×
22.12.2019
219.017.f112

ЭЛЕКТРОННО-ЛУЧЕВАЯ ПУШКА С ПОВЫШЕННЫМ РЕСУРСОМ ЭКСПЛУАТАЦИИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к электронике и электротехнике в области термообработки металлов с целью их вакуумного плавления, испарения, наплавления, сварки, резки, для аддитивных технологий. Электронно-лучевая пушка содержит катодный каскад в корпусе с собирающей линзой, анод и лучевод с фокусирующими и отклоняющими линзами, тепловые изоляторы, токоподводы и систему водоохлаждения. Катод имеет разделение эмитирующей поверхности и ионопоглотительного углубления за счет цилиндрической формы углубления. Нагреватель катода выполнен в виде нагревательной спирали, обвитой вокруг катода и соединенной с катодом последовательно. Сечение катода со стороны высоковольтного питания заужено. Технический результат - увеличение ресурса эксплуатации ЭЛП, возможность непрерывного многократного повторения технологического процесса. Вся партия выходной продукции, выпущенная в одинаковых условиях и с одинаковыми режимами, имеет минимальные разбросы параметров. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к электронике и электротехнике в области термообработки металлов с целью их вакуумного плавления, испарения, наплавления, сварки, резки, для аддитивных технологий, и может быть использовано в автоматизированных технологических процессах для авиационно-космического, судо- и автомобилестроения, железнодорожного транспорта, двигателе- и машиностроения.

Известные конструкции электронно-лучевых пушек (ЭЛП) имеют ресурс эксплуатации до 50 часов. Между тем, использование ЭЛП в технологических установках, как правило, сопровождается вакуумированием рабочей камеры и самой ЭЛП. Это длительный подготовительный процесс, который существенно расходует ресурс ЭЛП. Таким образом, ресурс ЭЛП является неприемлемо низким при высокой цене самой ЭЛП и является серьезным ограничением для реализации современных технологий термообработки металлов. Невозможность многократного повторения технологических процессов без изменения условий обеспечения является причиной разброса параметров и качества технологической продукции. В связи с этим ресурс эксплуатации ЭЛП наряду с ее функциональными параметрами является параметром, определяющим качество ЭЛП в целом. Основным элементом, определяющим надежность и ресурс ЭЛП, является катод. Причиной его износа является поток встречных положительных ионов, имеющих место в корпусе ЭЛП из-за недостаточного вакуумирования, а также появляющихся в технологическом процессе термообработки металлов и интенсивного нагрева элементов конструкции ЭЛП. Материал, конструкция, условия и режимы работы катода определяют ресурс ЭЛП.

Изобретение RU 2314591 C1 10.01.2008 предлагает способы, компенсирующие деструктивные изменения катодного каскада в процессе его разрушения и повышающие ресурс эксплуатации и надежность, однако они не касаются явных средств борьбы с разрушительным потоком обратных ионов.

Наиболее близким к настоящему изобретению является изобретения RU 2314593 С2 10.01.2007. В зависимости от назначения ЭЛП катод выполняется с плоской эмитирующей поверхностью, либо в нем создается углубление для локализации приема бомбардирующих его положительных ионов. Недостатком такого способа является отсутствие четкой границы между эмитирующими поверхностями катода и областью поглощения ионов. Это ведет к износу катода и изменению его эмиссионных способностей в процессе эксплуатации. В результате даже одна партия изделий, полученных в ходе технологического процесса, может иметь значительный разброс параметров.

Еще один недостаток, снижающий надежность и ресурс эксплуатации ЭЛП, связан с косвенным нагревателем катода, выполненным из вольфрамовой проволоки. Разность потенциалов между катодом и нагревателем около 2 кВ. В изолированной камере нагревателя при температуре более 2300°С возникает локальный поток положительных ионов, обусловленный наличием остаточных газов и газовыделений, сопровождающих разрушение катода в процессе его эксплуатации. Спираль нагревателя не содержит средств защиты от бомбардировки ионами, которая пропорциональна высокому напряжению между катодом и нагревателем.

Задачей, на решение которой направлено предлагаемое изобретение, является разработка ЭЛП с существенно повышенным ресурсом эксплуатации за счет конструктивных особенностей катода и его нагревателя.

