×
24.10.2019
219.017.da5c

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВЫХ СВОЙСТВ ПОРОД СЛАНЦЕВЫХ ТОЛЩ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследований свойств пород сланцевых толщ. При осуществлении способа определяют литологические типы пород в интервалах глубин сланцевой толщи. Затем на образцах пород сланцевой толщи для каждого литологического типа определяют направления главных осей теплопроводности пород. После этого на образцах пород измеряют теплопроводности пород для направлений, соответствующих установленным направлениям главных осей теплопроводности пород, при атмосферных давлении и температуре. Измеряют объемную теплоёмкость пород при атмосферных давлении и температуре. Определяют скорости распространения продольных волн в породах для направлений, соответствующих установленным направлениям главных осей теплопроводности пород. По результатам измерений теплопроводности пород для направлений, соответствующих установленным направлениям главных осей теплопроводности пород, объемной теплоемкости пород и скорости распространения продольных волн в породах для направлений, соответствующих установленным направлениям главных осей теплопроводности, для каждого литологического типа пород устанавливают уравнения регрессии между теплопроводностью пород и скоростями распространения продольных волн в породах для соответствующих направлений главных осей теплопроводности пород, а также - уравнения регрессии между объемной теплоёмкостью пород и скоростью распространения продольной волны в породах. Определяют теплопроводность пород при атмосферных давлении и температуре для направлений, соответствующих направлениям главных осей теплопроводности пород, и объемную теплоёмкость пород при атмосферных давлении и температуре с наличием данных по скоростям распространения продольных волн в породах, используя для этого установленные для литологических типов уравнения регрессии между теплопроводностью пород и скоростью распространения продольных волн в породах для соответствующих направлений главных осей теплопроводности пород, а также - установленные для литологических типов уравнения регрессии между объемной теплоёмкостью пород и скоростью распространения продольных волн в породах. Для каждого литологического типа определяют зависимости теплопроводности пород для направлений, соответствующих направлениям главных осей теплопроводности, от температуры и давления и определяют зависимости объемной теплоёмкости пород от температуры и давления. Затем определяют теплопроводность пород для направлений, соответствующих направлениям главных осей теплопроводности пород, и объемную теплоёмкость пород при пластовых температуре и давлении, используя для этого установленные для литологических типов пород зависимости теплопроводности пород для направлений, соответствующих направлениям главных осей теплопроводности пород, от температуры и давления и зависимости объемной теплоёмкости пород от температуры и давления. Достигается расширение функциональных возможностей определения тепловых свойств пород для изучения сланцевых толщ, а также - возможность определения теплопроводности и объемной теплоемкости пород, с учетом пластовых температуры и давления. 1 пр., 3 табл.

Область техники, к которой относится изобретение

Изобретение относится к области исследований свойств пород сланцевых толщ, а именно - теплопроводности, температуропроводности и объемной теплоёмкости.

Уровень техники

Из анализа уровня техники известен способ определения теплопроводности пород на основе данных сейсморазведки [3]. Способ заключается в том, что проводят измерения теплопроводности пород на высушенных образцах пород при атмосферных температуре и давлении. Для интервалов глубин, соответствующих интервалам отбора образцов пород, определяют скорость пробега продольной волны в породах путём вертикального сейсмического профилирования. По результатам измерений устанавливают уравнение регрессии между теплопроводностью пород и скоростью распространения продольной волны в породах. Затем определяют скорость распространения продольной волны в породах в межскважинном пространстве по данным сейсморазведки. После этого определяют теплопроводность сухих пород для межскважинного пространства по данным о скорости распространения продольной волны в породах, полученным путём проведения сейсморазведки, используя для этого метод регрессионного кригинга, основой которого является установленное уравнение регрессии между теплопроводностью высушенных образцов пород и скоростью распространения продольной волны в породах. Затем по данным о пористости пород в межскважинном пространстве и определенной теплопроводности сухих пород в межскважинном пространстве, определенной на основе уравнения регрессии, устанавливают теплопроводность матрицы пород, используя для этого теоретическую модель теплопроводности средневзвешенного геометрического среднего [9] и значение теплопроводности воздуха. После этого определяют теплопроводность водонасыщенных пород в межскважинном пространстве, используя для этого определенные значения теплопроводности матрицы пород, теплопроводность воды и теоретическую модель теплопроводности средневзвешенного геометрического среднего.

Недостатками данного способа являются:

• способ не позволяет определять главные компоненты теплопроводности и коэффициент тепловой анизотропии для анизотропных пород, что является серьезным недостатком при изучении пород сланцевых толщ с учетом их стабильно высокой анизотропии. Известно, что коэффициент тепловой анизотропии для пород сланцевых толщ достигает значения 3,3 согласно результатам многочисленных измерений на керне пород различных месторождений [21, 12, 6]. При этом коэффициент акустической анизотропии для пород сланцевых толщ также значителен и достигает величины 1,5 и выше [6, 22];

• способ не позволяет определять объемную теплоёмкость и температуропроводность пород;

• способ не позволяет определять теплопроводность с учётом пластовых термобарических условий;

• высушивание образцов в ряде случаев приводит к развитию микротрещиноватости в образцах пород, которая существенно влияет на результаты измерений теплопроводности [19];

• определение теплопроводности пород в водонасыщенном состоянии в межскважинном пространстве невозможно без определения пористости в межскважинном пространстве;

• погрешности оценок теплопроводности пород по теоретической модели теплопроводности средневзвешенного геометрического среднего могут достигать 35 % [19].

