×
27.12.2019
219.017.f3b3

Результат интеллектуальной деятельности: Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и касается способа измерения спектральных характеристик. Способ включает в себя два цикла, длина оптического пути которых одинакова. Первый цикл включает измерение спектральной характеристики схемы измерительного тракта, которая содержит источник излучения, конденсор, монохроматор, зеркальную систему, приемник излучения, атмосферу окружающей среды и систему регистрации сигнала с приемника излучения. Второй цикл измерений дополнительно включает в схему измерений исследуемый объект. Для вычисления спектральной характеристики исследуемого объекта из полученных данных исключают спектр измерительного тракта. Измерения проводят в условиях лаборатории с контролируемыми стабильными характеристиками окружающей среды. При измерениях используют зеркальную систему, которая включает в себя два плоских и два сферических зеркала с зеркальным покрытием, имеющим одинаковые спектральные характеристики, и механизм точной юстировки. Технический результат заключается в повышении достоверности измерений. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к области оптико-физических измерений и может быть использовано для измерений спектральных характеристик отражения и пропускания оптических элементов, спектральных характеристик оптико-электронной аппаратуры и приборов, источников излучения в видимом и инфракрасном (ИК) диапазонах спектра в условиях лаборатории с контролируемыми стабильными характеристиками окружающей среды.

Описанные в литературе [1, 2] и применяемые на практике методы и приборы для измерений спектральных характеристик различных оптических систем, как правило, не совместимы в одном эксперименте и требуют перекомпоновки схемы измерений и аппаратуры. Изменение условий измерений для различных оптических систем ведет к увеличению погрешности измерений, увеличивает затраченное время и усложняет проведение метрологической оценки полученных результатов.

Техническим результатом является возможность получения спектральных характеристик высокого качества в видимом и инфракрасном диапазонах спектра, как для миниатюрных оптических элементов (линз, оптических фильтров, пластин, зеркал, ламп, светодиодов), так и для крупногабаритной оптико-электронной аппаратуры (фотоприемных устройств, телевизионных и тепловизионных камер, космических радиометров, моделей абсолютно черных тел (АЧТ)), повышение достоверности измерений и сокращение времени проведения данных работ.

Технический результат достигается за счет создания способа измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах, который включает два цикла, длина оптического пути которых одинакова, первый цикл включает схему измерительного тракта, которая содержит источник излучения, конденсор, монохроматор, зеркальную систему, приемник излучения, обеспечивающий требуемый спектральный диапазон, установленные на оптическом столе, атмосферу окружающей среды рабочего пространства, систему регистрации сигнала; второй цикл измерений дополнительно включает в схему измерений и сам исследуемый объект, далее исключают спектр измерительного тракта и получают спектральную характеристику исследуемого объекта, при этом для корректного исключения спектральной характеристики атмосферы окружающей среды вдоль оптического пути и минимизации погрешности измерений, измерения проводят в условиях лаборатории с контролируемыми стабильными характеристиками окружающей среды, такими, как температура, влажность, количество аэрозольных частиц.

Технический результат также достигается за счет создания установки, реализующей способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах, содержащей источник излучения, конденсор, монохроматор, зеркальные системы, приемник излучения, установленные на оптическом столе и систему регистрации сигнала с приемника излучения, при этом установка размещена в условиях лаборатории, оснащенной системой затемнения и антибликовых покрытий в рабочем пространстве, системой вентиляции, с контролируемыми стабильными характеристиками окружающей среды, такими, как температура, влажность, количество аэрозольных частиц; установка снабжена системой автоматизации измерительных процедур на основе персонального компьютера и программного обеспечения, позволяющих управлять цифровым монохроматором, системой регистрации сигнала с приемника излучения, входящими в состав установки, а также автоматически сохранять результаты измерений; схема расположения элементов зеркальной системы и других составных частей измерительного тракта установки может изменяться в зависимости от цели измерений, но при этом обеспечивает одинаковую длину оптического пути для обоих циклов измерений, при этом зеркальная система состоит из двух плоских и двух сферических зеркал с зеркальным покрытием, имеющим одинаковые спектральные характеристики и механизмы точной юстировки.

