×
13.01.2020
220.017.f4d6

Металл-полимерный композиционный материал с двухпутевым эффектом памяти формы и способ получения изделий из него

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002710681
Дата охранного документа
10.01.2020
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к металл-полимерным композиционным материалам. Техническим результатом является реализация материалом двухпутевого эффекта памяти формы не менее 1% при термоциклировании через интервал прямого и обратного мартенситного превращения. Технический результат достигается металл-полимерным композиционным материалом, который включает полимерную матрицу и армирующие элементы из материала с эффектом памяти формы. Причем армирующие элементы представляют собой волокна, пластины или их сочетание, предварительно деформированные со степенью деформации не выше критической, а их объемная доля V отвечает соотношению где E - модуль упругости матрицы, E - "эффективный" модуль упругости материала армирующих элементов в мартенситном состоянии, К - коэффициент, зависящий от структуры композита и схемы деформации армирующих элементов. 3 н. и 2 з.п. ф-лы, 4 ил., 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к полимерным композиционным материалам с особыми свойствами.

Полимерные композиционные материалы широко используются в различных областях машиностроения, медицине и т.п. в качестве конструкционных материалов (Композиционные материалы: Справочник под ред. В.В. Васильева - М.: Машиностроение, 1990 г.). Расширить возможности применения композиционных материалов удастся, если им придать особые свойства за счет, например, армирования элементами из функциональных материалов. Такими армирующими элементами могут служить сплавы с эффектом памяти формы и сверхупругостью.

Двухпутевой эффект памяти формы (ДЭПФ) заключается в многократном обратимом изменении формы материала при его термоциклировании через определенный интервал температур (Сплавы с эффектом памяти формы / К. Ооцука, К. Симидзу, Ю. Судзуки и др. - М.: Металлургия, 1990 г.). В отличие от обычного обратимого эффекта памяти формы при ДЭПФ не требуется деформация материала в охлажденном состоянии или его нагружение внешней силой. Такой эффект проявляется в сплавах, в которых протекает обратимое мартенситное превращение, в частности в сплавах на основе никелида титана (Корнилов И.И., Белоусов O.К., Качур Е.В. Никелид титана и другие сплавы с эффектом «памяти». - М.: «Наука», 1977 г.). Для реализации ДЭПФ заготовки из никелида титана подвергают пластической деформации и термообработке, чтобы создать внутренние макроориентированные напряжения от дефектов кристаллического строения или выделений вторых фаз (Ti3Ni4, Ti2Ni3). Однако обеспечить значительную величину термически обратимой деформации не удается и она, как правило, не превышает 1%.

В Патенте РФ №2477627, принятым за прототип, предложен полимерный композиционный материал, в котором армирующие элементы из сплава с термомеханической памятью выполнены в виде волокон длиной не менее чем в 3 раза превышающей расстояние между ними и имеющими температуру восстановления формы, соответствующую температуре эксплуатации композиционного материала.

Однако ДЭПФ не может быть реализован в композиционном материале, выполненном по прототипу.

Задачей предложенного технического решения является разработка металл-полимерного композиционного материала и способа получения из него изделий с двухпутевым эффектом памяти формы.

Технический результат заключается в реализации ДЭПФ композиционным материалом не менее 1% при термоциклировании через интервал прямого и обратного мартенситного превращения.

Поставленная задача в части материала решается за счет того, что металл-полимерный композиционный материал включает полимерную матрицу и армирующие элементы из материала с эффектом памяти формы, причем армирующие элементы представляют собой волокна, пластины или их сочетание, предварительно деформированные со степенью деформации не выше критической (Гусев Д.Е., Коллеров М.Ю., Виноградов Р.Е. Деформация и разрушение, 2018 г., №7), а их объемная доля VA отвечает соотношению:

где ЕМ - модуль упругости матрицы, EA - "эффективный" модуль упругости материала армирующих элементов в мартенситном состоянии (Коллеров М.Ю. и др. Титан, 2010 г., №4), К - коэффициент, зависящий от структуры композита и схемы деформации армирующих элементов. При деформации растяжением К=1, а при изгибе композиционного материала с расположением армирующих элементов в нейтральной плоскости К=H/h, где Н - толщина композиционного материала, a h - толщина армирующего элемента.