Более близким к заявляемому техническому решению является известный способ определения теплопроводности пород и удельной теплоёмкости пород на основе данных геофизических исследований скважин [8], который взят за прототип. Данный способ включает измерения теплопроводности пород и удельной теплоёмкости пород на водонасыщенных образцах пород при атмосферных температуре и давлении. Измеряют также скорости распространения продольной волны в породах путём акустического каротажа в скважине и плотность пород путём гамма-гамма плотностного каротажа в скважине для интервалов глубин, соответствующих интервалам отбора образцов пород. Определяют литологические типы пород изучаемого разреза. После этого по результатам измерений для каждого литологического типа устанавливают уравнения регрессии между теплопроводностью пород и скоростью распространения продольной волны в породах, а также для каждого литологического типа устанавливают уравнения регрессии между удельной теплоёмкостью пород и объемной плотностью пород. Затем в интервалах с отсутствием измерений теплопроводности образцов пород и удельной теплоёмкости пород определяют теплопроводность пород и удельную теплоёмкость пород по данным о скорости распространения продольной волны в породах и плотности пород, используя установленные уравнения регрессии между теплопроводностью пород и скоростью распространения продольной волны в породах и между удельной теплоёмкостью пород и плотностью пород.

Прототип обладает следующими недостатками:

• способ не позволяет определять главные компоненты теплопроводности и коэффициент тепловой анизотропии для анизотропных пород, что является серьезным недостатком при изучении пород сланцевых толщ с учетом их стабильно высокой анизотропии. Известно, что коэффициент тепловой анизотропии для пород сланцевых толщ достигает значения 3,3 согласно результатам многочисленных измерений на керне пород различных месторождений [21, 12, 6]. При этом коэффициент акустической анизотропии для пород сланцевых толщ также значителен и достигает величины 1,5 и выше [6, 22];

• способ не позволяет определять теплопроводности и объемной теплоёмкости пород при пластовых термобарических условиях.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задачей заявленного изобретения является устранение указанных недостатков прототипа.

Техническим результатом заявляемого изобретения является расширение функциональных возможностей способа определения тепловых свойств пород сланцевых толщ путем учёта тепловой анизотропии пород, также за счет обеспечения возможности определения теплопроводности и объемной теплоемкости пород с учетом пластовых температуры и давления.

Поставленная задача решается, а технический результат достигается за счёт предложенного способа определения теплопроводности и объемной теплоёмкости горных пород сланцевых толщ. В соответствии с предложенным способом определяют литологические типы пород в интервалах глубин сланцевой толщи. Затем на образцах пород сланцевой толщи для каждого литологического типа определяют направления главных осей теплопроводности пород. После этого на образцах пород проводят измерения теплопроводности пород для направлений, соответствующих установленным направлениям главных осей теплопроводности пород, при атмосферных давлении и температуре. Также проводят измерения объемной теплоёмкости пород при атмосферных давлении и температуре. Определяют скорости распространения продольных волн в породах для направлений, соответствующих установленным направлениям главных осей теплопроводности пород, в интервалах глубин, соответствующих интервалам отбора образцов пород сланцевой толщи. Затем по результатам измерений теплопроводности пород для направлений, соответствующих установленным направлениям главных осей теплопроводности пород, объемной теплоемкости пород и скорости распространения продольных волн в породах для направлений, соответствующих установленным направлениям главных осей теплопроводности, для каждого литологического типа пород устанавливают уравнения регрессии между теплопроводностью пород и скоростями распространения продольных волн в породах для соответствующих направлений главных осей теплопроводности пород. Также устанавливают уравнения регрессии между объемной теплоёмкостью пород и скоростью распространения продольной волны в породах. После этого определяют теплопроводность пород при атмосферных давлении и температуре для направлений, соответствующих направлениям главных осей теплопроводности пород, и объемную теплоёмкость пород при атмосферных давлении и температуре в интервалах глубин сланцевой толщи с отсутствием результатов измерений тепловых свойств пород и с наличием данных по скоростям распространения продольных волн в породах, используя для этого установленные для литологических типов уравнения регрессии между теплопроводностью пород и скоростью распространения продольных волн в породах для соответствующих направлений главных осей теплопроводности пород, а также используя установленные для литологических типов уравнения регрессии между объемной теплоёмкостью пород и скоростью распространения продольных волн в породах. Затем для каждого литологического типа определяют зависимости теплопроводности пород для направлений, соответствующих направлениям главных осей теплопроводности, от температуры и давления и определяют зависимости объемной теплоёмкости пород от температуры и давления. После этого определяют теплопроводность пород для направлений, соответствующих направлениям главных осей теплопроводности пород, и объемную теплоёмкость пород при пластовых температуре и давлении, используя для этого установленные для литологических типов пород зависимости теплопроводности пород для направлений, соответствующих направлениям главных осей теплопроводности пород, от температуры и давления и зависимости объемной теплоёмкости пород от температуры и давления.

Осуществление изобретения

Предлагаемый способ осуществляется в несколько этапов.

На этапе 1 определяют литологические типы пород в интервалах глубин сланцевой толщи, например, по данным геофизических исследований скважин (ГИС) путем построения объемно-минералогической модели породы [15]. Для построения объемной-минералогической модели породы используют алгоритмы решения обратной задачи, подразумевающие нахождение объемных долей компонент объемной-минералогической модели из системы уравнений, связывающей известные физические свойства компонент с показаниями различных методов ГИС [13, 2].