Заявленное изобретение проиллюстрировано следующими схемами:

Фиг.1 – Блок-схема измерений в соответствии с предлагаемым способом измерений спектральных характеристик измерительного тракта и спектральных характеристик пропускания для оптических элементов и блоков (пунктир);

Фиг.2 – Блок-схема измерений в соответствии с предлагаемым способом измерений спектральных характеристик оптико-электронной аппаратуры (фотоприемных устройств, телевизионных и тепловизионных камер, космических радиометров);

Фиг.3 – Блок-схема измерений в соответствии с предлагаемым способом измерений спектральных характеристик измерительного тракта и спектральных характеристик отражения для зеркальных оптических элементов и отражающих покрытий (пунктир);

Фиг.4 – Блок-схема измерений в соответствии с предлагаемым способом измерений спектральных характеристик источников излучения (ламп, светодиодов, светильников, моделей АЧТ).

Позиции на фиг.1-4 обозначают следующее:

1 – монохроматический осветитель;

2 – первое зеркало (плоское);

3 – второе зеркало (сферическое);

4 – третье зеркало (сферическое);

5 – приемник;

6 – оптический элемент;

7 – четвертое зеркало (плоское)

8 – оптико-электронная аппаратура;

9 – зеркальный элемент;

10 – монохроматор;

11 – образцовый источник излучения;

12 – исследуемый источник излучения;

13 – конденсор.

Заявленный способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах спектра осуществляется для следующих объектов по отдельности и/или их сочетания: оптико-электронной аппаратуры и приборов, оптических элементов, источников излучения. Способ осуществляется в условиях лаборатории с контролируемыми стабильными характеристиками окружающей среды, такими, как температура, влажность, количество аэрозольных частиц, при этом измерения состоят из двух циклов: первый цикл включает схему измерительного тракта (измерительная схема, как правило, содержит источник излучения, конденсор, монохроматор, зеркальные системы, приемник излучения, установленные на оптическом столе, систему регистрации сигнала с приемника излучения), второй цикл измерений дополнительно включает и сам испытуемый объект (оптический элемент, блок, оптико-электронную аппаратуру, источник излучения). Далее расчетным методом исключают спектр измерительного тракта и получают спектральную характеристику исследуемого объекта. При этом для корректного исключения спектральной характеристики атмосферы окружающей среды оптического тракта и минимизации погрешности измерений необходимо обеспечить одинаковую длину оптического пути для обоих указанных циклов измерений, точность юстировки зеркальной системы, а также стабильность условий измерений: температуры, влажности и состава атмосферы (особенно для ИК диапазона), что также достигается путем сокращения времени для получения результатов измерений благодаря автоматизации измерительных процедур.

Заявленный способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах спектра осуществляют следующим образом. Измерения проводят в условиях лаборатории с контролируемыми стабильными характеристиками окружающей среды, такими, как температура, влажность, количество аэрозольных частиц, при этом измерения состоят из двух циклов: первый цикл включает схему измерительного тракта, который содержит источник излучения, конденсор, монохроматор, зеркальную систему, приемник излучения, обеспечивающий требуемый спектральный диапазон, установленные на оптическом столе, атмосферу окружающей среды рабочего пространства, систему регистрации сигнала, второй цикл измерений дополнительно включает в схему измерений и сам исследуемый объект оптико-электронную аппаратуру, оптический элемент, источник излучения; для корректного исключения спектральной характеристики атмосферы окружающей среды вдоль оптического пути и минимизации погрешности измерений необходимо обеспечить одинаковую длину оптического пути для обоих указанных циклов измерений, точность юстировки зеркальной системы, а также обеспечить стабильность условий измерений, что достигается путем стабилизации характеристик окружающей среды, а также путем сокращения времени проведения измерений за счет автоматизации измерительных процедур.

Способ измерения спектральных характеристик оптико-электронной аппаратуры и приборов включает следующее: расчетным путем исключают спектр измерительного тракта и получают спектральную характеристику исследуемого объекта. При этом способ получения спектральных характеристик состоит из трёх стадий:

1) измерение суммарной характеристики измерительного тракта, включающего монохроматический осветитель с зеркальной системой с характеристикой, а также приёмник излучения с характеристикой относительная спектральная характеристика чувствительности этого приемника должна быть заранее известна) для требуемого спектрального диапазона и атмосферу окружающей среды на оптическом пути с характеристикой, без включения в схему измерений исследуемого объекта (ИО) (Фиг. 1):

(1)

2) измерение суммарной характеристики измерительного тракта, включающего монохроматический осветитель с зеркальной системой с характеристикой , а также атмосферу окружающей среды на оптическом пути с характеристикой , в котором вместо образцового приемника с заранее известной спектральной характеристикой чувствительности световой поток направляется на входное окно исследуемого объекта (оптико-электронной аппаратуры, фотоприемного устройства, телевизионной камеры, тепловизионной камеры, космического радиометра) с характеристикой при условии сохранения длины оптического пути, такого же, как в п. 1)
(Фиг. 2):

