена в виде сужающегося книзу усеченного конуса. На указанном конусе была выполнена самонарезающая резьба, что обеспечивало возможность непосредственного ввинчивания имплантата в высверленное отверстие в альвеолярной кости. В предложенном имплантате упорная резьба по всей длине внутрикостной части выполняла функцию элементов макроретенции. Каркас зубного имплантата закрепляли за внекостную часть имплантата 2 зажимом 3, шарнирное соединение которого сжималось пружиной 4. Зажим 3 был расположен на торце оси 5 вращающего узла. Ось 5 вращающего свободно проходила через шарикоподшипник 6, внешняя часть которого была жестко закреплена в держателе подшипника 7. Держатель подшипника 7 был механически закреплен к корпусу камеры 13. Ось 5 имела возможность вращаться и совершать возвратно-поступательное движение. При этом продольный ход оси 5, как в прямом, так и в обратном направлении не превышал длины внутрикостной части L.

Под действием лазерного луча 9, направленного перпендикулярно продольной оси имплантата озон начинал расщепляться, образуя активные атомы кислорода, а поверхность внутрикостной части имплантата начинает интенсивно разогреваться. Эти два процесса позволяют создать окисленный слой циркония с многочисленными микротрещинами. Опыты показали, что толщина образуемого на внутрикостной части 2 поверхности имплантата слоя диоксида циркония, помимо прочих факторов, зависит от концентрации озона практически прямо пропорционально.

Для того чтобы внутрикостная (дентальная) часть имплантата более равномерно была облучена электронным пучком, имплантат вращали и возвратно-поступательно перемещали относительно пучка (на фиг. 1 это показано стрелками).

Вращения имплантата в процессе облучения осуществляли с угловой скоростью порядка (0,3π) с-1. Скорость продольного перемещения имплантата не превышала 1 мм в секунду.

Были изготовлены три имплантата, которые были обработаны лучом лазера в атмосфере кислорода. При обработке были использованы имплантатов были использованы длины волн ультрафиолетового и лазерного излучения, лежащие в диапазоне заявляемых интервалов. Время облучения костной части каждого имплантата было равным 30 секундам.

Исследования с помощью электронной микроскопии внутрикостной части 1 поверхности имплантата, обработанной лазерным лучом в атмосфере озона в течение указанного времени, показали, что она, по сравнению с необработанной поверхностью имеет многочисленные микротрещины и поры диаметром (1,2÷5) мкм, равномерно распределенные по поверхности имплантата. Рентгеноструктурный анализ показал, что поверхностный слой и состоит, в основном, из диоксида циркония и толщина его изменяется обратно пропорционально длине волны лазера. Поверхности необработанных и обработанных лазерным облучением образцов имплантатов исследовали на твердость по методу Виккерса. Количественным показателем твердости по Виккерсу является число твердости (HV). В результате измерений твердости по Виккерсу внутрикостной части образца имплантата, выполненного только из циркониевой основы без воздействия на нее озоном, и внекостной части 1 образца имплантата были получены значения 1129 (HV) и 998 (HV) соответственно. В отличие от этого, твердость по Виккерсу облученной в озоне лучом лазера внутрикостной части 1 поверхности образцов имплантата, в котором поверхностный слой состоял из диоксида циркония, составил в среднем 380 (HV). Таким образом, обработанная лазерным лучом внутрикостная часть поверхность зубного имплантата примерно в 1,2-1,4 раза менее твердая, чем альвеолярная кость, твердость которой по Виккерсу обычно составляет 500 (HV). В предложенном имплантате упорная резьба по всей длине внутрикостной части выполняет функцию элементов макроретенции, а микрорельеф, полученный при обработке внекостной поверхности имплантата электронными пучками в кислороде, выполняет функцию элементов микроретенции, что обеспечивает необходимую первичную стабильность и надежную фиксацию имплантата в челюстных костях, а в итоге - его долговременное функционирование.

Имплантат устанавливают следующим образом. После выполнения местной анестезии проводят разрез, обнажают альвеолярный отросток и последовательно, двумя или тремя сверлами (развертками), формируют костное имплантационное ложе. Далее метчиком, профиль которого конгруэнтен геометрии резьбовой поверхности имплантата, нарезают резьбу - в зависимости от плотности кости до половины или на всю длину сформированного костного ложа. Затем с помощью ключа-имплантатовода устанавливают имплантат до уровня кортикального слоя кости и ушивают операционную рану.