Объемно-минералогическая модель породы может быть также получена по результатам проведения спектрометрического импульсного нейтронного гамма-каротажа [15].

В случае наличия образцов пород, литологические типы могут быть выделены геологом по результатам проведения макроописания образцов пород или по результатам проведения лабораторных литолого-петрографических исследований образцов пород.

Выделение литологических типов может быть осуществлено также по результатам проведения сейсмофациального анализа (см., например, [18]).

На этапе 2 для каждого литологического типа определяют направления главных осей теплопроводности пород на образцах пород. Это необходимо, так как направления главных осей теплопроводности не обязательно совпадают с направлениями параллельным и перпендикулярным напластованию пород и поэтому не могут быть определены по результатам визуального анализа (или исходя из положения скважины, вскрывшей исследуемые породы сланцевой толщи, относительно плоскости напластования). Поскольку главные оси анизотропии пород одинаково направлены для теплопроводности, скоростей распространения упругих волн, механических свойств пород (это следует из работы [6], стр. 73, рисунок 6), определение направлений главных осей теплопроводности пород может быть осуществлено, например, путём проведения трех экспериментов по одноосному сжатию стандартных образцов пород [23]. Направления главных осей теплопроводности могут определяться такими причинами, как направление наложенной трещинноватости и текстурно-минеральные особенности пород.

Направления главных осей теплопроводности могут быть определены также при помощи неоднократного оптического сканирования образцов пород с разными направлениями линий сканирования [11].

На этапе 3 на образцах пород проводят измерения теплопроводности пород для направлений, соответствующих направлениям главных осей теплопроводности пород при атмосферных давлении и температуре. Это может быть осуществлено, например, методом оптического сканирования [11, 10]. Кроме того, на образцах пород проводят измерения объемной теплоёмкости пород при атмосферных давлении и температуре. Метод оптического сканирования обеспечивает одновременные измерения теплопроводности и объемной теплоёмкости пород.

Кроме того, определяют скорость распространения продольной волны в породах для направлений, соответствующих направлениям главных осей теплопроводности пород, в интервалах глубин, соответствующих интервалам отбора образцов пород сланцевой толщи. Это может быть осуществлено, например, методом акустического каротажа в скважине [17, 4] или по данным сейсморазведки [16]. При наличии образцов пород возможно измерение скорости продольных волн в породах непосредственно на образцах пород в лаборатории.

На этапе 4 определяют зависимости теплопроводности пород для направлений, соответствующих направлениям главных осей теплопроводности, от температуры и давления (в интервале значений температуры и давления, характерных для рассматриваемой сланцевой толщи), и определяют зависимости объемной теплоёмкости пород от температуры и давления. В обоих случаях это можно сделать, например, по результатам проведения лабораторных измерений на образцах пород [20]. При отсутствии возможности проведения измерений на образцах пород при пластовой температуре и давлении можно воспользоваться опубликованными зависимостями для соответствующих литологических типов [1, 7, 14].

Кроме того, по результатам измерений на этапе 3 для каждого литологического типа пород устанавливают уравнения регрессии [5] между теплопроводностью пород и скоростью распространения продольной волны в породах для соответствующих направлений главных осей теплопроводности пород, а также устанавливают уравнения регрессии между объемной теплоёмкостью пород и скоростью распространения продольной волны в породах в одном из направлений главных осей теплопроводности. После этого для каждого литологического типа определяют теплопроводность пород при атмосферных давлении и температуре для направлений, соответствующих направлениям главных осей теплопроводности пород, и объемную теплоёмкость пород при атмосферных давлении и температуре в интервалах глубин сланцевой толщи с отсутствием данных по измерениям тепловых свойств пород и наличием данных по скоростям распространения продольных волн в породах, используя для этого установленные уравнения регрессии.

На этапе 5 результаты определения теплопроводности для направлений, соответствующих направлениям главных осей теплопроводности, и объемной теплоёмкости пород при атмосферных давлении и температуре, полученные на этапе 4, приводят к пластовым температуре и давлению, используя установленные на этапе 3 зависимости теплопроводности пород для соответствующего направления от температуры и давления и установленные на этапе 3 зависимости объемной теплоёмкости пород от температуры и давления. Необходимые значения пластовых температуры и давления определяют, например, методом термометрии скважин и пластоиспытания [17].

Пример определения теплопроводности и объемной теплоёмкости пород сланцевых толщ

Пример реализации предлагаемого способа представляет собой следующее. Объектом исследования являются породы сланцевой толщи одного из месторождений углеводородов в доманиковых отложениях Волго-Уральской нефтегазовой провинции (территория России). Имеются две скважины 1 и 2, пробуренные в данном месторождении. Для скважины 1 имеются образцы керна доманиковых отложений. Проводят макроописание керна образцов керна скважины 1 и устанавливают, что отложения доманикового горизонта сложены следующими литологическими типами: 1 - известняк, 2 - известняк глинистый, окремненный, 3 - аргиллит известковистый.

