×
19.12.2019
219.017.eefd

РЕГЕНЕРАЦИЯ СОЛЯНОКИСЛОГО МЕДНО-ХЛОРИДНОГО РАСТВОРА ТРАВЛЕНИЯ МЕДИ МЕТОДОМ МЕМБРАННОГО ЭЛЕКТРОЛИЗА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002709305
Дата охранного документа
17.12.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к электрохимии. Для электрохимической регенерации методом мембранного электролиза солянокислого медно-хлоридного или солянокислого медно-аммонийно-хлоридного раствора травления меди в катодном пространстве, отделенном катионообменной мембраной, мембранного электролизера, где находится раствор травления меди, проводят катодный процесс электрохимического восстановления ионов меди до металлической меди. В анодном пространстве находится раствор серной кислоты с нерастворимым анодом. Процесс электрохимического восстановления ионов меди до металлической меди осуществляют либо последовательной обработкой раствора травления меди на двух катодах, расположенных в катодном пространстве одного мембранного электролизера: двух- или трехкамерного, либо обработкой раствора травления меди на катоде в катодном пространстве последовательно в двух мембранных электролизерах: двух- или трехкамерных. В двухкамерном электролизере концентрация серной кислоты в анодном пространстве равна 1-3 н, нерастворимый анод - диоксид свинца на титановой подложке, i=1-25 А/дм. В трехкамерном электролизере с двумя катионообменными мембранами концентрация серной кислоты в среднем и анодном пространстве равна 1-3 н, нерастворимый анод - платинированный титан или ниобий, i=5-10 А/дм. Процесс электрохимического восстановления ионов меди проводят последовательно на двух катодах из титана или графита при i=1-15 А/дм. После снижения в растворе травления меди суммарной концентрации ионов меди до значений, соответствующих свежему раствору травления меди, ионы одновалентной меди окисляются кислородом воздуха до ионов двухвалентной меди. 1 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к способу регенерации (восстановления работоспособности) солянокислого медно-хлоридного раствора травления меди, в том числе с возможным содержанием хлорида аммония, методом мембранного электролиза. Использование: в производстве печатных плат.

Предлагаемый способ позволяет регенерировать солянокислый медно-хлоридный раствор травления меди, который может содержать дополнительный компонент - хлорид аммония.

Цель изобретения: разработать способ регенерации солянокислого медно-хлоридного раствора травления меди. Желательно, чтобы предложенный способ регенерации существенно не увеличивал объем исходного раствора. Способ должен обеспечивать высокую скорость регенерации часто используемых в промышленности солянокислых медно-хлоридных растворов травления меди, как содержащих, так и не содержащих в качестве дополнительного компонента хлористый аммоний.

Процесс травления металлической меди в медно-хлоридном растворе травления меди заключается в следующем. Раствор, содержащий двухлористую медь и соляную кислоту с или без добавления хлористого аммония взаимодействует с металлической медью. При протекании реакции растворения меди концентрация ионов двухвалентной меди уменьшается, а концентрация ионов, содержащих одновалентную медь, увеличивается. В процессе травления суммарная концентрация ионов одно- и двухвалентной меди увеличивается. Процесс травления меди замедляется, когда концентрация ионов двухвалентной меди уменьшается. Для восстановления работоспособности раствора травления необходимо восстановить концентрацию ионов двухвалентной меди. Для этого, в наиболее простом случае, через раствор барботируют воздух, при этом ионы одновалентной меди окисляются кислородом воздуха до ионов двухвалентной меди. По мере эксплуатации раствора, с учетом его регенерации кислородом воздуха, концентрация ионов двухвалентной меди достигает значений, при которых скорость травления меди в таком растворе снижается. Это происходит из-за того, что концентрация двухлористой меди приближается к пределу растворимости, а также из-за увеличения вязкости раствора, что приводит к снижению скорости отвода продуктов реакции от места их образования. Такие отработанные растворы, содержащие высокую концентрацию двухлористой меди, необходимо регенерировать.

Необходимым условием регенерации солянокислого медно-хлоридного раствора травления меди является уменьшение суммарной концентрации ионов меди.

