×
24.12.2019
219.017.f14d

Результат интеллектуальной деятельности: Способ хроматографического разделения однослойных углеродных нанотрубок по хиральности

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам обработки дисперсных углеродных материалов и конкретно касается получения деагломерированных недеформированных однослойных углеродных нанотрубок для хроматографического разделения по хиральности. Способ хроматографического разделения однослойных углеродных нанотрубок по хиральности включает в себя ультразвуковую обработку суспензии нанотрубок в водном растворе додецилсульфата натрия, пропускание суспензии через колонку, заполненную гелем на основе сшитого сополимера аллилдекстрана, удаление несвязанных с гелем нанотрубок и сбор однослойных углеродных нанотрубок пропусканием десорбента. Перед стадией ультразвуковой обработки навеску углеродных нанотрубок суспензируют в сверхкритическом флюиде в течение не менее 30 мин и затем резко распыляют весь объем суспензии в 2-5% водный раствор додецилсульфата натрия. Время ультразвуковой обработки составляет 0.5-3 ч при удельной мощности 30-120 Вт/см. В качестве десорбента используют 0.5-10% водный раствор дезоксихолата натрия. Изобретение позволяет получать высококачественные водные дисперсии деагломерированных однослойных углеродных нанотрубок с высоким выходом без необходимости продолжительного деструктивного ультразвукового воздействия, а также позволяет проводить эффективное хроматографическое разделение для получения однослойных углеродных нанотрубок определенной хиральности, востребованных, в первую очередь, в областях оптоэлектроники и биосенсорики. 3 ил, 3 пр.

Изобретение относится к способам обработки дисперсных углеродных материалов, конкретно к получению деагломерированных недеформированных однослойных углеродных нанотрубок для хроматографического разделения по хиральности.

Изобретение может быть использовано при создании устройств оптоэлектроники, а также при разработке биосенсоров, работающих в ближнем ИК-диапазоне, для неинвазивной диагностики биологических объектов.

Углеродные нанотрубки - одномерный углеродный материал обладающий, благодаря своей структуре в виде свернутого в цилиндр листа графена, высокой подвижностью носителей заряда, уникальными оптическими характеристиками и механической прочностью [Нанотехнологии. Азбука для всех. Под ред. Ю.Д. Третьякова. - М.: ФИЗМАТЛИТ, 2008, С. 245-246].

Однослойные нанотрубки характеризуются хиральным вектором (n, m). В зависимости от n и m электронные свойства нанотрубок существенно различаются: нанотрубки, для которых (n-m) делится на 3, проявляют металлические свойства, а все прочие - полупроводниковые. Необходимо отметить, в процессе синтеза однослойных углеродных нанотрубок зачастую формируется смесь, состоящая из металлических и полупроводниковых нанотрубок, что затрудняет их практическое применение, поскольку ряд приложений требует использования нанотрубок только с определенным типом проводимости (например, при создании прозрачных проводящих электродов, транзисторов, сенсоров) [Словарь нанотехнологических и связанных с нанотехнологиями терминов. Под ред. С.В. Калюжного. - М.: ФИЗМАТЛИТ, 2010, 528 с.]. В частности, для биовизуализации наибольший интерес представляют полупроводниковые однослойные углеродные нанотрубки с хиральностью (6,5), обладающие резонансно возбуждаемой фотолюминесценцией с высоким квантовым выходом под действием коротковолнового инфракрасного излучения, имеющего наибольшую проникающую способность [Robinson J.T., Welsher K., Tabakman S.M., Sherlock S.P., Wang H., Luong R., & Dai H. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Research, 2010, V. 3(11), P. 779-793].

Для получения одинаковых по хиральности однослойных углеродных нанотрубок зачастую используют различные способы их разделения из смеси.

В частности, в способе [US 8273319] использовали выделение нанотрубок хиральности (6,5) путем приготовления суспензии однослойных углеродных нанотрубок с ДНК лосося и последующего отделения центрифугированием обогащенного нанотрубками (6,5) маточного раствора.

Схожий способ представлен в [JP 2009161393], однако вместо ДНК лосося авторами предложено суспензировать смесь углеродных нанотрубок в полифенолсодержащем водном растворе.