Затем для каждого литологического типа выбирают один образец керна и задают декартову систему координат OXYZ, в которой ось OZ перпендикулярна напластованию пород сланцевой толщи, при этом оси OX и OY лежат в плоскости, перпендикулярной оси OZ (т.е. в плоскости, параллельной напластованию пород сланцевой толщи). Далее, методом оптического сканирования на образцах пород керна каждого литологического типа проводят три измерения теплопроводности пород в направлениях осей системы координат OXYZ и три измерения теплопроводности пород в направлениях, которые не параллельны осям лабораторной системы координат и не параллельны между собой. Результаты каждого измерения записывают в виде уравнения с использованием известного (см. [11]) соотношения (1):

где λ - измеренное значение теплопроводности вдоль линии сканирования, λA -теплопроводность для направления главной оси теплопроводности А, λB -теплопроводность для направления главной оси теплопроводности B, λC - теплопроводность для направления главной оси теплопроводности C, α - угол между главной осью теплопроводности А и линией сканирования, β - угол между главной осью теплопроводности B и линией сканирования, γ - угол между главной осью теплопроводности C и линией сканирования. По результатам шести измерений вдоль шести разных линий сканирования составляют систему из шести уравнений типа (1). В каждом из шести уравнений методами аналитической геометрии выражают углы между линиями сканирования и главными осями теплопроводности пород (α, β, γ) через углы между главной осью теплопроводности А и осью OZ (az), между главной осью теплопроводности B и осью OX (ax) и между главной осью теплопроводности С и осью OY (ay). Далее, решают эту систему из шести уравнений (в нашем случае - методом Ньютона), в результате чего для каждого литологического типа определяют три главных значения тензора теплопроводности пород (λA, λB λC) и три угла - угол az между главной осью теплопроводности А и осью OZ, угол ax между главной осью теплопроводности B и осью OX и угол ay между главной осью теплопроводности С и осью OY. Результаты решения системы из шести уравнений для каждого литологического типа приведены в Таблице 1.

Таблица 1. Результаты определения главных значений тензора теплопроводности (λA, λB λC) и углов ax, ay и az.

Литологический тип λA, Вт/(м⋅К) λB, Вт/(м⋅К) λC, Вт/(м⋅К) az ax ay
Известняк 2,62 2,87 2,85 17 10 8
Известняк глинистый, окремненный 2,33 2,75 2,77 13 5 4
Аргиллит известковистый 1,62 2,11 2,13 10 5 3

Сопоставляя главные значения тензоров теплопроводности между собой, устанавливают, что для каждого литологического типа два главных значения λB и λС тензора теплопроводности приблизительно равны между собой, так как расхождения этих двух главных значений тензора теплопроводности находятся в пределах погрешности измерений теплопроводности пород, при этом эти два главных значения тензора теплопроводности пород значительно превосходят третье главное значение λA тензора теплопроводности пород. Такое соотношение главных значений тензора теплопроводности пород соответствует характерной для сланцевых толщ анизотропии тетрагонального типа, при котором два главных значения λB и λС тензора теплопроводности следует считать равными между собой и отличными от третьего главного значения λA тензора теплопроводности пород. Поэтому, по результатам измерений для каждого литологического типа следует считать, что теплопроводность пород для направлений главных осей теплопроводности пород λB и λС равны и составляют 2,86 Вт/(м⋅К) для известняка, 2,76 Вт/(м⋅К) для известняка глинистого, окременного, и 2,12 Вт/(м⋅К) для аргиллита известковистого.

После этого для всех образцов пород каждого литологического типа скважины 1 методом оптического сканирования при атмосферных давлении и температуре проводят измерения теплопроводности пород для установленных направлений главных осей теплопроводности A и B и одновременно проводят для образцов пород каждого литологического типа измерения объемной теплоемкости пород. При измерениях теплопроводности рассматривают две главных оси из трех, так как для каждого литологического типа, как показано выше, теплопроводность пород для направления главной оси теплопроводности С равна теплопроводности пород для направления главной оси теплопроводности B. Также в интервалах глубин, соответствующих интервалам отбора образцов керна доманиковых отложений, по данным акустического каротажа для каждого литологического типа определяют скорости распространения продольной волны в породах для направлений, соответствующих ранее установленным направлениям главных осей теплопроводности А и В.

По результатам измерений для каждого литологического типа пород устанавливают уравнение регрессии между теплопроводностью пород для направлений главных осей теплопроводности A и скоростью распространения продольной волны в породах для направления А, устанавливают уравнение регрессии между теплопроводностью пород для направления B и скоростью распространения продольной волны в породах для направления главной оси теплопроводности B, устанавливают уравнение регрессии между объемной теплоёмкостью пород и скоростью распространения продольной волны в породах для направления главной оси теплопроводности пород A и устанавливают уравнение регрессии между объемной теплоёмкостью пород и скоростью распространения продольной волны в породах для направления главной оси теплопроводности пород B. По причине того, что для каждого литологического типа коэффициент детерминации для уравнения регрессии между объемной теплоёмкостью пород и скоростью распространения продольной волны в породах для направления главной оси теплопроводности пород B больше коэффициента детерминации для уравнения регрессии между объемной теплоёмкостью пород и скоростью распространения продольной волны в породах для направления главной оси теплопроводности пород A, для последующего определения объемной теплоёмкости пород скважины 2 по данным о скорости распространения продольной волны в породах выбирают уравнение регрессии между объемной теплоёмкостью пород и скоростью распространения продольной волны в породах для направления главной оси теплопроводности пород B.

Полученные уравнения регрессии имеют следующий вид:

где λA - теплопроводность пород для направления главной оси теплопроводности A, λB - теплопроводность пород для направления главной оси теплопроводности B, единицы измерения теплопроводности - Вт·м-1⋅К-1, Сρ - объемная теплоёмкость пород, единица измерения объемной теплоёмкости - МДж⋅м-3⋅К-1, VpA - скорость распространения продольной волны для направления главной оси теплопроводности A, VpB - скорость распространения продольной волны для в направления главной оси теплопроводности B, единица измерения скоростей распространения продольной волны - км⋅с-1, a, b, c, d, e и f - регрессионные коэффициенты для уравнений (2), (3), (4), представленные в таблице 2.