Из уровня техники известны различные способы регенерации подобных растворов, в том числе и методом мембранного электролиза. Известен способ уменьшения суммарной концентрации ионов одно- и двухвалентной меди с помощью электролиза с использованием двух- и трехкамерного мембранного электролизера с катионообменной мембраной, в котором обрабатываемый раствор помещается в католит и среднее пространство, а в анолит помещается раствор серной кислоты и нерастворимый анод из платинированного ниобия [1], [2], [3]. Также в [1] и [2] изучалась возможность восстановления работоспособности раствора за счет окисления ионов одновалентной меди на нерастворимом аноде (графит, платинированный ниобий) до ионов двухвалентной меди при помещении обрабатываемого раствора в анодную камеру двухкамерного мембранного электролизера с катионообменной мембраной, где в католит также заливается обрабатываемый раствор.

Известен также способ регенерации медно-хлоридного травильного раствора [4], в котором регенерируемый раствор обрабатывается сначала в катодной, а затем в анодной камере. Недостатки способа [4]:

1. Заявленное авторами [4] на стр. 5 утверждение о том, что: "Задачей предлагаемого изобретения является устранение выделения хлора на аноде", а также заявленное в [4] на стр. 6 утверждение о том, что: "Предлагаемый способ устраняет возможность образования газообразного хлора на аноде" сомнительны, поскольку в [2] и [3] в подобных системах четко определен выход по току токсичного газообразного хлора (1-2%) на нерастворимом аноде при использовании катионообменной мембраны. Из данных [2] и [3] следует, что даже перфторированные катионообменные мембраны не обладают идеальной (100%) селективностью по отношению процессу миграции через них хлорид-ионов.

2. Неидеальная селективность катионообменных мембран приводит к доступу хлорид-ионов к нерастворимому аноду из платинированного титана. В этом случае время работы нерастворимого анода в таких условиях (раствор серной кислоты с примесью хлорид-ионов) ограничен, как показали результаты работы [5], [6]. Указанная в [4] анодная плотность тока, iан, величиной в 5 А/дм2 способствует этому. Ограниченное время работы платинированного анода приводит к прекращению процесса регенерации медно-хлоридного травильного раствора по способу, указанному авторами [4]. Для получения высокой абсолютной скорости регенерации раствора травления меди при низкой iан=1-5 А/дм2 требуется использование нерастворимых анодов с большой рабочей площадью поверхности из платины, которые дороги, поскольку большая часть их стоимости - это стоимость драгоценного металла - платины.

3. В способе [4] в катодном пространстве находится единственный катод (иначе не сказано) и катодная плотность тока, iк, (геометрическая, габаритная) на нем равна 2-10 А/дм2. При использовании электрической схемы подключения одного катода одновременно к отрицательной клемме двух источников питания, iк после фиксации тока от первого источника питания не может быть снижена при подключении второго источника питания; она может быть только увеличена, что является недостатком.

4. Простой расчет, без учета малой доли тока, переносимой ионами двухвалентной меди из анолита через катионообменную мембрану в католит, показывает, что в примере 3, приведенном в [4], 70,9% от всего количества электричества, прошедшего через католит, должно быть пропущено через анолит с серной кислотой и нерастворимый платинированный анод, отделенный от обрабатываемого раствора катионообменной мембраной. В таком случае более 70% от всего требуемого количества электричества процесс регенерации, упомянутый в [4], использует процесс регенерации раствора травления меди с использованием двухкамерной ячейки с катионообменной мембраной и сернокислым анолитом, который характеризуется минимальным мгновенным удельным расходом электроэнергии равным 6,3-6,9 кВтч/кг меди [2]. Поскольку в [4] используется один катод, то количество электричества, затраченное на выделение меди, поступает с двух нерастворимых анодов и эти процессы идут одновременно. В примере 3 [4] процесс окисления ионов одновалентной меди до ионов двухвалентной меди на нерастворимом аноде протекает параллельно процессу выделения кислорода на втором нерастворимом аноде, погруженном в раствор серной кислоты. В связи с этим вызывает сомнение указанный в примере 3 удельный расход электроэнергии равный 2,8 кВтч/кг меди [4].