Эффективность остеоинтеграции имплантатов в костную ткань не облученных и облученных лазерным лучом в атмосфере озона имплантатов, исследовались на подопытных животных (крысах). Исследования показали, что коэффициент срастания поверхности корпуса имплантата и костной тканью для сравнительного (не облученного лучом лазера) образца составил порядка 25%, а для опытного (облученного лучом лазера в атмосфере азона) образца - 75%, что говорит о значительном повышении эффективности врастания имплантата, облученного лазерным лучом в кислороде в костную ткань. Более высокая эффективность остеоинтеграции облученного лучом лазера в атмосфере озона имплантата, обусловлена двумя факторами: высокой пористостью и многочисленными микротрещинами, заполняемыми костной тканью в процессе вживления имплантата в кость, и буферными свойствами умягченного слоя имплантата.

В ближайшем и отдаленном послеоперационном периоде осложнений не наблюдали. При отсутствии воспаления репарация костной ткани проходит по пути контактного остеогенеза, о чем свидетельствуют результаты многочисленных экспериментальных работ, и в данном случае это показал рентгенологический мониторинг. Такой тип заживления кости является морфологическим эквивалентом остеоинтеграции, когда в пограничном имплантату пространстве стадийно формируются зрелые костные структуры. Кость постепенно интегрирует с развитым до схожести с ее микроархитектоникой рельефом имплантата, что приводит к образованию прочного соединения «костная ткань - имплантат».

Таким образом, по сравнению с прототипом, имплантат, имеет возможность равномерно вращаться и медленно перемещаться, совершая возвратно-поступательные движения, что обеспечивает равномерное облучение лучом лазера внутрикостной части поверхности имплантата. Обработка озоном внутрикостной части поверхности имплантата, позволяет получить равномерный слой диоксида циркония, с многочисленными порами и микротрещинами, причем твердость полученного слоя ниже твердости альвеолярной кости. Полученные при помощи установки имплантаты из циркония имеют более высокую эффективность соединения с костной тканью. Заявляемый способ может быть использован не только для зубных имплантатов, но и любых других имплантатов, изготавливаемых на основе циркония.

Источники информации

1. Патент США №4051598, кл. А61С 13/00, 1977 г.

2. Патент России №2146113, кл. А61С 8/00, Опубликовано: 10.03.2000 в БИ №7.

3. Патент России №2179001, кл. А61С 13/00, Опубликовано: 2002.02.10

4. A.M. Шилов, А.Н. Гончаров, А.Э. Бонет Твердотельный лазер на длине волны 914 нм с узкой линией генерации для стандарта частоты на основе холодных атомов магния // Вестник НГУ. Серия: Физика, том. 4., вып. 3., с. 3-11.

Способ изготовления стоматологического остеоинтегрируемого имплантата, содержащего внекостную и внутрикостную части, состоящий в выполнении на наружной поверхности внутрикостной части элементов в виде упорной резьбы с постоянным профилем по всей длине внутрикостной части, и элементов микроретенции, выполненных в виде поверхностного слоя толщиной от 100 до 200 мкм с развитым микрорельефом, приближенным к микроархитектонике кости, отличающийся тем, что основу имплантата выполняют из циркония, закрепляют имплантат на подвижную ось, пространство вблизи имплантата насыщают кислородом, облучают это пространство постоянным ультрафиолетовым светом с длиной волны, лежащей в диапазоне от 160 до 240 нм, придают имплантату возвратно-поступательное и вращательное движение, причем при возвратно-поступательном направлении перемещают имплантат в продольном прямом и обратном направлениях на расстояние, равное длине внутрикостной части имплантата, и в процессе перемещения и вращения имплантата облучают поверхность его внутрикостной части лазерным излучением с длинами волн, лежащими в диапазоне от 914 до 1342 нм, причем при облучении лазерный луч направляют перпендикулярно продольной оси имплантата.
СПОСОБ ИЗГОТОВЛЕНИЯ СТОМАТОЛОГИЧЕСКОГО ОСТЕОИНТЕГРИРУЕМОГО ИМПЛАНТАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СТОМАТОЛОГИЧЕСКОГО ОСТЕОИНТЕГРИРУЕМОГО ИМПЛАНТАТА
Источник поступления информации: Роспатент