(2)

3) вычисление относительной спектральной характеристики исследуемого объекта из (1) и (2), учитывая, что, известна:

(3)

Минимальной погрешности результатов данного способа измерений достигают при условии минимальных изменений спектральных характеристик и, и за время проведения двух циклов измерений 1) и 2), т.е. при условии:

(4)

Способ измерения спектральных характеристик пропускания оптических элементов включает следующее: расчетным путем исключают спектр измерительного тракта и получают спектральную характеристику исследуемого объекта. При этом способ получения спектральных характеристик состоит из трёх стадий:

1) измерение суммарной характеристики измерительного тракта, включающего монохроматический осветитель с зеркальной системой с характеристикой , а также образцовый приёмник с характеристикой для требуемого спектрального диапазона и атмосферу окружающей среды на оптическом пути с характеристикой , без включения в схему измерений исследуемого объекта (ИО) (Фиг. 1):

(5)

2) измерение суммарной характеристики измерительного тракта, включающего элементы оптического тракта, а также включающего исследуемый объект (оптический элемент, оптический блок) со спектральной характеристикой пропускания (Фиг. 1, пунктир):

(6)

При этом пропускающий излучение исследуемый объект устанавливают перед приемником излучения (Фиг. 1, пунктир).

3) вычисление относительной спектральной характеристики пропускания исследуемого объекта:

(7)

Минимальной погрешности результатов данного способа измерений достигают при условии минимальных изменений спектральных характеристик и , и , и за время проведения двух циклов измерений 1) и 2), т.е. при условии:

(8)

Способ измерения спектральных характеристик отражения зеркальных оптических элементов и покрытий включает следующее: расчетным путем исключают спектр измерительного тракта и получают спектральную характеристику исследуемого объекта. При этом способ получения спектральных характеристик состоит из трёх стадий:

1) измерение суммарной характеристики измерительного тракта, включающего монохроматический осветитель с зеркальной системой с характеристикой , а также атмосферу окружающей среды на оптическом пути с характеристикой и образцовый приёмник с характеристикой для требуемого спектрального диапазона, без включения в схему измерений исследуемого объекта (ИО) (Фиг. 3):

(9)

2) измерение суммарной характеристики измерительного тракта, включающего элементы оптического тракта, а также включающего исследуемый объект (зеркальный оптический элемент, отражающее покрытие) со спектральной характеристикой отражения (Фиг. 3, пунктир):

(10)

При этом взаимное положение входного окна приемника и отражающего излучение исследуемого объекта устанавливают таким образом, чтобы обеспечить заданный угол отражения и сохранение длины оптического пути.

3) вычисление относительной спектральной характеристики отражения исследуемого объекта:

(11)

Минимальной погрешности результатов данного способа измерений достигают при условии минимальных изменений спектральных характеристик и , и , и за время проведения двух циклов измерений 1) и 2), т.е. при условии:

(12)

Способ измерения спектральных характеристик источников излучения, при котором расчетным путем исключают спектр измерительного тракта и получают спектральную характеристику исследуемого объекта, при этом способ получения спектральных характеристик состоит из трёх стадий:

1) измерение суммарной характеристики измерительного тракта, включающего образцовый источник излучения с характеристикой (относительная спектральная характеристика излучения этого источника должна быть заранее известна), конденсор, монохроматор с зеркальной системой с характеристикой , а также образцовый приёмник с характеристикой для требуемого спектрального диапазона и атмосферу окружающей среды на оптическом пути с характеристикой , без включения в схему измерений исследуемого объекта (ИО) (Фиг. 4):

(13)

2) измерение суммарной характеристики измерительного тракта по п.1, включающего конденсор, монохроматор с зеркальной системой с характеристикой , а также атмосферу окружающей среды на оптическом пути с характеристикой , в котором вместо источника излучения с заранее известной спектральной характеристикой излучения на входную щель монохроматора направляется поток излучения от исследуемого объекта (лампы, светодиода, светильника, модели АЧТ) с характеристикой :

(14)

При этом положение исследуемого источника излучения устанавливают таким образом, чтобы обеспечить сохранение длины оптического пути (Фиг. 4).