Поскольку способ [4] имеет массу недостатков и вызывает много вопросов, то необходимо разработать более совершенный способ регенерации солянокислых медно-хлоридных растворов травления меди, которые могут содержать дополнительный компонент - хлорид аммония. Способ должен работать в широком диапазоне концентраций используемых компонентов, в том числе иметь возможность регенерировать отработанные растворы, не содержащие ионов одновалентной меди. В производственных условиях номинальная концентрация CuCl2 составляет 60-200 г/л, а соляной кислоты 145-150 г/л [7]. По другим данным раствор травления меди может содержать хлорид двухвалентной меди 269 г/л и соляную кислоту 219 г/л [8]. Отработанный раствор может иметь и такой состав, г/л: CuCI2 443,4, CuCI 8,81, HCl 29,2 [3]. Раствор травления меди, содержащий хлорид аммония, может иметь такой состав, г/л: CuCl2×2H2O 106-111, NH4Cl 150, HCl 50 [2]. Из перечисленных составов видно, что солянокислые медно-хлоридные растворы травления меди содержат большую концентрацию хлорид-ионов: 5-10 М и более.

Предлагаемый способ регенерации включает в себя следующие положения, которые устраняют вышеизложенные недостатки следующим образом:

1. Необходимо отделить нерастворимый анод от регенерируемого раствора не одной катионообменной мембраной, а двумя, между которыми поместить раствор серной кислоты (среднее пространство), т.е. использовать трехкамерную ячейку. Использование двух катионообменных (рекомендуется перфторированных) мембран с периодической заменой раствора серной кислоты в среднем пространстве приводит к: а) практически полному прекращению доступа хлорид-ионов к платинированному аноду, б) практически полному прекращению выделения газообразного токсичного хлора на нерастворимом аноде, в) увеличению срока службы платинированных нерастворимых анодов, г) увеличению абсолютной скорости проведения процесса регенерации, и д) снижению расходов на приобретение новых платинированных нерастворимых анодов.

2. Возможность проведения процесса восстановления ионов двух- и одновалентной меди до металлической меди при оптимальных режимах электролиза для каждого процесса. Для протекания процесса снижения суммарной концентрации ионов одно- и двухвалентной меди при регенерации раствора травления меди с высокой скоростью и эффективностью рекомендуется последовательно проводить этот процесс при двух значениях катодных плотностей тока, лежащих в двух диапазонах оптимальных значений. Это объясняется следующим образом: для осаждения металлической меди на катоде из раствора, содержащего высокую концентрацию ионов двухвалентной меди, требуется высокая катодная плотность тока, в противном случае восстановления ионов двухвалентной меди произойдет только до ионов одновалентной меди. А для восстановления ионов одновалентной меди до металлической меди катодная плотность тока должна быть ограничена верхним пределом, в противном случае начнется процесс выделения водорода, что приведет к снижению эффективности процесса выделения металлической меди.

3. Использование более концентрированного раствора серной кислоты в среднем и анодном пространстве приводит к увеличению концентрации конкурирующих катионов водорода. В свою очередь это снижает долю тока, переносимую хлорид-ионами через катионообменную мембрану, что приводит к увеличению срока службы нерастворимого платинированного анода.

4. Отсутствие использования нерастворимого платинированного анода для окисления ионов одновалентной меди до ионов двухвалентной меди, что приводит к экономии средств на приобретение данного анода. Для этой цели лучше использовать работающую травильную машину без загрузки печатных плат, в которой для окисления ионов одновалентной меди до ионов двухвалентной меди используется кислород воздуха.

5. Можно сократить расходы на приобретение дорогостоящего платинированного нерастворимого анода, который работает в анолите - растворе серной кислоты, сохранив при этом высокую анодную плотность тока, для обеспечения высокой абсолютной скорости регенерации. В этом случае нужно заменить нерастворимый анод из платинированного титана или ниобия на электрохимически стойки нерастворимый анодный материал [9], который способен работать при ia=l-25 А/дм2. Расходы сокращаются еще сильнее в случае отказа от использования второй дорогостоящей катионообменной перфторированной мембраны для препятствования доступа хлорид-ионов к нерастворимому аноду. В этом случае используется двухкамерный мембранный электролизер, где католит - регенерируемый раствор травления меди - отделен катионообменной мембраной от анолита - раствора серной кислоты, в которой находится нерастворимый анодный материал - диоксид свинца на титановой подложке, изготовленный согласно [9], работающий при ia=l-25 А/дм2.