Поставленная задача решается тем, что электронно-лучевая пушка с повышенным ресурсом эксплуатации содержит катодный каскад в корпусе с собирающей линзой, анод и лучевод с фокусирующими и отклоняющими линзами, тепловые изоляторы, токоподводы и систему водоохлаждения, причем катод имеет разделение эмитирующей поверхности и ионо-поглотительного углубления за счет цилиндрической формы углубления, нагреватель катода выполнен в виде нагревательной спирали, обвитой вокруг катода, и соединенной с катодом последовательно, сечение катода со стороны высоковольтного питания заужено.

На фиг. 1 показан общий вид электронно-лучевой пушки.

На фиг. 2 показан катодный каскад.

ЭЛП предназначена для создания электронного пучка и управления им. Основными модулями ЭЛП являются высоковольтный ввод 1, катодный каскад 2, анод 3 и лучевод 4.

В корпус высоковольтного ввода 1, внутренняя поверхность которого выполнена из электроизоляционного материала 5, заключен опорный изолятор. Опорный изолятор конструктивно объединяет в себе изолятор 6 и проходящий через него к катодному узлу 2 коаксиальный водоохлаждаемый токоподвод 7.

С внешней стороны коаксиального водоохлаждаемого токоподвода 7 (со стороны атмосферы) на нем установлены клеммы 8 для подсоединения электрических кабелей высокого напряжения и штуцеры 9 для подачи охлаждающей воды. Охлаждение коаксиального водоохлаждаемого токоподвода 7 устроено по принципу трубки Фильда. С внутренней стороны (со стороны вакуума), к коаксиальному водоохлаждаемому токоподводу 7, крепится тепловой экран 10, выполненный из магнитомягкой стали предохраняющий изолятор 6 от радиационного излучения катодного узла 2.

Катодный каскад 2 (фиг. 2) установлен в корпусе 11 с водоохлаждением 12. Катод крепится к внутренней части коаксиального водоохлаждаемого токоподвода 7 опорного изолятора. В тепловом экране 10 закреплен электрод 13, проходящий через тепловую изоляцию 14 и подающий питание на вольфрамовую спираль 15 нагрева катода 16.

Нагрев катода осуществляется радиационным способом вольфрамовой спиралью 15. Катод и вольфрамовая спираль окружены многослойной экранной тепловой изоляцией 14.

Корпус 11 катодного узла, выполненный из немагнитной нержавеющей стали с водяной рубашкой охлаждения, установлен на анод 3. В корпусе 11 имеется патрубок дифференциальной откачки 17 катодного узла 2.

С внешней стороны корпус 11 катодного узла 2 охвачен катушкой собирающей электромагнитной линзы 18, а внешний кожух 19, изготовленный из магнитомягкой стали, является обратным магнитопроводом собирающей линзы и одновременно исполняет роль конструктивного элемента, через который производится вакуумное уплотнение изолятора 6 с корпусом 11 и корпуса с анодом 3.

Анод 3 установлен на лучевод 4, который выполнен из немагнитной нержавеющей стали с водоохлаждением 20. На наружной поверхности лучевода базируются две фокусирующие 21 и отклоняющая 22 электромагнитные линзы.

Анод 3 выполнен из магнитомягкой стали и имеет водяное охлаждение 23. Со стороны, обращенной к катоду, он имеет форму конуса с углом Пирса. С обратной стороны внутренняя часть анода 3 выполнена тоже конической для обеспечения свободного прохода расширяющегося электронного пучка. Анод 3 является полюсом как электростатической, так и магнитной линз. Электростатическое поле образуется за счет разности потенциалов между катодом и анодом. Благодаря конической поверхности с углом Пирса градиент электростатического поля постоянен, поэтому эмиттанс получаемого электронного пучка минимальный. Магнитное поле возбуждается катушкой собирающей линзы 18 и замыкается по контуру анод 3 - внешний кожух (обратный магнитопровод) 19 - тепловой экран (второй полюс магнитной линзы) 10 - анод.

Водоохлаждение ЭЛП разделено на два контура. Первый контур со штуцерами 9 охлаждает коаксиальный водоохлаждаемый токоподвод 7, находящийся под высоким напряжением, а второй - лучевод 4 (водоохлаждение 20), анод 3 (водоохлаждение 23) и корпус 11 катодного узла 1 (водоохлаждение 12), находящиеся под потенциалом земли. Лучевод 4, анод 3 и корпус катода 11 по охлаждению соединены последовательно.

Электронно-лучевая пушка работает следующим образом.