Таблица 2. Коэффициенты регрессии для разных литологических типов в уравнениях (2) - (4)

Литологический тип a b R2 N c d R2 N e f R2 N
Известняк 0,29 0,80 0,71 56 0,26 0,82 0,65 49 0,11 1,48 0,72 151
Известняк глинистый, окремненный 0,24 0,71 0,65 34 0,23 0,74 0,53 30 0,09 1,49 0,46 56
Аргиллит известковистый 0,21 0,65 0,51 26 0,19 0,72 0,48 23 0,11 1,51 0,42 44

Согласно результатам проверки значимости коэффициентов детерминации по критерию Стьюдента при уровне доверительной вероятности 0,95, коэффициенты детерминации, приведенные в таблице 2 для каждого литологического типа, являются статистически значимыми.

Затем для скважины 2 в интервале доманиковых отложений проводят литологическое расчленение разреза по данным спектрометрического импульсного нейтронного гамма-каротажа. Также для скважины 2 устанавливают скорости распространения продольных волн в породах для направлений, соответствующих направлениям главных осей теплопроводности пород в скважине 2, т.е. для направления, составляющего установленный ранее угол az с направлением перпендикулярным напластованию сланцевой толщи, для направления, составляющего установленный ранее угол ay с направлением напластования пород сланцевой толщи, и для направления, составляющего установленный ранее угол ax с направлением напластования пород сланцевой толщи.

После этого по данным о скорости распространения продольной волны в породах для направлений, соответствующих направлениям главных осей теплопроводности A и B, и по уравнениям (2) - (4) для соответствующих литологических типов определяют теплопроводность пород для направлений, соответствующих направлениям главных осей теплопроводности пород A и B, при атмосферных давлении и температуре и определяют объемную теплоёмкость пород при атмосферных давлении и температуре. Как показано выше, для каждого литологического типа теплопроводность пород для направления главной оси теплопроводности С равна теплопроводности пород для направления главной оси теплопроводности B.

По данным температурного каротажа и по данным пластоиспытания в скважинах 1 и 2 устанавливают, что в интервале доманиковых отложений значения пластовых давлений варьируют в диапазоне от 52 до 55 МПа, а пластовые температуры варьируют в диапазоне от 105 до 120 С°. Для каждого литологического типа путём измерений на образцах скважины 1 определяют зависимости теплопроводности пород для направлений главных осей теплопроводности A и B (зависимость теплопроводности пород для направления главной оси теплопроводности С аналогична зависимости теплопроводности пород для направления главной оси теплопроводности B вследствие характерной для сланцевых толщ анизотропии тетрагонального типа) от температуры и давления и также определяют зависимости объемной теплоёмкости пород от температуры и давления. Полученные зависимости в диапазоне температур от 25 до 120 С° и в диапазоне давлений от 0,1 до 55 МПа описываются следующими уравнениями:

где λA - теплопроводность пород для направления главной оси теплопроводности A, λB - теплопроводность пород для направления главной оси теплопроводности B, единицы измерения теплопроводности - Вт⋅м-1⋅К-1, Сρ - объемная теплоёмкость пород, единицы измерения объемной теплоёмкости - МДж⋅м-3⋅К-1, T - температура, единицы измерения - градусы Цельсия, P - давление, единицы измерения - МПа, g, l, h, m, x, r, s, v, u - коэффициенты регрессии в уравнениях (5), (6) и (7). Значения коэффициентов регрессии g, l, h, m, x, r, s, v, u для каждого литологического типа представлены в таблице 3.

Таблица 3. Коэффициенты регрессии для разных литологических типов в уравнениях 5-7

Литотип Уравнение 5 Уравнение 6 Уравнение 7
g, 10-3 l, 10-3 h R2 N m, 10-3 x, 10-3 r R2 N s, 10-3 v, 10-3 u R2 N
Известняк -2,1 1,9 2,31 0,96 12 -1,9 1,7 2,27 0,96 11 -1,5 1,1 1,91 0,96 11
Известняк глинистый, окремненный -1,8 1.5 2,10 0,95 10 -1,6 1,3 2,01 0,95 11 -1,0 1,2 1,94 0,95 11
Аргиллит известковистый 1,5 1,2 1,93 0,97 11 -1,1 1,1 1,81 0,93 10 -1,2 1,4 2,01 0,93 10

После этого для каждого литологического типа приводят результаты определения теплопроводности для направлений, соответствующих направлениям главных осей теплопроводности A, B и С, при атмосферных давлении и температуре к пластовым температуре и давлению, используя для этого данные о температуре и давлении в интервалах глубин доманикового горизонта и установленные для соответствующего литологического типа зависимости (5) и (6).Также для каждого литологического типа приводят результаты определения объемной теплоёмкости пород при атмосферных давлении и температуре к пластовым температуре и давлению, используя для этого данные о температуре и давлении в интервалах глубин доманикового горизонта и установленную для соответствующего литологического типа зависимость (7).

Далее по скважине 2 в интервале доманиковых отложений рассчитывают температуропроводность пород при пластовых температуре и давлении для направлений, соответствующих направлениям главных осей теплопроводности A, B и С как отношение теплопроводности породы для соответствующего направления при пластовых температуре и давлении к объемной теплоёмкости породы при пластовых температуре и давлении.