Сущность изобретения.

Для регенерации солянокислого медно-хлоридного раствора травления меди, содержащего, г/л: ионы двухвалентной меди 60-210, ионы одновалентной меди 100-0, соляную кислоту 50-150, который может содержать хлорид аммония 0-150, предлагаются следующие варианты проведения процесса:

1. Отработанный раствор травления поступает в катодную камеру первого трехкамерного мембранного электролизера, где происходит восстановление ионов двух- и одновалентной меди до металлической меди на катоде из титана или графита при iк=l-15 А/дм2, а потом поступает в катодное пространство второго трехкамерного мембранного электролизера, где происходит восстановление ионов двух- и одновалентной меди до металлической меди на катоде из титана или графита при iк=l-15 А/дм2. Рекомендуется величину катодной плотности тока в первом электролизере устанавливать больше, чем во втором. После этого раствор поступает в сборник-накопитель, а после наполнения сборника достаточным количеством раствора, раствор направляется в работающую травильную машину, в которую не загружены печатные платы, для окисления ионов одновалентной меди до ионов двухвалентной меди кислородом воздуха.

Катодное пространство, как первого, так и второго электролизера отделяется от среднего и анодного пространства катионообменной перфторированной мембраной. Среднее и анодное пространство заполняется раствором серной кислоты с концентрацией 1-3 н. В качестве нерастворимого анода в обоих мембранных электролизера используется платинированный титан или ниобий, ia на этих анодах 5-10 А/дм2.

Среднее пространство используется для практически полного прекращения поступления хлорид-ионов в анодное пространство с целью увеличения срока службы платинированного электрода, который в этом случае может эксплуатироваться при более высоких ia, что позволяет увеличить абсолютную скорость процесса регенерации, уменьшить рабочую площадь поверхности из платины, т.е. сократить количество платинированных анодов и снизить расходы на их приобретение. Другим положительным моментом является практически полное прекращение выделения на нерастворимом аноде токсичного газообразного хлора.

Для увеличения срока службы платинированного электрода, который находится в анодном пространстве, рекомендуется периодически делать анализ на хлорид-ионы раствора серной кислоты, находящегося в среднем пространстве. При достижении в растворе, находящемся в среднем пространстве, концентрации хлорид-ионов 1-2 г/л его рекомендуется заменить на новый.

2. Регенерация проводится аналогично первому варианту, но отличается тем, что с целью экономии материалов используется только один трехкамерный электролизер, в катодном пространстве которого находятся два катода из титана или графита, которые эксплуатируются при iк=1-15 А/дм2, причем рекомендуется величину катодной плотности тока на первом катоде устанавливать больше, чем на втором. Регенерируемый раствор поступает сначала к первому катоду, а потом ко второму катоду.

3. Регенерация проводится аналогично варианту 1 и/или 2, но в анолите - 1-3 н. растворе серной кислоты - находится нерастворимый анодный материал - диоксид свинца на титановой подложке, изготовленный согласно [9], и работающий при ia=l-25 А/дм2. Дополнительно к сказанному в текущем пункте, в связи с высокой электрохимической стойкостью нерастворимого анодного материала - диоксида свинца на титановой подложке, регенерация проводится аналогично варианту 1 и/или 2, но в двухкамерном мембранном электролизере, где католит - регенерируемый раствор травления меди - отделен катионообменной мембраной от анолита - 1-3 н. раствора серной кислоты, в которой находится нерастворимый анодный материал - диоксид свинца на титановой подложке, изготовленный согласно [9], и работающий при ia=1-25 А/дм2.

Пример 1. 250 мл солянокислого медно-хлоридного раствора травления меди с концентрацией ионов двухвалентной меди 210 г/л и соляной кислоты 50 г/л поместили в катодное пространство емкостью 250 мл первого трехкамерного мембранного электролизера, в котором катодное пространство отделено перфторированной катионообменной мембраной от среднего пространства объемом 250 мл, а среднее пространство отделено перфторированной катионообменной мембраной от анодного пространства объемом 250 мл. В среднее пространство и анодное пространство залили по 250 мл 2н раствора серной кислоты. В анодное пространство поместили нерастворимый анод из платинированного ниобия и при последующем электролизе на нем была ia=10 А/дм2.