В способе [US 2012160366] смесь однослойных углеродных нанотрубок разделяли на фракции обогащенной хиральности путем приготовления водной суспензии смеси нанотрубок с поверхностно-активным веществом, впрыскивания суспензии в колонку разделительной среды, имеющей градиент плотности, и центрифугирования колонки. В некоторых случаях в колонку перед центрифугированием добавляли соль или проводили центрифугирование при температуре ниже комнатной. В итоге фракции в колонке разделялись в виде цветных полос. При этом диаметр отделенных нанотрубок уменьшался с увеличением плотности вдоль градиента колонны.

В способе [JP 2012051765] также заявлено разделение углеродных нанотрубок по хиральности с использованием центрифугирования колонки (более 10 ч), однако смесь однослойных углеродных нанотрубок получали из двухслойных нанотрубок, подвергая их ультразвуковой обработке (более 5 ч).

Общим недостатком описанных выше способов является необходимость использования ультрацентрифуг с ускорением более 100000 g и длительных времен сепарирования.

В способе [US 2013072669] предложено разделение углеродных нанотрубок методом аффинной хроматографии. Предварительно углеродные нанотрубки смешивали с термочувствительным реагентом, затем воздействовали на них определенной длиной волны света или определенным диапазоном длин волн света. Те углеродные нанотрубки, которые поглощали свет, вызывали физические изменения в термочувствительном реагенте, что позволило впоследствии селективно их отделить методом аффинной хроматографии. Однако данный способ не позволяет селективно разделять нанотрубки с высоким выходом.

В способе [US 2010111814] представлено хроматографическое разделение суспензии нанотрубок, а именно пропускание ее через колонку, содержащую разделительную среду, которая образует комплексы с по меньшей мере частью углеродных нанотрубок в жидкости; сбор части жидкости, содержащей нанотрубки, которые не образуют комплексов с разделительной средой; воздействие реагента, который диссоциирует комплексы углеродных нанотрубок и высвобождает углеродные нанотрубки из разделительной среды; сбор углеродных нанотрубок, которые выделены из разделительной среды.

Общими недостатками этих двух способов являются низкие селективнось и выход продукта.

Для успешного хроматографического разделения важно иметь суспензию деагломерированных углеродных нанотрубок в растворителе, в противном случае эффективного разделения по размерам индивидуальных трубок не произойдет. В то же время известно, что углеродные нанотрубки обладают очень высокой склонностью к агломерации ввиду огромной энергетической выгодности ван-дер-ваальсового взаимодействия между стенками трубок [Yu J., Grossiord N., Koning C.E., Loos J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon, 2007, V. 45, P. 618-623]. Будучи предоставленными самим себе, углеродные нанотрубки не существуют отдельно друг от друга, а слипаются в большие пучки (бандлы).

Деагломерации, как правило, достигают путем многократной обработки суспензии углеродных нанотрубок в растворе мощным ультразвуком. В частности, в способе [CN 103407983] показано, что ультразвуковая обработка играет определяющую роль в деагломерации нанотрубок. Способ включает в себя на первой стадии обработку суспензии агломерированных нанотрубок в органическом растворителе ультразвуком (4-12 ч) и центрифугирование (1-2 ч) для отделения неразбитых агрегатов нанотрубок. После чего к деагломерированным нанотрубкам в растворе добавляют органический амин и снова подвергают ультразвуковому воздействию (2-3 ч). Эффективная адсорбция органического амина на металлических нанотрубках повышает их устойчивость в суспензии. После повторного центрифугирования (12-24 ч) полупроводниковые нанотрубки оседают, а металлические остаются в маточном растворе.

Использование предварительной ультразвуковой обработки перед хроматографическим разделением предложено в работе [Liu Н., Nishide D., Tanaka Т., Kataura Н. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun., 2011, 2:309]. Данное техническое решение является наиболее близким к заявляемому и выбрано в качестве прототипа. Навеску однослойных углеродных нанотрубок диспергировали в 2% водном растворе додецилсульфата натрия с применением ультразвуковой обработки (20 ч, удельная мощность 20 Вт/см2) и затем суспензию центрифугировали при 197000 g в течение 15 мин для отделения бандлов и примесей. Маточный раствор помещали в колонку, заполненную гелем на основе сшитого сополимера аллилдекстрана. После адсорбции на колонке нанотрубок, обладающих наиболее сильным структурным взаимодействием с гелем, несвязанные нанотрубки были смыты 2% водным раствором додецилсульфата натрия. Адсорбированные нанотрубки были собраны с колонки пропусканием 5% водного раствора додецилсульфата натрия. Для достижения высокой селективности разделения использовали многоколоночную хроматографию.