Катод 16 нагревается до температуры, при которой ток эмиссии с его поверхности 24, обращенной к аноду 3, достигает необходимой величины. Электроны, эмитированные с поверхности, ускоряются потенциалом катода и фокусируются в отверстие анода как электростатическим, так и магнитным полями. Конфигурация полей такова, что эмиттанс пучка минимален. Непосредственно за отверстием анода пучок проходит кроссовер 25 и начинает расширяться. Первая фокусирующая линза 21 преобразует расширяющийся пучок в параллельный, а при помощи второй устанавливается необходимый по технологическому процессу диаметр пучка на поверхности изделия. При такой фокусировке искривление портрета пучка на фазовой плоскости и, соответственно, аберрации, вносимые в пучок фокусирующей системой минимальны. Отклоняющая линза 22 состоит из двух независимых блоков катушек, создающих взаимно перпендикулярные магнитные поля 26, перпендикулярные оси пучка. Величина магнитного поля, создаваемого каждым блоком катушек в апертуре линзы постоянна. Катушки базируются на круговом магнитопроводе и имеют разное количество витков. Количество витков в катушках аппроксимируют синусоидальный закон распределения плотности тока по углу для создания магнитного поля по оси Х и косинусоидальный вдоль оси Y.

Ресурс эксплуатации ЭЛП определяется ресурсом эксплуатации катода. Износ катода определятся двумя процессами:

- распыление металла бомбардировкой потоком обратных ионов, которые исходят из пучковой плазмы, ускоряются до энергии пропорциональной потенциалу катода и попадают на его поверхность;

- испарение металла с нагретых до высокой температуры поверхностей деталей катода.

Детали, определяющие ресурс эксплуатации катода, это нить накала и активная поверхность катода, участвующая в получении тока эмиссии.

Нить накала выполнена из вольфрама. Диаметр и длина нити определяются тепловым расчетом и приняты такими, что при температуре поверхности катода, с которой идет эмиссия электронов, 2200°С температура поверхности нити не превышает 2300°С.

Распыление нити бомбардировкой потоком обратных ионов исключено, так как она надежно защищена тепловой защитой и самим катодом.

Время, за которое диаметр нити уменьшится на 0,1 мм (а радиус, - на 0,005 см) составит

где ΔR уменьшение радиуса нити; F=4,28-10-9 г/см2с - скорость испарения вольфрама при температуре 2327°С; γ=19,3 г/см3 - удельный вес вольфрама.

Катод выполнен из ниобия. Рабочая поверхность катода, с которой идет эмиссия электронов, нагревается до температуры 2200°С.

Распыление рабочей поверхности бомбардировкой потоком обратных ионов не происходит, так как ионы фокусируются собирающей линзой, проходят через центральное отверстие в катоде и попадают на его дно. Поверхность дна отверстия в эмиссии электронов для получения пучка не участвует. Конструкция катода такова, что его распыление на дне центрального отверстия на ресурс эксплуатации катода в целом не сказывается.

Время, за которое длина катода уменьшится на 4 мм (на 0,4 см) составит

где ΔL уменьшение длины катода; V=1,87⋅10-7 г/см2с - скорость испарения ниобия при температуре 2227°С; γ=8,57 г/см3 - удельный вес ниобия.

На основании приведенных расчетов и опыта эксплуатации ресурс эксплуатации катода и, соответственно, ЭЛП определен не менее 500 час.

Отличие настоящего изобретения в том, что эмитирующая поверхность 24 катода 16 и ионо-поглотительное углубление 27 радикально разделены за счет формы углубления: не конусообразной, а цилиндрической. Облако эмитированных электронов, скопившихся в ионо-поглотительном углублении, создает потенциальный барьер для дальнейшей эмиссии электронов со дна ионо-поглотительного углубления, и в то же время является четкой мишенью для обратных ионов, устремленных от анода к катоду. В результате эмитирующая поверхность катода оказывается надежно защищенной от разрушительной бомбардировки обратными ионами.

Еще одно отличие заключается в конструкции нагревателя катода, который выполняют в виде нагревательной спирали, обвитой вокруг катода, и соединенной с катодом последовательно. Сечение катода со стороны высоковольтного питания зауживают для направленного теплового воздействия на эмитирующую поверхность катода. Такая конструкция исключает наличие высоковольтного напряжения между нагревателем и катодом, а, следовательно, потоки обратных ионов, бомбардирующих обмотку нагревателя катода, снижающих ее ресурс эксплуатации и надежность.