3) вычисление относительной спектральной характеристики исследуемого источника излучения (исследуемого объекта), учитывая, что известна:

(15)

Минимальной погрешности результатов данного способа измерений достигают при условии минимальных изменений спектральных характеристик и ,, и , и за время проведения двух циклов измерений 1) и 2), т.е. при условии:

(16)

Как один из вариантов предложенного способа с целью исключения влияния молекулярного поглощения излучения атмосферой окружающей среды на оптическом пути и снижения погрешности измерений способа измерения спектральных характеристик оптико-электронной аппаратуры, оптических элементов, источников излучения в видимом и инфракрасном спектральных диапазонах все элементы измерительного тракта размещают в камере с инертным газом (например, газообразным азотом) или в вакуумной камере.

Заявлена также установка, реализующая вышеуказанный способ и содержащая монохроматический осветитель (МО), в который входят: лампа накаливания (используется для диапазона λ=0,4÷2,5 мкм), либо модель АЧТ (используется для диапазона λ=2,5÷15 мкм) в качестве источников излучения, конденсор и монохроматор с цифровым программным управлением (спектральный диапазон 0,4÷15 мкм); два плоских зеркала и два сферических зеркала с зеркальным покрытием, имеющим одинаковые спектральные характеристики и механизмы точной юстировки, комплект приемников излучения с чувствительностью, перекрывающей весь спектральный диапазон измерений от 0,4 до 15 мкм (относительные спектральные характеристики чувствительности данных приемников должны быть заранее известны), система регистрации сигнала с приемника излучения. Необходимость снижения погрешности измерений предполагает, что неотъемлемой частью данной измерительной установки является система затемнения и антибликовых покрытий в рабочем пространстве, система контроля и поддержания стабильных характеристик окружающей среды в рабочем пространстве лаборатории, а также наличие системы автоматизации на основе персонального компьютера и соответствующего программного обеспечения, позволяющих управлять цифровым монохроматором, системой регистрации сигнала, а также автоматически сохранять результаты измерений и значительно уменьшить время, необходимое для получения спектров.

Схема расположения элементов зеркальной системы и других составных частей измерительного тракта установки может изменяться в зависимости от цели измерений (Фиг. 1-4), но при этом обеспечивает одинаковую длину оптического пути для обоих циклов измерений, точность юстировки зеркальной системы, зеркальная система для всех измерений состоит из двух плоских и двух сферических зеркал с зеркальным покрытием, имеющим одинаковые спектральные характеристики и механизмы точной юстировки.

Решение проблем в указанной области в настоящее время является весьма актуальной задачей в связи с повышением требований к метрологической точности и оперативности измерений спектральных характеристик оптических элементов, оптико-механических устройств и оптико-электронной аппаратуры, что влияет на качество конечной продукции, особенно для дорогостоящей оптико-электронной аппаратуры и приборов космического назначения.

Источники информации:

1. Марычев М.О., Горшков А.П., Практическое руководство по оптической спектроскопии твердотельных наноструктур и объёмных материалов // Учебно-методический материал по программе повышения квалификации «Физико-химические основы нанотехнологий», Нижний Новгород, 2007, 5-32 стр.

2. Лебедева В.В., Экспериментальная оптика // Учебник, 4-е изд.-М.: Физический факультет МГУ им. Ломоносова, 2005, стр.49-51, 169-242.


Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ
Источник поступления информации: Роспатент

Showing 61-70 of 99 items.
06.03.2019
№219.016.d2d1

Система персональной подвижной связи

Изобретение относится к области беспроводной связи? в частности спутниковой радиосвязи? и предназначено для обеспечения синхронизации в спутниковых каналах. Способ обеспечения синхронизации низкоскоростных спутниковых каналов связи путем предварительного кодирования передаваемой информации...
Тип: Изобретение
Номер охранного документа: 0002681085
Дата охранного документа: 04.03.2019
04.04.2019
№219.016.fb47

Диодный лазер с внешним резонатором

Изобретение может быть использовано для перестраиваемых диодных лазеров с внешними резонаторами, обеспечивающими генерацию на одной продольной моде. Диодный лазер с внешним резонатором содержит последовательно установленные на оптической оси лазерный диод, коллимирующий объектив,...
Тип: Изобретение
Номер охранного документа: 0002683875
Дата охранного документа: 02.04.2019
12.04.2019
№219.017.0bce

Система защищённой передачи данных

Изобретение относится к системам подвижной связи, а именно к аутентификации абонентского терминала и шифрования передаваемой информации. Технический результат – повышение криптостойкости передачи данных. Система защищённой передачи данных включает совокупность абонентских терминалов и по...
Тип: Изобретение
Номер охранного документа: 0002684488
Дата охранного документа: 09.04.2019
25.04.2019
№219.017.3b77

Способ определения собственного местоположения судна на основе сигналов автоматической идентификационной системы и устройство для его осуществления

