×
22.01.2020
220.017.f85e

Результат интеллектуальной деятельности: Способ обработки сигналов с гиперболической частотной модуляцией

Вид РИД

Изобретение

Аннотация: Способ обработки сигналов с гиперболической частотной модуляцией относится к области гидроакустики и может быть использован в гидролокационных системах при обнаружении цели и определении ее координат и параметров движения. При разработанном способе обработки сигналов с гиперболической частотной модуляцией формируется опорный сигнал с учетом влияния канала распространения, для чего вычисляется взаимно корреляционная функция отраженного сигнала с опорным сигналом без учета влияния канала и ее квадрат модуля, после определения задержки происходит ее компенсация в отраженном от цели сигнале. При последующем приеме происходит вычисление взаимно корреляционной функции между новым опорным сигналом и принятым сигналом в виде произведения их спектров и обратного быстрого преобразования Фурье. В результате применения разработанного способа обработки сигналов получается новый опорный сигнал с гиперболической частотной модуляцией, учитывающий влияние канала распространения, использование которого увеличивает отношение сигнал/помеха на входе приемного тракта гидролокационной системы примерно в 3 раза. 7 ил.

Описываемое предлагаемое изобретение относится к области гидроакустики и может быть использовано в гидролокационных системах при обнаружении цели и определении ее координат и параметров движения.

Эффективность гидролокаторов надводных кораблей во многом зависит от выбора параметров зондирующих сигналов и способов их обработки в приемном тракте.

Выбор параметров гидролокационных зондирующих сигналов производится в зависимости от целей их использования (получение максимальной дальности обнаружения целей на фоне шумовой и реверберационной помехи, обеспечение максимальной точности).

В современных гидролокаторах для обеспечения больших энергетических дальностей обнаружения целей используются зондирующие сигналы большой длительности (до нескольких секунд), а также используются различные типы сигналов и оптимальные методы их обработки, обеспечивающие высокую помехоустойчивость относительно реверберационной помехи.

Использование в качестве зондирующих сигналов сложных широкополосных зондирующих сигналов и оптимальной частотно-временной их обработки в приемном тракте дает возможность одновременно обеспечить:

- большую энергию зондирующих сигналов за счет излучения сигналов большой длительности и высокую помехоустойчивость относительно реверберационной помехи при высокой их разрешающей способности по дальности;

- высокую помехоустойчивость при обнаружении сигналов на фоне реверберационных помех даже при малых скоростях цели;

- расширение классификационных возможностей.

В режимах кругового или секторного обзора пространства целесообразным является использование широкополосных сложных импульсных сигналов инвариантных к доплеровскому изменению масштаба времени, что позволяет для обработки сигналов во всем доплеровском диапазоне использовать один согласованный фильтр, что очень важно при обработке сигналов большой сложности (длинных широкополосных сигналов) и при большом числе пространственных каналов [5].

Наиболее близкой к предлагаемому изобретению является обработка сигналов в оптимальном обнаружителе точно известного сигнала (Евтютов А.П., Митько В.Б. «Инженерные расчеты в гидроакустике». - 2-е изд., перераб. и доп.- Л., Судостроение. 1988 г., стр. 105) (ПРОТОТИП). Такой приемник вычисляет взаимную корреляционную функцию между принимаемым процессом и копией сигнала. После дальнейшей обработки (фильтрации и усиления) производится сравнение полученного сигнала с пороговым значением. При превышении порогового значения принимается решение об обнаружении цели.

Рассмотренный способ является оптимальным с точки зрения отношения сигнал/помеха для детерминированного сигнала. Однако в нем не учитывается влияние канала, в котором распространяется сигнал. При распространении сигналов на большие расстояния, а также при сильно развитой многолучевости, эти сигналы разрушаются и становятся не коррелированны с опорным. Для обработки сигналов необходимо определить искажающее влияние канала распространения и сформировать новый опорный сигнал, адаптированный к условиям канала распространения.

Если учесть влияние канала распространения при обработке эхосигнала, то в этом случае увеличивается коэффициент корреляции между опорным и зондирующим сигналами. Это может быть достигнуто за счет адаптации опорного сигнала к условиям распространения.

Целью изобретения является разработка способа обработки сигналов с гиперболической частотной модуляцией, техническая реализация которого позволит увеличить отношение сигнал/помеха на входе приемного тракта гидролокационной системы и повысить эффективность ее функционирования.

Указанная цель достигается путем создания алгоритма обработки сигналов с гиперболической частотной модуляцией, учитывающий влияние канала распространения.