Технический результат настоящего изобретения, заключается в том, что ресурс эксплуатации ЭЛП увеличивается по сравнению со среднестатистическим ресурсом аналогичных ЭЛП до 10 раз. Это радикально изменяет эксплуатационные возможности ЭЛП в технологических процессах термообработки металлов в вакууме, поскольку становится возможным непрерывное многократное повторение технологического процесса. Вся партия выходной продукции, выпущенная в одинаковых условиях и с одинаковыми режимами, имеет минимальные разбросы параметров.

Описанный способ увеличения ресурса эксплуатации и надежности ЭЛП аппаратно и программно реализован и испытан с положительным результатом в ПАО «Электромеханика», г. Ржева, Тверской обл. РФ.

Электронно-лучевая пушка, содержащая катодный каскад в корпусе с собирающей линзой, анод и лучевод с фокусирующими и отклоняющими линзами, тепловые изоляторы, токоподводы и систему водоохлаждения, отличающаяся тем, что катод имеет разделение эмитирующей поверхности и ионопоглотительного углубления за счет цилиндрической формы углубления, нагреватель катода выполнен в виде нагревательной спирали, обвитой вокруг катода и соединенной с катодом последовательно, сечение катода со стороны высоковольтного питания заужено.
ЭЛЕКТРОННО-ЛУЧЕВАЯ ПУШКА С ПОВЫШЕННЫМ РЕСУРСОМ ЭКСПЛУАТАЦИИ
ЭЛЕКТРОННО-ЛУЧЕВАЯ ПУШКА С ПОВЫШЕННЫМ РЕСУРСОМ ЭКСПЛУАТАЦИИ
ЭЛЕКТРОННО-ЛУЧЕВАЯ ПУШКА С ПОВЫШЕННЫМ РЕСУРСОМ ЭКСПЛУАТАЦИИ
Источник поступления информации: Роспатент

Showing 1-5 of 5 items.
25.08.2017
№217.015.b725

Электродуговой плазмотрон

Изобретение относится к области плазменной техники. Предложен электродуговой плазмотрон. Электродуговой плазмотрон содержит корпус, в котором соосно установлены анод, катод и изоляционная втулка с отверстиями. Проточная часть анода выполнена в виде канала переменного поперечного сечения,...
Тип: Изобретение
Номер охранного документа: 0002614533
Дата охранного документа: 28.03.2017
20.01.2018
№218.016.0ed5

Способ измерения зазора в плазменной струе в производстве металлических порошков и гранул

Изобретение относится к области плазменной техники. Предложен способ измерения зазора в плазменной струе между плазмотроном и заготовкой в производстве металлических порошков и гранул. В заявленном способе измерения зазора в плазменной струе между плазмотроном и заготовкой в производстве...
Тип: Изобретение
Номер охранного документа: 0002633158
Дата охранного документа: 11.10.2017
10.05.2018
№218.016.389c

Электродуговой плазмотрон

Изобретение относится к области плазменной техники. . Электродуговой плазмотрон имеет корпус, в котором соосно установлены изолированные друг от друга водоохлаждаемые электроды - анод и катод. Между ними находится узел ввода плазмообразующего газа. Канал анода состоит из конфузора и диффузора,...
Тип: Изобретение
Номер охранного документа: 0002646858
Дата охранного документа: 12.03.2018
25.06.2018
№218.016.671e

Способ намотки цилиндрических катушек с произвольным шагом из полосы прямоугольного сечения на ребро

Изобретение относится к электротехнике. Технический результат состоит в снижении трудоемкости изготовления и повышении качества. Полосу прямоугольного сечения шириной и высотой b навивают на вращающуюся цилиндрическую оправку. На поверхности оправки выполнен винтовой канал в виде прямоугольной...
Тип: Изобретение
Номер охранного документа: 0002658294
Дата охранного документа: 20.06.2018
09.08.2018
№218.016.79e2

Вакуумная индукционная плавильно-заливочная установка

Изобретение относится к области металлургии. Вакуумная индукционная плавильно-заливочная установка для получения отливок с направленной и монокристаллической структурой содержит камеру плавильную со сферической крышкой, шлюзовую камеру, блок откатной и охлаждаемый медный подъемный стол. Камера...
Тип: Изобретение
Номер охранного документа: 0002663025
Дата охранного документа: 01.08.2018
Showing 1-10 of 22 items.
27.03.2013
№216.012.3088

Конфета

Изобретение относится к кондитерской пищевой промышленности и может быть использовано при производстве кондитерских изделий. Конфета представляет собой корпус, состоящий из оболочки, выполненной из молочной тянущейся массы, содержащей патоку, жировой компонент - заменитель молочного жира,...
Тип: Изобретение
Номер охранного документа: 0002477962
Дата охранного документа: 27.03.2013
10.11.2013
№216.012.7eee