Существенным недостатком прототипа является большая продолжительность ультразвуковой обработки, в результате чего углеродные нанотрубки ломаются и деформируются. Для многих приложений деструкция углеродных нанотрубок негативно сказывается на технических характеристиках получаемых изделий [Ma Р.-С., Siddiqui N.A., Marom G., & Kim J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 2010, V. 41(10), P. 1345-1367]. Помимо этого использование центрифугирования существенно снижает выход деагломерированных нанотрубок. Еще одни недостатком прототипа является низкая селективность разделения углеродных нанотрубок по хиральности, что приводит к необходимости дальнейшего использования многоколоночной хроматографии.

Изобретение направлено на уменьшение деструктивного действия ультразвуковой обработки, приводящей к разрушению углеродных нанотрубок, а также на увеличение выхода целевого продукта.

Технической задачей изобретения является разработка способа щадящей деагломерации однослойных углеродных нанотрубок в суспензии, предназначенной для их хроматографического разделения по хиральности.

Технический результат достигается тем, что предложен способ хроматографического разделения однослойных углеродных нанотрубок по хиральности, включающий в себя ультразвуковую обработку суспензии нанотрубок в водном растворе додецилсульфата натрия, пропускание суспензии через колонку, заполненную гелем на основе сшитого сополимера аллилдекстрана, удаление несвязанных с гелем нанотрубок и сбор однослойных углеродных нанотрубок пропусканием десорбента, отличающийся тем, что перед стадией ультразвуковой обработки навеску углеродных нанотрубок суспензируют в сверхкритическом флюиде в течение не менее 30 мин и затем резко распыляют весь объем суспензии в 2-5% водный раствор додецилсульфата натрия; время ультразвуковой обработки составляет 0.5-3 ч при удельной мощности 30-120 Вт/см2, а в качестве десорбента используют 0.5-10% водный раствор дезоксихолата натрия.

Процедура проведения сверхкритической обработки является типовой и подробно описана в [D. То, R. Dave, X. Yin, S. Sundaresan. Deagglomeration of Nanoparticle Aggregates via Rapid Expansion of Supercritical or High-Pressure Suspensions. AIChE J., 2009, V. 55(11), P. 2807-2826], однако в подавляющем большинстве случаев распыление производят в пустой приемник, не содержащий жидкости. Резкое распыление всего объема суспензии автоклава в приемник с водным раствором додецилсульфата натрия производят путем открытия донного шарового клапана с широким отверстием. Приемник имеет объем в несколько десятков-сотен раз превышающий объем автоклава высокого давления.

Флюиды, которые можно использовать для обработки - CO2, N2, низшие углеводороды (С14), SF6 и другие. Давление сверхкритической обработки может быть использовано в диапазоне от критического давления флюида до давления его кристаллизации при выбранной температуре. Наиболее типичным является использование давлений от 75 до 500 атм. Температура обработки может быть выбрана в диапазоне от критической температуры флюида до температуры деструкции какого-либо из элементов системы. Типичные значения температуры - от 40 до 100°С. Минимальная продолжительность суспензирования - 30 минут - выбрана из тех соображений, что при меньшем времени обработки эффективного проникновения сверхкритического флюида в толщу бандлов не происходит. Верхняя граница продолжительности суспензирования определяется исходной массой навески нанотрубок.

Время ультразвуковой обработки и ее мощность определяются тем, что при обработке удельной мощностью менее 30 Вт/см2 и продолжительностью менее 0.5 ч в суспензии остается много бандлов, в то время как использование удельной мощности более 120 Вт/см2 и продолжительности более 3 ч нецелесообразно, поскольку степень деагломерации не увеличивается и возрастает степень деструкции нанотрубок.

Диапазон концентраций додецилсульфата натрия обусловлен тем, что при концентрации менее 2% додецилсульфат натрия неоднородно распределяется по поверхности углеродных нанотрубок, что снижает эффективность дальнейшего хроматографического разделения. Использование концентраций более 5% приводит к увеличению вязкости раствора, что затрудняет равномерное диспергирование нанотрубок.