Представляя канал в виде линейного фильтра и принимая гипотезу однородности и стационарности условий, канал описывают передаточной функцией, определяемой вектором пространственно-временных координат t и пространственно-временных частот ƒ

Смысл функции Н (1) заключается в описании вида канала в виде фильтра в заданный момент времени t в точке приема Масштабы временных и пространственных изменений меняются в широких пределах. При этом крупномасштабные изменения принято описывать детерминированными соотношениями, а мелкомасштабные (микро) неоднородности - стохастическими описаниями. Процесс выбора масштаба зависит от волновых и временных размеров неоднородностей и является в значительной мере субъективным. Одним из возможных направлений отображения такой двойственности является представление передаточной функции в виде произведения двух функций

где детерминированная функции, описывающая пространственное, частотно-временное изменение амплитуды и фазы функции, и случайной (стохастическая) функция тех же переменных.

Изложенные выше факторы усложняют математическую модель и могут кардинально ее изменить по сравнению с моделью, полученной на основе принятия гипотезы изотропной и стационарности среды.

Однако, влияние канала на свойства передачи и обработки сигнала можно в достаточно общей форме представить в виде функции рассеяния и фактора когерентности. Как правило, предполагается, что потери энергии при распространении нормированы. Тем не менее, большинство стохастических моделей, используемых при моделировании, являются сильно упрощенными, и адекватность их реальной среде весьма спорна. На самом деле стохастическая и детерминированная составляющая функций рассеяния зависят от:

- мелкомасштабных неоднородностей;

- взаимного расположения источника сигнала и цели, определяемого детерминированными свойствами среды.

Случайная функция Н определяется взаимным расположением источника и цели s, r частоты ƒ и времени t. Рассматривается математическое ожидание функции Н (фактор когерентности)

при γ=1 процесс полностью когерентен, при γ=0 - не когерентен.

Функция Н представляется в виде суммы когерентной детерминированной составляющей H0 и некогерентной случайной составляющей

Полное описание функции Н можно представить в виде функции ковариации.

Функция (4) также является обобщенной функцией когерентности, которая представляет собой математическое описание канала распространения.

Используя сигнал с гиперболической частотной модуляцией и математический аппарат, изложенный выше, был разработан способ циклической корреляционной обработки с учетом влияния канала распространения [1, 3, 4].

Способ циклической корреляционной обработки с учетом канала распространения представлен на фигуре 1.

Сигнал с гиперболической частотной модуляцией описывается выражением:

где: Wn - количество волн в сигнале;

Fw - верхняя частота сигнала;

Fn - нижняя частота.

Поскольку, сигналы в реальных условиях являются не бесконечными, а финитными во времени и задаются от времени начала tn и до времени окончания сигнала tk, задаваемых правилом:

где tn - начало импульса;

tk - окончание импульса;

Fm - частота Меллина, определяемая выражением:

Исходя из вышесказанного, сигнал (5) с учетом ограничения по времени начала и окончания записывается в следующем виде:

где supp(t) - функция Хэвсайда, определяемая выражением:

На основании выражения (6), получаем графическое представление сигнала с гиперболической частотной модуляцией, представленный на фигуре 2 [2].

Проходя через канал распространения, излученный сигнал подвергается преобразованиям описываемым киниматикой цели α, задержкой сигнала τ, шумовой помехой n(t) в виде белого шума (фигура 3) и правилом:

Шумовая помеха n(t) представлена двумя реализациями (фигура 4).

Для формирования опорного сигнала с учетом влияния канала распространения применяется преобразование Гильберта к отраженному сигналу. Это обусловлено тем, что отраженный сигнал представляет собой только действительную часть, а эталонный сигнал представлен в комплексной форме. Новый опорный сигнал будет представлять собой смесь зондирующего сигнала с передаточной функцией канала распространения, т.е. учитывать его влияние. Вид опорного сигнала без учета влияния канала распространения и с учетом влияния канала распространения представлен на фигуре 5.

Вычисление взаимно-корреляционной функции R отраженного сигнала с опорным сигналом без учета влияния канала записывается в виде:

Далее вычисляется квадрат модуля взаимно корреляционной функции:

После определения задержки происходит ее компенсация в отраженном от цели сигнале, в результате которого получаем процесс, подверженный влиянием канала распространения и целью:

При последующем приеме происходит вычисление взаимно-корреляционной функции между новым опорным сигналом и принятым сигналом в виде произведения их спектров и обратного быстрого преобразования Фурье:

где G{.} - преобразование Гильберта.

В результате произведенных восьми вычислений получены взаимно-корреляционные функции R отраженного сигнала с опорным сигналом без учета влияния канала распространения (красный цвет) и с опорным сигналом с учетом влияния канала. Вид взаимно-корреляционных функций представлен на фигуре 6.

Первое испытание соответствует взаимно-корреляционной функции эталонного сигнала с отраженным сигналом без учета влияния канала распространения. Со 2 по 8 испытания взаимно-корреляционная функция находилась с использованием опорного сигнала, учитывающего влияние канала распространения. В каждом испытании шумы формировались независимо друг от друга.