Армирующие элементы в виде волокон имеют перемычки, соединяющие, по крайней мере, два волокна.

Армирующие элементы могут содержать покрытия со специальными свойствами.

Поставленная задача в части способа решается за счет того, что способ изготовления изделий из металл-полимерного композиционного материала включает размещение армирующих элементов в форму, их пропитку материалом матрицы и ее полимеризацию, причем армирующие элементы изготавливают по форме, отличающейся от формы изделия из композиционного материала на величину критической деформации армирующих элементов, охлаждают до температуры ниже обратного мартенситного превращения и деформируют их для придания формы, отвечающей форме изделия.

Изделие из металл-полимерного композиционного материала формуют в форме, отличающейся от требуемой формы изделия, на величину деформации ε, определяемой из следующего соотношения:

где εA - величина предварительной деформации армирующих элементов.

Заявленное изобретение поясняется чертежами:

фиг. 1 П - образная проволочная заготовка (1 - перемычка, 2 - отрезки);

фиг. 2 - Заготовка со скрученными отрезками;

фиг. 3 - Образец композиционного материала (3 - силиконовая матрица, 4 - армирующие волокна);

фиг. 4 - Схема армирования композиционного материала 6-ю проволочными заготовками

Пример 1.

Были изготовлены образцы композиционного материала с матрицей из силиконовой резины и армирующих волокон из проволоки диаметром 1 мм сплава ТН1 на основе никелида титана. Отрезки проволоки нагревали до температуры 500°С, при которой сгибали в виде П-образных шпилек (фиг. 1) с длиной перемычки (1) 4 мм и длиной прямых отрезков (2) 100 мм. Затем проволочные П-образные заготовки обвивали вокруг вала так, чтобы их прямые отрезки скручивались в окружность с внешним диаметром 20 мм. Скрученные заготовки проволоки фиксировали на валу и отжигали при 500°С в течение 30 минут, после чего охлаждали в воде. Вид полученных заготовок показан на фиг. 2. Температуры обратного мартенситного превращения проволочных заготовок составляли AH=37°С; АК=42°С. Заготовки при комнатной температуре деформировали следующим образом: вначале распрямляли скрученные отрезки, а затем изгибали в другую сторону так, чтобы их диаметр составил 50 мм. Суммарная степень деформации отрезков заготовок составила 7,4%, что близко, но не превышает критическую степень деформации никелида титана в мартенситном состоянии (8%).

На поверхность заготовки проволоки наносили аппрет, повышающий адгезионную прочность соединения волокон с полимерной матрицей.

Проволочные заготовки в количестве одной или шести (фиг. 3) помещались в форму для получения изогнутой на диаметр 50 мм пластины толщиной 3,5 мм, шириной 25 мм и длиной 100 мм. Форму заливали мономером полидиметилсилаксан, который отверждался при комнатной температуре. Через сутки образец композиционного материала извлекали из формы. Образец представлял собой изогнутую пластину (3), в нейтральной плоскости которой располагались армирующие проволочные заготовки (4). Перемычки заготовок находились в поперечном направлении, а отрезки - в долевом (фиг. 4).

Образцы композиционного материала нагревали, помещая в водяной термостат с температурой 60°С, в течение 5 минут, а затем охлаждали на воздухе с выдержкой не менее 1 часа. При 60°С и комнатной температуре измеряли внутренний диаметр изгиба образца (таблица 1).

Результаты испытания композиционного материала показали, что в случае, когда объемная доля армирования никелидом титана составляет 1,8%, что соответствует выполнению соотношения (1), образец обладает обратимой при термоциклировании деформацией 9% (по армирующим проволокам - 2,8%). При этом образец при охлаждении до комнатной температуры имеет форму практически прямой пластины, что соответствует поставленной задаче эксперимента.