Использование додецилсульфата натрия усиливает связывание углеродных нанотрубок с полимерным гелем-наполнителем колонки, причем прочность связывания определяется хиральностью нанотрубок. Дезоксихолат натрия в зависимости от хиральности углеродных нанотрубок в первую очередь способствует десорбции наименее прочно адсорбированных [М. Zhang, C.Y. Khripin, J.A. Fagan, P. McPhie, Y. Ito, M. Zheng. Single-Step Total Fractionation of Single-Wall Carbon Nanotubes by Countercurrent Chromatography. Anal. Chem., 2014, V. 86, P. 3980-3984].

Диапазон концентраций дезоксихолата натрия обусловлен тем, что при концентрации менее 0.5% десорбции нанотрубок не происходит, а при концентрации выше 10% возрастает вязкость раствора, что затрудняет пропускание десорбента через колонку.

Сущность изобретения заключается в том, что при сбросе давления в приемник флюид резко расширяется, ввиду этого суспензирование углеродных нанотрубок в растворе осуществляется с большой линейной скоростью, что приводит к их равномерному распределению по всему объему. Кроме того, в ходе выдержки суспензии сверхкритический флюид проникает в толщу бандлов, а затем, при расширении, резко выходит из них, что приводит к частичной деагломерации бандлов, уменьшению их размера и нарушению связи углеродных нанотрубок друг с другом. Это, впоследствии, способствует быстрой деагломерации углеродных нанотрубок при ультразвуковой обработке суспензии и уменьшает тем самым их деструкцию. Высокая степень деагломерации углеродных нанотрубок позволяет отказаться от дополнительной стадии центрифугирования, снижающей выход целевого продукта. Использование комбинации двух поверхностно-активных веществ - додецилсульфата натрия и дезоксихолата натрия приводит к упрощению процедуры хроматографического разделения нанотрубок, поскольку в этом случае достаточно пропустить десорбент через одну колонку несколько раз для селективного получения углеродных нанотрубок различной хиральности, а не использовать многоколоночную хроматографию.

Фиг. 1. Спектры поглощения суспензий однослойных углеродных нанотрубок в 2% водном растворе додецилсульфата натрия после ультразвуковой обработки согласно примеру 1. Черная линия - необработанные в сверхкритических условиях однослойные углеродные нанотрубки, красная линия - после распыления из сверхкритического N2 в жидкость. Большая интенсивность пиков индивидуальных нанотрубок (красная линия) свидетельствует о большей степени деагломерации углеродных нанотрубок в растворе.

Фиг. 2. Карта фотолюминесценции суспензии однослойных углеродных нанотрубок перед хроматографическим разделением согласно примеру 1.

Фиг. 3. Карты фотолюминесценции суспензий однослойных углеродных нанотрубок после их хроматографического разделения согласно примеру 1: а) с хиральностью (6,5); б) с хиральностью (7,3) и (6,5). Фотоэмиссия наблюдается только для индивидуальных углеродных нанотрубок.

Изобретение иллюстрируется, но не ограничивается следующими примерами.

Пример 1. Навеску углеродных однослойных нанотрубок (NoPo Nanotechnologies India Private Ltd., 2 г) помещали в автоклав высокого давления (Waters Corp., USA) объемом 25 мл и суспензировали в сверхкритическом N2 при давлении 150 атм и температуре 40°С в течение 30 мин. Затем давление резко сбрасывали путем открытия донного шарового клапана. При этом быстро расширяющийся поток, содержащий углеродные нанотрубки, попадал из автоклава в приемник объемом 500 мл, содержащий 2% водный раствор додецилсульфата натрия. Суспензию подвергали ультразвуковой обработке (Branson 450) в течение 3 ч с удельной мощностью 120 Вт/см2. Обработка приводила к деагломерации нанотрубок, что показано на Фиг. 1. Карта фотолюминесценции суспензии однослойных углеродных нанотрубок показана на Фиг. 2. Затем суспензию пропускали через колонку с гелем на основе сшитого сополимера аллилдекстрана (Sephacryl S-200 HR), удаляли несвязанные с гелем углеродные нанотрубки обработкой 2% водным раствором додецилсульфата натрия и пропускали 10% водный раствор дезоксихолата натрия. В результате получали суспензию, обогащенную углеродными нанотрубками хиральности (6,5), что продемонстрировано на Фиг. 3а. В результате дальнейших пропусканий водного раствора дезоксихолата натрия через колонку, получали суспензию, обогащенную углеродными нанотрубками хиральности (7,3) и (6,5), что проиллюстрировано на Фиг. 3б.