Для полученных результатов вычислялось отношение сигнал/помеха и производилось сравнение их между собой.

Результаты записывались последовательно. Нулевому отсчету соответствует результат, полученный традиционным способом без учета влияния канала распространения, остальные - с учетом влияния канала распространения сигнала.

В результате моделирования получен новый опорный сигнал с гиперболической частотной модуляцией, учитывающий влияние канала распространения.

Предлагаемый способ обработки входного сигнала с гиперболической частотной модуляцией, учитывающий влияние канала распространения, позволяет увеличить отношение сигнал/помеха, примерно, в 3 раза (фигура 7).

Данный вид обработки сигналов может быть использован при модернизации существующих активных гидроакустических средств, использующих сложные зондирующие сигналы и при строительстве новых гидроакустических комплексов подводных лодок и надводных кораблей. Особенно данный вид обработки может быть относительно просто внедрен в гидроакустические комплексы при реализации мультистатической и бистатической гидролокации.

Источники информации, использованные при выявлении изобретения и составлении его описания:

1. Лушанкин В.И. «Теория основ военной гидроакустики». - Санкт-Петербург, ВСОК ВМФ, 2010.

2. Макаров Е.С. «Инженерные расчеты в Mathcad 15». - Москва, Санкт-Петербург, ПИТЕР, 2011.

3. Сапрыкин В.А. Волошин А.К. Рокотов С.П. «Цифровая обработка гидроакустических сигналов». - Санкт-Петербург, ВМИРЭ им. А.С.Попова, 1990.

4. Сапрыкин В.А. Корреляционный анализ групповых сигналов // XV Межвузовская НТК «Военная радиоэлектроника: Опыт использования и проблемы, подготовка специалистов» / ВМИРЭ. - Петродворец, 2004. - с. 270-271.

5. Сапрыкин В.А. Рокотов С.П. «Теория гидролокации и цифровая обработка сигналов». - Санкт-Петербург, ВМИРЭ им. А.С Попова, 1988.

6. Евтютов А.П., Митько В.Б. «Инженерные расчеты в гидроакустике». - 2-е изд., перераб. и доп. - Л., Судостроение. 1988 г., стр. 105 (ПРОТОТИП).

Способ обработки сигнала с гиперболической частотной модуляцией, основанный на вычислении взаимно-корреляционной функции опорного сигнала, сформированного в процессе излучения и записанного в транспонирующее устройство, с отраженным сигналом от цели, отличающийся тем, что при обработке сигнала с гиперболической частотной модуляцией определяется искажающее влияние канала распространения на отраженный сигнал путем формирования опорного сигнала с учетом влияния канала распространения, для чего вычисляется взаимно-корреляционная функция отраженного сигнала с опорным без учета влияния канала распространения, вычисляется квадрат модуля взаимно-корреляционной функции, определяются временные задержки в отраженном сигнале, компенсируются полученные задержки в отраженном сигнале, в результате получается отраженный сигнал с учетом искажающего влияния канала распространения, использующийся в качестве опорного сигнала с учетом искажающего влияния канала распространения, а при последующем излучении осуществляется обработка с вычислением взаимно-корреляционной функции между отраженным сигналом и новым опорным сигналом, учитывающим искажающее влияние канала распространения, в виде произведения их спектров и обратного быстрого преобразования Фурье, при этом полученный новый опорный сигнал с гиперболической частотной модуляцией, учитывающий влияние канала распространения, при последующем его использовании увеличивает отношение сигнал/помеха на входе приемного тракта гидролокационной системы.
Источник поступления информации: Роспатент

Showing 71-80 of 139 items.
22.01.2020
№220.017.f891

Способ поражения подводной лодки

Изобретение относится к способам поражения морских целей. Для поражения подводной лодки летательным аппаратом с применением ракеты, ее обнаруживают имеющимися средствами наблюдения. Сближают летательный аппарат на дальность применения ракеты, производят прицеливание ракеты, ее пуск,...
Тип: Изобретение
Номер охранного документа: 0002711409
Дата охранного документа: 17.01.2020
06.02.2020
№220.017.ff26

Способ контроля маршрута движения автономного необитаемого подводного аппарата с возможностью съёма технической информации и устройство для его реализации

Изобретение относится к области управления и контроля автономного необитаемого подводного аппарата, а именно к контролю маршрута движения автономного необитаемого подводного аппарата с возможностью съема технической информации. Техническим результатом является обеспечение возможности контроля...
Тип: Изобретение
Номер охранного документа: 0002713516
Дата охранного документа: 05.02.2020
17.02.2020
№220.018.02f1