В катодном пространстве происходил процесс восстановления ионов двухвалентной меди до ионов одновалентной меди и металлической меди на катоде из титана при iк=11 А/дм2 в течение 10 ч, после чего электролиз прекратили и этот же раствор перелили в катодное пространство емкостью 250 мл второго трехкамерного мембранного электролизера аналогичного первому. В освободившееся катодное пространство первого электролизера налили новую порцию отработанного раствора травления меди и продолжили электролиз при тех же режимах.

В катодном пространстве второго электролизера продолжили процесс восстановления ионов двухвалентной меди до ионов одновалентной меди и металлической меди на катоде из титана при iк=3 А/дм2 в течение 10 ч (в это время в анодном пространстве этого электролизера на нерастворимом аноде из диоксида свинца на титановой подложке была ia=9 А/дм2), после чего электролиз прекратили, раствор травления перелили в сборник, а на освободившееся место в катодном пространстве налили раствор травления из катодного пространства первого электролизера и продолжили электролиз при тех же режимах.

Масса металлической меди, выделившейся на титановых катодах при электролизе в двух мембранных электролизерах, составила 25 г. Раствор в сборнике по ионам меди имеет следующий состав, г/л: ионов одновалентной меди 80, ионов двухвалентной меди 30.

После накопления в сборнике достаточного количества раствора травления меди, раствор был направлен в работающую травильную машину, в которой не были загружены печатные платы, для протекания процесса полного окисления ионов одновалентной меди в ионы двухвалентной меди кислородом воздуха, после завершения которого раствор травления готов к использованию.

Источники информации.

1. Крутиков С.С., Тураев Д.Ю., Бузикова A.M. Регенерация раствора травления меди в производстве печатных плат методом мембранного электролиза // Гальванотехника и обработка поверхности. 2009. Т. 17. №1. С. 59-65.

2. Тураев Д.Ю., Кругликов С.С., Парфенова А.В. Изучение процесса регенерации травильного раствора на основе хлорида меди с помощью мембранного электролиза // Журнал прикладной химии. 2005 г. Т. 78. Вып. 9. С. 1469-1474.

3. Кругликов С.С., Тураев Д.Ю., Гулина В.В. Изучение катодных и анодных процессов при электрохимической переработке медно-хлоридного травильного раствора // Гальванотехника и обработка поверхности. 2003. Том XI. №4. С. 24-34.

4. Колесников В.А., Губин А.Ф., Кругликов С.С., Кругликова Е.С., Некрасова Н.Е., Тележкина А.В., Кузнецов В.В., Филатова Е.А., Одинокова И.В. Способ регенерации медно-хлоридного травильного раствора. Патент RU 2677583 С1 Россия. Заявлено 16.02.2018. Опубликовано 17.01.2019 Бюл. №2.

5. Тураев Д.Ю. Исследование электрохимической стойкости нерастворимого анода из Pt/Ti в процессе очистки промывной воды в ванне улавливания после ванны никелирования. 12-я Международная конференция Покрытия и обработка поверхности Сб. тезисов докладов. 17.02-19.02.15 г, Москва, Крокус-Экспо, стр. 91-93.

6. Тураев Д.Ю. Исследование электрохимической стойкости нерастворимого анода из платинированного ниобия при обезвреживании ванн улавливания гальванического производства, содержащих цианид или хлорид ионы, и возможность его замены на диоксидсвинцовый титановый анод. МКХТ-2015. Успехи в химии и в химической технологии, тез. докл., т. 29, №5, РХТУ им. Д.И. Менделеева, М., 2015, с. 23-25.

7. Ильин В.А. Химические и электрохимические процессы в производстве печатных плат. Выпуск 2, Приложение к журналу "Гальванотехника и обработка поверхности"; М., 1994, 144 с.

8. Справочник по печатным схемам. Под ред. К.Ф. Кумбаза Нью-Йорк, 1967. Перевод с английского, под редакцией Б.Н. Файзулаева и В.Н. Квасницкого; М., "Советское радио", 1972, 696 с.