Пример 2. По примеру 1, отличающийся тем, что приемник содержал 5% водный раствор додецилсульфата натрия, а удельная мощность и продолжительность ультразвуковой обработки составляли 30 Вт/см2 и 0.5 ч соответственно. Пропускание 0.5% водного раствора дезоксихолата натрия через хроматографическую колонку приводило к селективному выделению однослойных углеродных нанотрубок хиральности (6,5) и (7,3).

Пример 3. По примеру 1, отличающийся тем, что использовали сверхкритический CO2 при давлении 100 атм и температуре 80°С. В результате хроматографического разделения селективно получали однослойные углеродные нанотрубки хиральности (6,5) и (7,3).

Предложенное изобретение позволяет получать высококачественные водные дисперсии деагломерированных однослойных углеродных нанотрубок с высоким выходом без необходимости продолжительного деструктивного ультразвукового воздействия. Разработанный подход позволяет проводить эффективное хроматографическое разделение для получения однослойных углеродных нанотрубок определенной хиральности, востребованных, в первую очередь, в областях оптоэлектроники и биосенсорики.

Способ хроматографического разделения однослойных углеродных нанотрубок по хиральности, включающий в себя ультразвуковую обработку суспензии нанотрубок в водном растворе додецилсульфата натрия, пропускание суспензии через колонку, заполненную гелем на основе сшитого сополимера аллилдекстрана, удаление несвязанных с гелем нанотрубок и сбор однослойных углеродных нанотрубок пропусканием десорбента, отличающийся тем, что перед стадией ультразвуковой обработки навеску углеродных нанотрубок суспензируют в сверхкритическом флюиде в течение не менее 30 мин и затем резко распыляют весь объем суспензии в 2-5% водный раствор додецилсульфата натрия; время ультразвуковой обработки составляет 0.5-3 ч при удельной мощности 30-120 Вт/см, а в качестве десорбента используют 0.5-10% водный раствор дезоксихолата натрия.
Способ хроматографического разделения однослойных углеродных нанотрубок по хиральности
Способ хроматографического разделения однослойных углеродных нанотрубок по хиральности
Способ хроматографического разделения однослойных углеродных нанотрубок по хиральности
Источник поступления информации: Роспатент

Showing 11-20 of 33 items.
17.10.2019
№219.017.d684

Защитное шпинельное покрытие для ni-mn-co (nmc) катода с повышенным содержанием li для литий-ионных аккумуляторов, способ нанесения указанного покрытия на катод и катод с указанным покрытием

Изобретение относится к защитным шпинельным покрытиям для катодов высокоэнергетических литий-ионных аккумуляторов и способу их нанесения с применением единственного прекурсора. Согласно изобретению, защитное шпинельное покрытие для Ni-Mn-Со (NMC) катода с повышенным содержанием Li представляет...
Тип: Изобретение
Номер охранного документа: 0002702785
Дата охранного документа: 14.10.2019
24.10.2019
№219.017.d921

Способ актуализации каталога товаров в системе распознавания товаров на изображениях

Изобретение относится к системам распознавания товаров на изображениях. Технический результат заключается в обеспечении возможности автоматизированного обновления каталогов товаров. Способ актуализации каталога товаров в системе распознавания товаров на изображениях содержит этапы: определения...
Тип: Изобретение
Номер охранного документа: 0002703970
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.da5c

Способ определения тепловых свойств пород сланцевых толщ

Изобретение относится к области исследований свойств пород сланцевых толщ. При осуществлении способа определяют литологические типы пород в интервалах глубин сланцевой толщи. Затем на образцах пород сланцевой толщи для каждого литологического типа определяют направления главных осей...
Тип: Изобретение
Номер охранного документа: 0002704002
Дата охранного документа: 23.10.2019
26.10.2019
№219.017.dad3