Список литературы

1. Abdulagatova, Z. Effect of temperature and pressure on the thermal conductivity of sandstone / Abdulagatov, I. M., & Emirov, S. N. // International Journal of Rock Mechanics and Mining Sciences. - 2009. - №46 (6). P. 1055-1071.

2. Doveton, J.H. Fast matrix methods for the lithological interpretation of geophysical logs / Cable, H.W. // Comput. Geol. - 1979. - №3. P. 101-116.

3. Gu, Y. Using seismic data to estimate the spatial distribution of rock thermal conductivity at reservoir scale / Ruhaak, W., Bar, K., Sass, I. // Geothermics. - 2017. - №66. - P. 61-72.

4. Hornby B. Anisotropy correction for deviated-well sonic logs: Application to seismic well tie / Howie J., Ince D. // Geophysics. - 2003. - №68. - P. 464-471.

5. Kendall, M. The advanced theory of statistics / Stuart, A. New York: Hafner. - 1979. - 676 P.

6. Kim H., (2012) Anisotropy of elastic moduli, P-wave velocities, and thermal conductivities of Asan Gneiss, Boryeong Shale, and Yeoncheon Schist in Korea / Cho J.-W., Song I., Min K.-B. // Engineering Geology. - 2012. -148. -P. 68-77.

7. Kukkonen I.T., 1999. Temperature and pressure dependencies of thermal transport properties of rocks: implications for uncertainties in thermal lithosphere models and new laboratory measurements of high-grade rocks in the central Fennoscandian shield / Jokinen, J. and Seipold, U. // Surveys in Geophysics. - 1999. №20. - 33-59.

8. Leu, W. New thermal property data base of the Swiss Molasse Basin sedoments: Intergrating wireline logs, cores and cuttings / Rybach, L., Scharli, U., Megel, T., Keller, B. // Proceedings of European Geothermal Conference Baset. - 1999. - №2. - P. 213-219.

9. Lichtenecker K. The thermal conductivity of granular materials. // Physikalische Zc. - 1926. №27. - P.115-118.

10. Popov Y. Characterisation of rock thermal conductivity by high-resolution optical scanning / Pribnow D., Sas s J., Williams C., Burkhardt H. //Geothermics. - 1999, №28, P. 253-276.

11. Popov Y. ISRM Suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure / Beardsmore G., Clauser C., Roy S. // Rock Mechanics and Rock Engineering. - 2016. - №49 (10). - P. 4179-4207.

12. Rajeshwar K. Review - Thermophysical properties of oil shales / Nottenburg R., and Dubow J. // Journal of Materials Science. - 1979. -14. - P. 2025-2052.

13. Savre, W.C. Determination of a more accurate porosity and mineral composition in complex lithologies with the use of the sonic, neutron and density Surveys. J. Petrol. Tech. - 1963. - №15(9). - P. 945-959.

14. Schon, J.H. Physical properties of rocks: a workbook, Handbook of petroleum exploration and production. Elsevier. - 2011. - №8. - P. 481.

15. Serra, O. Fundamentals of Well-Log Interpretation-The Interpretation of Logging Data, Elsevier, 1986. - 423 P.

16. Боганик Г. Н. Сейсморазведка / Гурвич И.И. Тверь АИС, 2006. - 743 с.

17. Дьяконов Д.И. Общий курс геофизических исследований скважин / Леонтьев Е.И., Кузнецов Г.С. М.: Недра, 1984. - 432 с.

18. Пейтон Ч.Е. Сейсмическая стратиграфия Ч. 1, Ч. 2. М.: Изд. «Мир». - 1982. - 846 с.

19. Попов Е.Ю. Измерения тепловых свойств пород на стандартном керне как необходимый этап теплофизических исследований месторождений углеводородов / Ромушкевич Р.А., Попов Ю.А. // Известия высших учебных заведений. - 2017. -№2, с. 56-69.

20. Попов Ю.А. 2013. Новая аппаратурно-методическая база тепловой петрофизики как средство повышения эффективности добычи тяжелых нефтей / Чехонин Е.М., Паршин А.В., Попов Е.Ю., Миклашевский Д.Е. // Нефть. Газ. Новации. - 2013. - №4. С. 52-58.

21. Попов Ю.А. Исследования баженовской свиты с применением непрерывного профилирования тепловых свойств на керне/ Попов Е.Ю., Чехонин Е.М., Габова А.В., Ромушкевич Р.А., Спасенных М.Ю., Заграновская Д.Е. // Нефтяное хозяйство. - 2017. - №3. - с. 23-27.

22. Попов Ю.А. Повышение качества изучения анизотропии пород путем сочетания акустического каротажа и измерений теплопроводности на керне / Михальцева И.В., Чехонин Е.М., Попов Е.Ю., Ромушкевич Р.А., Калмыков Г.А. // Тезисы 17-й научно-практической конференции по вопросам геологоразведки и разработки месторождений нефти и газа «Геомодель 2015». - 2015. DOI: 10.3997/2214-4609.201413949

23. Христич Д.В. К вопросу об определении главных осей анизотропии материала // Известия Тульского государственного университета. Естественные науки. - 2014. - 2. - С. 206-213.