Крылатая ракета с автономным необитаемым подводным аппаратом-миной

Изобретение относится к морскому вооружению, конкретно к средствам поражения морских объектов противника и к средствам их доставки в удаленные морские районы. Крылатая ракета, несущая в качестве боевой части автономный необитаемый подводный аппарат-мину, имеет несущее крыло и органы управления,...
Тип: Изобретение
Номер охранного документа: 0002714274
Дата охранного документа: 13.02.2020
20.02.2020
№220.018.045d

Способ навигационного обеспечения автономных необитаемых подводных аппаратов

Изобретение относится к области подводной навигации, а более конкретно к способам навигационного обеспечения стыковки автономных необитаемых подводных аппаратов (далее АНПА) с донными станциями. Предлагается способ навигационного обеспечения автономных необитаемых подводных аппаратов при их...
Тип: Изобретение
Номер охранного документа: 0002714539
Дата охранного документа: 18.02.2020
02.03.2020
№220.018.0806

Способ оценки степени разрушения материалов при акустико-эмиссионном контроле процесса трения твёрдых, жидких и газообразных тел

Использование: для оценки степени разрушения материалов при акустико-эмиссионном контроле процесса трения твердых, жидких и газообразных тел. Сущность изобретения заключается в том, что для фиксации и преобразования акустических импульсов используется пьезодатчик с частотной характеристикой,...
Тип: Изобретение
Номер охранного документа: 0002715476
Дата охранного документа: 28.02.2020
21.03.2020
№220.018.0e5d

Способ снижения общих потерь в насосах различной конструкции

Изобретение относится к изготовлению насоса для энергетических установок. На поверхности деталей насоса в виде валов и осей под уплотнения, шеек валов под подшипники скольжения и зубчатых передач формируют покрытия из упомянутых материалов, имеющие адгезионное число не менее 600, на поверхности...
Тип: Изобретение
Номер охранного документа: 0002717128
Дата охранного документа: 18.03.2020
04.05.2020
№220.018.1ac8

Подъемно-транспортный понтон

Изобретение касается транспортирования объектов по внутренним водным путям, в частности по мелководью. Предложен подъемно-транспортный понтон, содержащий корпус трапециевидной формы, разделенный на балластные отсеки, сообщающиеся между собой в нижней части через шпигаты в поперечных переборках,...
Тип: Изобретение
Номер охранного документа: 0002720222
Дата охранного документа: 28.04.2020
04.05.2020
№220.018.1b2c

Способ подъема затонувшего объекта

Изобретение относится к области работ по подъему затонувших крупногабаритных объектов, в частности плавучих доков, танкеров и других кораблей и судов. Предложен способ подъема затонувшего объекта, заключающийся в герметизации корпуса объекта, подаче сжатого воздуха (газа) в его отсеки и...
Тип: Изобретение
Номер охранного документа: 0002720299
Дата охранного документа: 28.04.2020
23.05.2020
№220.018.20c4

Устройство для подъема затонувших подводных лодок

Изобретение относится к судоподъемной технике, в частности к устройствам для подъема затонувших подводных лодок. Предложено устройство для подъема затонувшей подводной лодки, содержащее механизм закрепления устройства в комингсе люка подводной лодки, выполненный в виде подкрепленного изнутри...
Тип: Изобретение
Номер охранного документа: 0002721816
Дата охранного документа: 22.05.2020
17.06.2020
№220.018.26e3

Костюм электрообогрева водолаза

Изобретение относиться к области водолазной техники, а именно к средствам тепловой защиты водолаза и предназначено для использования в составе водолазного снаряжения для обеспечения теплового комфорта водолаза при выполнении водолазных работ в условиях низких температур окружающей среды. Костюм...
Тип: Изобретение
Номер охранного документа: 0002723505
Дата охранного документа: 11.06.2020
Showing 1-2 of 2 items.
10.07.2013
№216.012.5504

Способ и устройство быстрого вычисления функции неопределенности сигнала с учетом реверберационной помехи

Использование: гидролокация и радиолокация. Сущность: устройство для вычисления функции неопределенности сигнала с учетом реверберационной помехи содержит аналого-цифровой преобразователь, выход которого соединен с входом рециркулятора, выход которого соединен с входом вычислителя быстрого...
Тип: Изобретение
Номер охранного документа: 0002487367
Дата охранного документа: 10.07.2013
10.05.2014
№216.012.c0bc

Устройство акустического представления пространственной информации для пользователей

Изобретение относится к области акустики и может быть использовано для ориентации на местности. Устройство акустического представления пространственной информации содержит генератор сигналов, усилитель тракта излучения и передатчик, правый и левый ультразвуковые преобразователи, первый и второй...
Тип: Изобретение
Номер охранного документа: 0002515089
Дата охранного документа: 10.05.2014
+ добавить свой РИД