Способ получения катодного материала состава navo(po)f (где 0<x≤1) для na-ионных аккумуляторов

Изобретение может быть использовано при создании Na-ионных аккумуляторов. Способ получения катодного материала, содержащего NaVO(PO)F (0<х≤1), включает воздействие на реакционную смесь, содержащую оксид ванадия VO, дигидрофосфат аммония NHHPO, фтористый натрий NaF, восстановитель катионов...
Тип: Изобретение
Номер охранного документа: 0002704186
Дата охранного документа: 24.10.2019
21.11.2019
№219.017.e428

Система и способ автоматизированного описания горных пород

Изобретение относится к средствам описания горных пород по их изображению. Сущность: получают изображение горных пород. Разделяют полученное изображение на отдельные сегменты. Для каждого сегмента определяют, к какому типу керна он относится: к кондиционному или некондиционному, или пригодность...
Тип: Изобретение
Номер охранного документа: 0002706515
Дата охранного документа: 19.11.2019
12.12.2019
№219.017.ec39

Способ обучения системы распознавания товаров на изображениях

Изобретение относится к системам распознавания товаров на изображениях. Техническим результатом является автоматизированное обучение нейронной сети на основе новых изображений товаров. Способ содержит этапы, на которых посредством устройства обучения нейронной сети извлекают из блока хранения...
Тип: Изобретение
Номер охранного документа: 0002708504
Дата охранного документа: 09.12.2019
31.01.2020
№220.017.fb7b

Способ определения теплопроводности частиц твердых материалов при повышенных температурах

Изобретение относится к области исследования тепловых свойств частиц твердых материалов при повышенных температурах. При осуществлении способа измельчают частицы твердого материала, изготавливают смесь, смешивая в заданной пропорции измельченные частицы твердого материала с...
Тип: Изобретение
Номер охранного документа: 0002712282
Дата охранного документа: 28.01.2020
06.02.2020
№220.018.000f

Способ определения тепловых свойств частиц твердых материалов

Изобретение относится к области исследования тепловых свойств горных пород в неконсолидированном состоянии. При осуществлении способа измельчают частицы твердого материала, изготавливают смесь, смешивая в заданной пропорции измельченные частицы твердого материала с материалом-заполнителем с...
Тип: Изобретение
Номер охранного документа: 0002713184
Дата охранного документа: 04.02.2020
05.04.2020
№220.018.1375

Система восстановления трехмерной структуры образца породы

Изобретение относится к вычислительной технике и может быть использовано для построения трехмерных цифровых моделей структуры образцов горной породы по двумерным изображениям плоских срезов породы. Техническим результатом является повышение точности восстановления трехмерной структуры. Система...
Тип: Изобретение
Номер охранного документа: 0002718409
Дата охранного документа: 02.04.2020
14.05.2020
№220.018.1c46

Способ определения общего содержания органического вещества в породах сланцевых толщ, обогащенных углеводородами (варианты)

Изобретение относится к области исследований свойств пород сланцевых толщ, обогащенных углеводородами, а именно – исследований общего содержания органического вещества. Изобретение касается способа определения общего содержания органического вещества в породах сланцевых толщ, обогащенных...
Тип: Изобретение
Номер охранного документа: 0002720582
Дата охранного документа: 12.05.2020
Showing 11-12 of 12 items.
16.05.2023
№223.018.6215

Установка для получения мелкодисперсных порошков и способ осуществления

Группа изобретений относится к получению композитных дисперсных материалов, применяемых в химической, фармацевтической, косметической и пищевой промышленности, а также в микроэлектронике, материаловедении и аддитивных технологиях. Установка для получения мелкодисперсных порошков, работающая по...
Тип: Изобретение
Номер охранного документа: 0002780123
Дата охранного документа: 19.09.2022
30.05.2023
№223.018.73c1

Способ переноса графена на полимерную подложку

Изобретение относится к области создания обработки материалов на основе 2D-структур, и в частности изобретение относится к области получения проводящих структур на основе графена на заданном носителе для электроники. Способ переноса графена на полимерную подложку включает нанесение полимерной...
Тип: Изобретение
Номер охранного документа: 0002757239
Дата охранного документа: 12.10.2021
+ добавить свой РИД