Способ определения тепловых свойств – теплопроводности и объемной теплоемкости – пород сланцевых толщ, в соответствии с которым определяют литологические типы пород в интервалах глубин сланцевой толщи, затем на образцах пород сланцевой толщи для каждого литологического типа определяют направления главных осей теплопроводности пород, после этого на образцах пород проводят измерения теплопроводности пород для направлений, соответствующих установленным направлениям главных осей теплопроводности пород, при атмосферных давлении и температуре, также проводят измерения объемной теплоёмкости пород при атмосферных давлении и температуре, определяют скорости распространения продольных волн в породах для направлений, соответствующих установленным направлениям главных осей теплопроводности пород, в интервалах глубин, соответствующих интервалам отбора образцов пород сланцевой толщи, затем по результатам измерений теплопроводности пород для направлений, соответствующих установленным направлениям главных осей теплопроводности пород, объемной теплоемкости пород и скорости распространения продольных волн в породах для направлений, соответствующих установленным направлениям главных осей теплопроводности пород, для каждого литологического типа пород устанавливают уравнения регрессии между теплопроводностью пород и скоростью распространения продольных волн в породах для соответствующих направлений главных осей теплопроводности пород, также устанавливают уравнения регрессии между объемной теплоёмкостью пород и скоростью распространения продольной волны в породах, после этого определяют теплопроводность пород при атмосферных давлении и температуре для направлений, соответствующих направлениям главных осей теплопроводности, и объемную теплоёмкость пород при атмосферных давлении и температуре в интервалах глубин сланцевой толщи с отсутствием результатов измерений тепловых свойств пород и с наличием данных по скоростям распространения продольных волн в породах, используя для этого установленные для литологических типов уравнения регрессии между теплопроводностью пород и скоростью распространения продольных волн в породах для соответствующих направлений главных осей теплопроводности пород, а также используя установленные для литологических типов уравнения регрессии между объемной теплоёмкостью пород и скоростью распространения продольных волн в породах, затем для каждого литологического типа определяют зависимости теплопроводности пород для направлений, соответствующих направлениям главных осей теплопроводности пород, от температуры и давления и определяют зависимости объемной теплоёмкости пород от температуры и давления, после этого для каждого литологического типа определяют теплопроводность пород для направлений, соответствующих направлениям главных осей теплопроводности пород, и объемную теплоёмкость пород при пластовых температуре и давлении, используя для этого установленные для литологических типов пород зависимости теплопроводности пород для направлений, соответствующих направлениям главных осей теплопроводности пород, от температуры и давления и зависимости объемной теплоёмкости пород от температуры и давления.
Источник поступления информации: Роспатент

Showing 1-10 of 33 items.
29.12.2017
№217.015.f586

Маркирующая добавка

Изобретение может быть использовано для установления подлинности или верификации взрывчатых веществ, ценных бумаг, дорогостоящего оборудования, ювелирных изделий. Маркирующая добавка в виде частиц сферической формы содержит магнитный компонент и маркирующий компонент при следующем соотношении,...
Тип: Изобретение
Номер охранного документа: 0002637334
Дата охранного документа: 04.12.2017
13.02.2018
№218.016.23f1

Способ нанесения гидрофобного и олеофобного покрытия на текстильный материал и текстильный материал с гидрофобным и олеофобным покрытием

Изобретение относится к способу нанесения гидрофобного и олеофобного покрытия на текстильный материал, включающему выдержку текстильного материала в растворе сополимера в сверхкритическом диоксиде углерода в реакторе высокого давления, характеризующемуся тем, что указанный раствор содержит...
Тип: Изобретение
Номер охранного документа: 0002642775
Дата охранного документа: 25.01.2018
10.05.2018
№218.016.4099

Способ получения тонких пленок на основе углеродных наноматериалов

Изобретение относится к нанотехнологии. Сначала готовят суспензию, содержащую этиленгликоль в качестве жидкой дисперсионной среды и углеродный наноматериал, например графен, оксид графена, восстановленный оксид графена, однослойные углеродные нанотрубки, двухслойные углеродные нанотрубки,...
Тип: Изобретение
Номер охранного документа: 0002648920
Дата охранного документа: 28.03.2018
29.05.2018
№218.016.575b

Способ определения содержания незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и к горным наукам, а именно к геокриологии, и позволяет определять содержание незамерзшей воды в различных минеральных и органогенных мерзлых грунтах, а также в мерзлых загрязненных породах, содержащих органические (нефть, нефтепродукты и др.) и солевые...
Тип: Изобретение
Номер охранного документа: 0002654832
Дата охранного документа: 22.05.2018
19.04.2019
№219.017.2b85

Способ получения высокомощного катодного материала на основе твердого раствора life1-x-ymnxcoypo4 со структурой оливина для литий-ионных аккумуляторов

Изобретение относится к области электродных материалов на основе сложных фосфатов переходных металлов и лития и может быть использовано для получения катодного активного материала для литий-ионных аккумуляторов и батарей на основе такого материала. Способ получения материала формулы LiFeMnCoPO,...
Тип: Изобретение
Номер охранного документа: 0002684895
Дата охранного документа: 16.04.2019
27.04.2019
№219.017.3ca9

Система виртуальной реальности на основе смартфона и наклонного зеркала

Изобретение относится к системам мобильной виртуальной реальности, в частности к системам мобильной виртуальной реальности, осуществляющим отслеживание положения пользователя с 6 степенями свободы с помощью камеры смартфона в качестве единственного устройства формирования изображения....
Тип: Изобретение
Номер охранного документа: 0002686029
Дата охранного документа: 23.04.2019
03.07.2019
№219.017.a418