В том случае, когда доля армирующих волокон велика и превышает соотношение (1), жесткости матрицы не хватает для развития напряжений, реализующих формоизменение при охлаждении (пластичности превращения). В результате этого обратимая при термоциклировании деформация композиционного образца не превышает 2%, а по волокнам никелида титана меньше 1%.

Таким образом, при выполнении оговоренных параметров изготовления композиционного материала технических результат достигнут.

Пример 2.

В качестве армирующих элементов использовали фольгу и лист сплава ТН1 на основе никелида титана, из которых нарезали полоски шириной 3÷5 мм и длиной 180 мм. Эти полоски закручивали вокруг валов и термофиксировали при температуре 500°С. Полоски фольги толщиной 0,2 мм обвивали вокруг вала диаметром 2,5 мм, что соответствовало их деформации 7,4%, а листы толщиной 1 мм - вокруг вала диаметром 12 мм, что соответствовало деформации 7,7%. В обоих случаях степень деформации армирующих элементов была близка, но не превышала критическую деформацию. Температура обратного мартенситного превращения в армирующих элементах составляла АН=40±2°С; АК=47±2°С.

Армирующие элементы при комнатной температуре распрямлялись в прямую форму и помещались в прямоугольную форму с внутренними размерами 25×4×200 мм. После этого форму заливали полиолами и изоцианатами, в результате взаимодействия которых образуется полиуретан, так, чтобы армирующие элементы располагались послойно. После этого форма вакуумировалась в течение часа, а затем выдерживалась на воздухе не менее суток для окончания процесса полимеризации. Таким образом, были изготовлены образцы слоистого композиционного материала с разной объемной долей армирующего элемента. После извлечения образцов из формы их нагревали в термостате в течение 5 минут. В процессе нагрева и выдержки при температуре 60°С образцы скручивались. После окончания выдержки замеряли диаметр кривизны образцов. После этого образцы охлаждали на воздухе до комнатной температуры и выдерживали не менее 1 часа. В процессе охлаждения и выдержки образцы частично раскручивались, увеличивая диаметр своей кривизны, который также замеряли. Повторный нагрев и охлаждение приводили к циклическому обратимому формоизменению, т.е. наблюдался двухпутевой эффект памяти формы. Результаты расчета степени деформации образца композиционного материала и армирующих элементов приведены в таблице 2.

Из приведенных в таблице данных видно, что в образце 1 с объемной долей армирующего элемента меньше заявленного в соотношении (1) интервала обратимая при термоциклировании деформация незначительна из-за того, что армирующие элементы при нагреве не могут оказать на матрицу достаточного силового воздействия. Для образца 4 наблюдается противоположная картина. В нем доля армирующего элемента выше заявленного диапазона, и армирующие элементы значительно деформируют композит при нагреве, но при охлаждении матрица не способна из-за малой жесткости вызвать в материале армирующих элементов достаточной пластичности превращения, и образец практически не раскручивается.

В образцах 2 и 3, в которых объемная доля армирующих элементов находится в заявленном диапазоне, обратимое формоизменение происходит в большей степени, превышающей для армирующих элементов 1%. Технический результат изобретения достигнут.


Металл-полимерный композиционный материал с двухпутевым эффектом памяти формы и способ получения изделий из него
Металл-полимерный композиционный материал с двухпутевым эффектом памяти формы и способ получения изделий из него
Металл-полимерный композиционный материал с двухпутевым эффектом памяти формы и способ получения изделий из него
Металл-полимерный композиционный материал с двухпутевым эффектом памяти формы и способ получения изделий из него
Источник поступления информации: Роспатент

Showing 1-10 of 24 items.
27.01.2013
№216.012.1e8b

Способ реконструкции трахеи после протяженных циркулярных резекций в эксперименте

Изобретение относится к области медицины, а именно к хирургии трахеи и экспериментальной хирургии. Сущность способа заключается в том, что для реконструкции трахеи используют трубчатый биопротез, сформированный из свободного кожно-фасциального лоскута на сосудистой ножке. При этом его берут с...
Тип: Изобретение
Номер охранного документа: 0002473320
Дата охранного документа: 27.01.2013
20.03.2013
№216.012.2f3c