Группа изобретений относится к области радиотехники и может быть использована в фискальных системах контроля местоположения судов в качестве альтернативного способа определения координат, в частности, для детектирования локальной подмены сигналов глобальных навигационных спутниковых систем...
Тип: Изобретение
Номер охранного документа: 0002685705
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3c8e

Способ разделения пластин на чипы и получения сквозных отверстий большой площади для изделий микроэлектроники

Использование: для изготовления МЭМС-приборов. Сущность изобретения заключается в том, что способ разделения пластин на чипы и получения сквозных отверстий большой площади для изделий микроэлектроники включает нанесение на обратную сторону пластины полиимидной пленки, нанесение на лицевую...
Тип: Изобретение
Номер охранного документа: 0002686119
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3d56

Космический аппарат для утилизации космического мусора

Изобретение относится к средствам очистки околоземного космического пространства от отработавших свой срок искусственных космических объектов и их обломков. Предложенный космический аппарат (КА) включает в себя ловушку для космического мусора (КМ) и систему утилизации КМ. Ловушка состоит из...
Тип: Изобретение
Номер охранного документа: 0002686415
Дата охранного документа: 25.04.2019
29.04.2019
№219.017.3e24

Способ получения и обработки изображений, искажённых турбулентной атмосферой

Изобретение относится к области оптического приборостроения. Способ получения и обработки изображений, искаженных турбулентной атмосферой, включает регистрацию усредненного по атмосферным искажениям длинно-экспозиционного изображения объекта, наблюдаемого через турбулентную атмосферу,...
Тип: Изобретение
Номер охранного документа: 0002686445
Дата охранного документа: 25.04.2019
01.05.2019
№219.017.47ea

Свч фильтр на основе интегрированного в подложку волновода и способ его изготовления

Использование: для создания СВЧ фильтров. Сущность изобретения заключается в том, что СВЧ фильтр на основе интегрированного в подложку волновода, образованный цепочкой связанных резонаторов, конструкция которого состоит из следующих составных частей: металлического основания, подложки на основе...
Тип: Изобретение
Номер охранного документа: 0002686486
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.4896

Способ и устройство для нелинейного уплотнения навигационного сигнала глонасс

Изобретение относится к системам формирования сигнала спутниковой радионавигационной системы ГЛОНАСС, а именно к средствам управления передачей сигнала и его коррекции. Технический результат состоит в снижении частоты дискретизации формирователя, а также упрощении реализации данной схемы на...
Тип: Изобретение
Номер охранного документа: 0002686660
Дата охранного документа: 30.04.2019
09.06.2019
№219.017.7662

Спутниковая система, управляемая по межспутниковой радиолинии

Изобретение относится к архитектуре информационных спутниковых систем (СС). Каждый космический аппарат (КА) СС связан межспутниковыми радиолиниями (МРЛ) с четырьмя соседними КА и радиолинией с наземным комплексом управления. КА расположены на равновысоких орбитах в плоскостях, обеспечивающих...
Тип: Изобретение
Номер охранного документа: 0002690966
Дата охранного документа: 07.06.2019
Showing 11-13 of 13 items.
15.10.2019
№219.017.d591

Объектив съемочной системы дистанционного зондирования земли высокого разрешения видимого и ближнего ик диапазонов для космических аппаратов микро-класса

Объектив состоит из главного вогнутого зеркала, вторичного выпуклого зеркала, трехлинзового предфокального корректора полевых аберраций, на котором установлена бленда конической формы, плиты-основания, на которой с одной стороны установлено цилиндрическое основание-тубус с линзовым корректором...
Тип: Изобретение
Номер охранного документа: 0002702842
Дата охранного документа: 11.10.2019
15.10.2019
№219.017.d5fa

Способ радиометрической коррекции скановой структуры изображения от многоэлементного фотоприёмника многозонального сканирующего устройства

Изобретение относится к области дистанционного зондирования Земли и касается способа радиометрической коррекции скановой структуры изображения от многоэлементного фотоприёмника многозонального сканирующего устройства. Способ включает в себя получение с помощью аппаратуры дистанционного...
Тип: Изобретение
Номер охранного документа: 0002702849
Дата охранного документа: 11.10.2019
05.03.2020
№220.018.08f1

Способ радиометрической калибровки, контроля характеристик и испытаний оптико-электронных и оптико-механических устройств и криогенно-вакуумная установка, реализующая этот способ

Заявленная группа изобретений относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств, а также систем радиационного захолаживания в...
Тип: Изобретение
Номер охранного документа: 0002715814
Дата охранного документа: 03.03.2020
+ добавить свой РИД