Способ изготовления наночастиц оксидов марганца и аэрогелей на их основе и полученный таким способом аэрогель

Изобретение относится к синтезу наночастиц оксидов марганца и аэрогелей оксидов марганца. Способ включает растворение металлорганического прекурсора марганца в сверхкритическом диоксиде углерода в реакторе высокого давления с добавлением в качестве окислителя чистого кислорода. Затем проводят...
Тип: Изобретение
Номер охранного документа: 0002693200
Дата охранного документа: 01.07.2019
05.07.2019
№219.017.a665

Многоэлектродная гармонизированная ионная ловушка кингдона со слившимися внутренними электродами

Изобретение относится к области масс-спектрометрии. Ионная ловушка содержит по меньшей мере два внешних электрода, вытянутых вдоль продольной оси ловушки, и две пары внутренних электродов, вытянутых вдоль продольной оси ловушки и расположенных таким образом, что каждый электрод из одной...
Тип: Изобретение
Номер охранного документа: 0002693570
Дата охранного документа: 03.07.2019
10.07.2019
№219.017.a999

Способ добычи природного газа из газогидратной залежи

Изобретение относится к газовой промышленности, в частности, к разработке газогидратных месторождений. Способ добычи природного газа из газогидратной залежи заключается в том, что сооружают скважину на газопроницаемый газогидратный пласт, вскрывают этот пласт и периодически проводят закачку в...
Тип: Изобретение
Номер охранного документа: 0002693983
Дата охранного документа: 08.07.2019
11.07.2019
№219.017.b2bc

Тонкопленочный гибридный фотоэлектрический преобразователь и способ его изготовления

Настоящее изобретение относится к полупроводниковым гибридным структурам для преобразования энергии светового излучения в электрическую энергию и может быть использовано при создании альтернативных источников энергии. Согласно изобретению предложены тонкопленочные гибридные фотоэлектрические...
Тип: Изобретение
Номер охранного документа: 0002694113
Дата охранного документа: 09.07.2019
Showing 1-8 of 8 items.
10.09.2013
№216.012.68b9

Способ определения характеристик порового пространства и теплопроводности матрицы пористых материалов

Изобретение относится к области изучения физических свойств пористых неоднородных материалов и может быть использовано для определения характеристик порового пространства и теплопроводности образцов горных пород и минералов. Для определения характеристик порового пространства и теплопроводности...
Тип: Изобретение
Номер охранного документа: 0002492456
Дата охранного документа: 10.09.2013
20.12.2014
№216.013.108a

Способ и устройство для определения теплопроводности и температуропроводности неоднородного материала

Изобретение относится к области изучения физических свойств неоднородных материалов и может быть использовано для анализа теплопроводности, температуропроводности, объемной теплоемкости различных материалов. Для определения теплопроводности и температуропроводности неоднородного материала...
Тип: Изобретение
Номер охранного документа: 0002535657
Дата охранного документа: 20.12.2014
20.04.2015
№216.013.420e

Способ для определения теплопроводности и температуропроводности материалов

Изобретение относится к способам определение теплопроводности и температуропроводности материалов. В соответствии с предлагаемым способом регистрируют электрические сигналы, соответствующие начальным температурам поверхностей исследуемого образца материала по меньшей мере двух эталонных...
Тип: Изобретение
Номер охранного документа: 0002548408
Дата охранного документа: 20.04.2015
25.08.2017
№217.015.9cc0

Способ определения температурного коэффициента линейного расширения материала и устройство для его осуществления

Изобретение относится к области исследования механических и тепловых свойств материалов. Способ определения температурного коэффициента линейного расширения материала предусматривает перемещение относительно друг друга образца исследуемого материала и источника нагрева поверхности образца. В...
Тип: Изобретение
Номер охранного документа: 0002610550
Дата охранного документа: 13.02.2017
29.12.2017
№217.015.f265

Способ определения механических свойств породы пласта-коллектора

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают...
Тип: Изобретение
Номер охранного документа: 0002636821
Дата охранного документа: 28.11.2017
31.01.2020
№220.017.fb7b

Способ определения теплопроводности частиц твердых материалов при повышенных температурах

Изобретение относится к области исследования тепловых свойств частиц твердых материалов при повышенных температурах. При осуществлении способа измельчают частицы твердого материала, изготавливают смесь, смешивая в заданной пропорции измельченные частицы твердого материала с...
Тип: Изобретение
Номер охранного документа: 0002712282
Дата охранного документа: 28.01.2020
06.02.2020
№220.018.000f

Способ определения тепловых свойств частиц твердых материалов

Изобретение относится к области исследования тепловых свойств горных пород в неконсолидированном состоянии. При осуществлении способа измельчают частицы твердого материала, изготавливают смесь, смешивая в заданной пропорции измельченные частицы твердого материала с материалом-заполнителем с...
Тип: Изобретение
Номер охранного документа: 0002713184
Дата охранного документа: 04.02.2020
14.05.2020
№220.018.1c46

Способ определения общего содержания органического вещества в породах сланцевых толщ, обогащенных углеводородами (варианты)

Изобретение относится к области исследований свойств пород сланцевых толщ, обогащенных углеводородами, а именно – исследований общего содержания органического вещества. Изобретение касается способа определения общего содержания органического вещества в породах сланцевых толщ, обогащенных...
Тип: Изобретение
Номер охранного документа: 0002720582
Дата охранного документа: 12.05.2020
+ добавить свой РИД