Showing 31-40 of 58 items.
30.03.2019
№219.016.fa1e

Дисмембратор

Изобретение относится к области измельчения, диспергирования и механической активации материалов, в том числе с наноструктурой материалов, и может быть использовано в горной и строительной промышленности, в энергетике. Дезинтегратор содержит корпус с загрузочным и разгрузочным патрубками, в...
Тип: Изобретение
Номер охранного документа: 0002683530
Дата охранного документа: 28.03.2019
08.05.2019
№219.017.48f4

Способ формирования т-образного затвора

Изобретение относится к технологии микроэлектроники, а именно к технологии получения СВЧ монолитных интегральных схем на основе полупроводниковых соединений типа AB, в частности к созданию гетероструктурных СВЧ транзисторов с высокой подвижностью электронов. На поверхность полупроводниковой...
Тип: Изобретение
Номер охранного документа: 0002686863
Дата охранного документа: 06.05.2019
24.05.2019
№219.017.5d84

Навигационный радиооптический групповой отражатель кругового действия с покрытыми алюминиевой фольгой гранями

Изобретение относится к навигации и может использоваться на внутренних водных путях в составе плавучих буев для обозначения судового хода одновременно в радиолокационном и оптическом диапазонах волн. Технический результат - расширение функциональных возможностей. Для этого навигационный...
Тип: Изобретение
Номер охранного документа: 0002688959
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5f77

Способ отборочных испытаний на радиационную стойкость пигментов baso4

Изобретение относится к пигментам для терморегулирующих покрытий класса «солнечные оптические отражатели». Описывается способ отборочных испытаний на радиационную стойкость пигментов - порошков сульфата бария для терморегулирующих покрытий класса «солнечные оптические отражатели». Способ...
Тип: Изобретение
Номер охранного документа: 0002688766
Дата охранного документа: 22.05.2019
14.06.2019
№219.017.8309

Пигмент для терморегулирующих покрытий космических аппаратов

Изобретение относится к терморегулирующим покрытиям, в том числе к терморегулирующим покрытиям космических аппаратов, и может быть использовано в космической технике, а также в строительной индустрии и в широких отраслях промышленности для термостатирования устройств или технологических...
Тип: Изобретение
Номер охранного документа: 0002691328
Дата охранного документа: 11.06.2019
15.06.2019
№219.017.83a7

Способ дезинтегрирования кускового сырья

Изобретение относится к способам тонкого измельчения и может быть использовано в химической, строительной и других отраслях промышленности при переработке твердого кускового сырья. Способ заключается в подаче кускового сырья в камеру помола, внутри которой вертикально расположено два...
Тип: Изобретение
Номер охранного документа: 0002691564
Дата охранного документа: 14.06.2019
19.06.2019
№219.017.83f6

Дезинтегратор

Изобретение относится к средствам для измельчения, диспергирования, механической активации материалов и может быть использовано, например, в горной или строительной промышленности. Дезинтегратор содержит корпус с загрузочным и разгрузочным патрубками, установленные в корпусе неподвижный и...
Тип: Изобретение
Номер охранного документа: 0002691585
Дата охранного документа: 14.06.2019
02.08.2019
№219.017.bb8d

Способ предотвращения обледенения проводов линии электропередач и устройство для его реализации

Использование: в области электротехники и электроэнергетики. Технический результат - предотвращение обледенения проводов линии электропередач с использованием компенсаторов реактивной мощности и мощности искажений без отключения потребителей электроэнергии. Способ заключается в использовании...
Тип: Изобретение
Номер охранного документа: 0002696091
Дата охранного документа: 31.07.2019
10.08.2019
№219.017.bdab

Способ изготовления омического контакта к algan/gan

Изобретение относится к технологии сверхвысокочастотной (СВЧ) микроэлектроники, а именно к технологии формирования мощных GaN транзисторов и СВЧ монолитных интегральных схем (СВЧ МИС) на их основе и, в частности, к созданию термостабильных низкорезистивных омических контактов к гетеропереходам...
Тип: Изобретение
Номер охранного документа: 0002696825
Дата охранного документа: 06.08.2019
12.08.2019
№219.017.be46

Способ управления преобразователем переменного напряжения в постоянное напряжение и устройства для его осуществления