Полимерный композиционный материал

Изобретение относится к полимерным композиционным материалам с особыми свойствами, используемым в качестве медицинских имплантатов, трансформирующихся конструкций, термоактиваторов и других конструкций народно-хозяйственного назначения. Композиционный материал включает матрицу из полимера с...
Тип: Изобретение
Номер охранного документа: 0002477627
Дата охранного документа: 20.03.2013
27.03.2013
№216.012.30c9

Способ сварки изделий из сплавов на основе никелида титана (варианты)

Изобретение относится к способам неразъемного соединения изделий из сплавов на основе никелида титана (TiNi, нитинол) и представляет собой диффузионную сварку с использованием жидкой фазы. Способ включает очистку поверхностей соединяемых изделий от оксидов и приведение их в контакт. Затем...
Тип: Изобретение
Номер охранного документа: 0002478027
Дата охранного документа: 27.03.2013
27.07.2013
№216.012.58d4

Пластина для коррекции воронкообразной деформации грудной клетки

Изобретение относится к медицинской технике и может быть использовано для коррекции воронкообразной деформации грудной клетки. Устройство для коррекции воронкообразной деформации грудной клетки содержит пластину из титанового сплава, имеющую концевые участки с отверстиями для лигатуры. Пластина...
Тип: Изобретение
Номер охранного документа: 0002488361
Дата охранного документа: 27.07.2013
27.04.2014
№216.012.bcfe

Фиксатор для протезирования связочных и костных структур позвоночника при ламинопластике

Изобретение может быть использовано в медицине, а именно в вертобрологии и нейрохирургии при хирургическом лечении дегенеративно-дистрофических заболеваний позвоночника, в частности стеноза спинномозгового канала, грыж межпозвонкового диска и др. Фиксатор для протезирования костных и...
Тип: Изобретение
Номер охранного документа: 0002514121
Дата охранного документа: 27.04.2014
10.06.2014
№216.012.d213

Способ получения ванилина

Изобретение относится к способу получения ванилина, который используют в кондитерской, фармацевтической и парфюмерно-косметической отраслях промышленности. Способ заключается в окислении кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины,...
Тип: Изобретение
Номер охранного документа: 0002519550
Дата охранного документа: 10.06.2014
10.08.2014
№216.012.e74a

Сплав на основе алюминида титана и способ обработки заготовок из него

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе алюминида титана TiAl, и может быть использовано для изготовления деталей газотурбинных двигателей, силовых установок и агрегатов авиационного, топливно-энергетического и морского назначения. Сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002525003
Дата охранного документа: 10.08.2014
27.07.2015
№216.013.66fd

Способ протезирования пульпозного ядра межпозвонкового диска

Изобретение относится к медицине, а именно к нейрохирургии. Проводят удаление пульпозного ядра, секвестрэктомию и вводят в денуклеированный диск имплантат. В качестве имплантата используют нитиноловую нить, сложенную в виде сферического клубка, диаметр которого на 4-6 мм больше высоты...
Тип: Изобретение
Номер охранного документа: 0002557918
Дата охранного документа: 27.07.2015
20.08.2016
№216.015.4cbe

Способ термоводородной обработки полуфабрикатов и изделий из пористого материала на основе титана и его сплавов

Изобретение относится к термоводородной обработке полуфабрикатов и изделий из пористого материала на основе титана и его сплавов для медицинских имплантатов. Способ включает термодиффузионное насыщение водородом и вакуумный отжиг. Термодиффузионное насыщение водородом ведут при температуре...
Тип: Изобретение
Номер охранного документа: 0002594548
Дата охранного документа: 20.08.2016
25.08.2017
№217.015.aaa5

Устройство для остеосинтеза

Изобретение относится к медицине. Устройство для остеосинтеза из материала с памятью формы представляет собой скобку, которая содержит перемычку и две ножки, причем концы ножек разрезаны вдоль оси по меньшей мере на две равные части, длина разреза не более чем в 6,3 раза больше поперечного...
Тип: Изобретение
Номер охранного документа: 0002611907
Дата охранного документа: 01.03.2017
+ добавить свой РИД