Холодильно-технологический комплекс для предварительного охлаждения и временного хранения рыбы

Установка для производства бинарного льда содержит замкнутый контур хладагента, включающий последовательно соединенные трубопроводом первый компрессор, маслоотделитель, конденсатор, ресивер, отделитель жидкости, первый электромагнитный клапан, четыре параллельные линии, каждая из которых...
Тип: Изобретение
Номер охранного документа: 0002498167
Дата охранного документа: 10.11.2013
10.04.2014
№216.012.b1f8

Способ производства сбивной кондитерской массы

Изобретение относится к кондитерской промышленности и может быть использовано при производстве сбивных масс для кондитерских изделий. Способ предусматривает уваривание агаросахаропаточного сиропа, приготовленного смешением агара, предварительно замоченного в воде, с сахаром и патокой, его...
Тип: Изобретение
Номер охранного документа: 0002511276
Дата охранного документа: 10.04.2014
20.07.2015
№216.013.6413

Шоколадная конфета типа "ассорти"

Изобретение относится к кондитерской промышленности. Шоколадная конфета типа «Ассорти» представляет собой корпус, состоящий из оболочки, выполненной из шоколадной глазури, и расположенной в ней начинки, выполненной из конфетных масс в виде двух слоев. При этом шоколадная глазурь дополнительно...
Тип: Изобретение
Номер охранного документа: 0002557166
Дата охранного документа: 20.07.2015
10.10.2015
№216.013.81d9

Кондитерское изделие "ломтишка"

Изобретение относится к пищевой промышленности, в частности к кондитерской. Кондитерское изделие включает корпус, выполненный из слоев, изготовленных из бисквитного полуфабриката, состоящего из муки пшеничной в/с, сахара-песка, меланжа, масла растительного, сухого обезжиренного молока,...
Тип: Изобретение
Номер охранного документа: 0002564838
Дата охранного документа: 10.10.2015
27.02.2016
№216.014.be71

Агрегат высокого давления для очистки поверхностей металлических изделий от керамических остатков литейной формы

Изобретение относится к литейному производству. Агрегат высокого давления для очистки поверхностей металлических изделий от керамических остатков литейной формы содержит контейнер 1 с охлаждаемыми стенками 2 и закрытый с торцов пробками 6 и 7, рабочую камеру 14, снабженную нагревателем 13 и...
Тип: Изобретение
Номер охранного документа: 0002576276
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c44b

Устройство для получения титановых гранул

Изобретение относится к получению титановых гранул. Устройство содержит рабочую камеру, выполненную с возможностью заполнения ее инертным рабочим газом, плазмотрон для плавления вращающейся заготовки с обеспечением центробежного распыления капель расплавленного материала, компрессор с...
Тип: Изобретение
Номер охранного документа: 0002574906
Дата охранного документа: 10.02.2016
25.08.2017
№217.015.b725

Электродуговой плазмотрон

Изобретение относится к области плазменной техники. Предложен электродуговой плазмотрон. Электродуговой плазмотрон содержит корпус, в котором соосно установлены анод, катод и изоляционная втулка с отверстиями. Проточная часть анода выполнена в виде канала переменного поперечного сечения,...
Тип: Изобретение
Номер охранного документа: 0002614533
Дата охранного документа: 28.03.2017
26.08.2017
№217.015.e34e

Способ нанесения износостойкого железоникелевого покрытия на прецизионные детали из низколегированных сталей

Изобретение относится к области нанесения металлических покрытий и может быть использовано для получения износостойких покрытий при восстановлении и упрочнении прецизионных деталей из низколегированных сталей дорожно-строительных, почвообрабатывающих, сельскохозяйственных, лесозаготовительных...
Тип: Изобретение
Номер охранного документа: 0002626126
Дата охранного документа: 21.07.2017
19.01.2018
№218.015.ff74

Подводное судно для обслуживания подводных добычных комплексов на арктическом шельфе и других подводно-технических работ

Изобретение относится к области судостроения, в частности к подводным судам для подводно-технических работ. Предложено подводное судно для обслуживания подводных добычных комплексов на арктическом шельфе и других подводно-технических работ, выполненное в виде разделенной на отсеки двухкорпусной...
Тип: Изобретение
Номер охранного документа: 0002629625
Дата охранного документа: 30.08.2017
+ добавить свой РИД