Изобретение относится к области электротехники и может быть использовано в преобразователях однофазного переменного напряжения в постоянное с повышенной надежностью. Техническим результатом является увеличение надежности и коэффициента полезного действия преобразователя и повышение динамической...
Тип: Изобретение
Номер охранного документа: 0002697049
Дата охранного документа: 09.08.2019
Showing 31-40 of 101 items.
10.07.2015
№216.013.5d2b

Способ лечения острых и хронических ран

Изобретение относится к медицине, а именно к гнойной хирургии, и может быть использовано при лечении острых и хронических гнойных ран. Для этого предварительно у пациента определяют резистентность капиллярной стенки на пораженном участке тела, и накладывают вакуумную повязку с созданием под ней...
Тип: Изобретение
Номер охранного документа: 0002555392
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60ce

Способ и устройство для измерения скорости течений и волновых процессов в океане

Изобретение относится к области для регистрации микроперемещений морской воды. Устройство для реализации заявленного способа для измерения скорости течений и волновых процессов в океане выполнено в виде прямоугольного отрезка, открытого с торцов для воды, на одной стороне отрезка находится...
Тип: Изобретение
Номер охранного документа: 0002556324
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.62f4

Способ изготовления проходного вакуумного изолятора высокого напряжения

Изобретение относится к электротехнике, а именно к электрическим изоляторам, предназначенным для использования в конструкциях генераторов высокого напряжения, в ускорителях заряженных частиц и в других вакуумных высоковольтных установках. В способе изготовления проходных вакуумных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002556879
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.63ad

Способ изготовления проходного вакуумного изолятора высокого напряжения

Изобретение относится к электротехнике, а именно к электрическим изоляторам, предназначенным для использования в конструкциях генераторов высокого напряжения, в ускорителях заряженных частиц и в других вакуумных высоковольтных установках. Способ изготовления проходных вакуумных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002557064
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6b4d

Управляемый вакуумный разрядник

Изобретение относится к высоковольтным сильноточным коммутаторам с наносекундными временами нарастания тока и запаздывания срабатывания. Управляемый вакуумный разрядник содержит установленные в корпусе с окном для прохождения лазерного луча два противостоящих электрода, соединенных с клеммами...
Тип: Изобретение
Номер охранного документа: 0002559027
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f9d

Способ градуировки по напряжению высоковольтных измерительных устройств

Изобретение относится к электроизмерительной технике и предназначено для использования при реализации контроля высоких и сверхвысоких напряжений. Сущность: определяют показания измерительного устройства по значениям пробивного напряжения эталонного разрядного прибора, в качестве которого...
Тип: Изобретение
Номер охранного документа: 0002560143
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.71d8

Способ определения коэффициента пропитки обмоток электрических машин

Изобретение относится к области электротехники и может быть использовано в электрической машине, обмотки которой соединены в звезду с изолированной нейтралью. Техническим результатом является повышение точности определения коэффициента пропитки обмоток. В способе определение коэффициента...
Тип: Изобретение
Номер охранного документа: 0002560714
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.71eb

Способ сушки отформованного кирпича-сырца

Изобретение относится к технологии производства строительных материалов и может быть использовано при изготовлении изделий строительной керамики (кирпич, дренажные трубы и т.п.). В процессе сушки к одному из торцов произвольно выбранного кирпича из партии кирпичей, размещенных в сушилке,...
Тип: Изобретение
Номер охранного документа: 0002560733
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72d3

Способ изготовления проходного вакуумного изолятора высокого напряжения

Изобретение относится к электротехнике, а именно к электрическим изоляторам, предназначенным для использования в конструкциях генераторов высокого напряжения, в ускорителях заряженных частиц и в других вакуумных высоковольтных установках. Способ изготовления проходных вакуумных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002560965
Дата охранного документа: 20.08.2015
10.11.2015
№216.013.8eb7

Способ контроля качества пропитки обмоток электротехнических изделий

Изобретение относится к электротехнике, а именно к неразрушающим способам контроля качества технологических процессов производства электротехнических изделий. Согласно способу у каждой обмотки измеряют до пропитки и после пропитки электрические параметры, в качестве которых выбраны...
Тип: Изобретение
Номер охранного документа: 0002568144
Дата охранного документа: 10.11.2015
+ добавить свой РИД