9. Тураев Д.Ю. Способ изготовления электрода из диоксида свинца. Патент RU 2318080 С1 Россия. Заявлено 12.05.06. Опубликовано 27.02.08 Бюл. №6.

Источник поступления информации: Роспатент

Showing 1-10 of 22 items.
10.06.2013
№216.012.48ae

Способ очистки электролита хромирования на основе соединений шестивалентного хрома от примеси катионов трехвалентного железа

Изобретение относится к гальваническому производству, а именно к способу восстановления работоспособности электролита хромирования на основе соединений шестивалентного хрома, загрязненного вредной примесью - катионами трехвалентного железа. Способ включает удаление катионов трехвалентного...
Тип: Изобретение
Номер охранного документа: 0002484186
Дата охранного документа: 10.06.2013
10.04.2014
№216.012.af74

Электролит и способ осаждения меди на тонкий проводящий подслой на поверхности кремниевых пластин

Изобретение относится к гальванотехнике и может быть использовано в технологии микроэлектроники, в которой слой меди необходимо нанести на тонкий подслой кобальта или его сплавов (кобальт-фосфор, кобальт-вольфрам-фосфор) или меди, находящейся на поверхности кремниевых пластин. Электроосаждение...
Тип: Изобретение
Номер охранного документа: 0002510631
Дата охранного документа: 10.04.2014
27.11.2014
№216.013.09b2

Способ очистки промывной воды в ванне улавливания от соединений свинца, олова и борфторид-анионов

Изобретение относится к области гальванотехники. Способ очистки промывной воды ванны улавливания от соединений свинца, олова и борфторид-анионов с помощью двухкамерного мембранного электролизера включает удаление из католита - промывной воды - соединений олова и свинца путем восстановления на...
Тип: Изобретение
Номер охранного документа: 0002533890
Дата охранного документа: 27.11.2014
10.04.2015
№216.013.3821

Обезвреживание раствора химического никелирования методом мембранного электролиза (варианты)

Изобретение относится к вариантам способа удаления катионов никеля, гипофосфит- и фосфит-анионов из раствора химического никелирования методом мембранного электролиза. В способе используют трехкамерный мембранный электролизер, в котором на погруженном в раствор химического никелирования катоде...
Тип: Изобретение
Номер охранного документа: 0002545857
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5b5a

Способ обработки анионообменной мембраны ма-40 в растворе пероксида водорода

Изобретение относится к способу химической обработки анионообменной мембраны марки МА-40 в растворе пероксида водорода с целью облегчения переноса через обработанную таким способом мембрану под действием электрического тока анионов, содержащих соединения шестивалентного хрома (хромат, бихромат-...
Тип: Изобретение
Номер охранного документа: 0002554927
Дата охранного документа: 10.07.2015
20.02.2019
№219.016.c35f

Способ обезвреживания водных растворов, содержащих соединения шестивалентного хрома

Изобретение относится к гальваническому производству, конкретно к способу обезвреживания промывной воды и электролитов, содержащих соединения шестивалентного хрома. Способ основан на восстановлении соединений шестивалентного хрома растворами гидразина или гидроксиламина. Причем реакции...
Тип: Изобретение
Номер охранного документа: 0002433961
Дата охранного документа: 20.11.2011
20.03.2019
№219.016.e355

Солевой комбинированный мембранный аккумулятор

Изобретение относится к вторичным источникам электрической энергии. Согласно изобретению солевой аккумулятор представляет собой аккумулятор, в котором электроды, погруженные каждый в свой солевой электролит (католит и анолит), разделены химически стойкой анионной мембраной. Техническим...
Тип: Изобретение
Номер охранного документа: 0002279161
Дата охранного документа: 27.06.2006
20.03.2019
№219.016.e3ac

Кислотный комбинированный мембранный аккумулятор

Изобретение относится к области электротехники и может быть использовано при изготовлении кислотного комбинированного аккумулятора, в котором электроды, погруженные каждый в свой электролит, разделены химически стойкой перфторированной катионной мембраной. В первых двух вариантах отрицательный...
Тип: Изобретение
Номер охранного документа: 0002282918
Дата охранного документа: 27.08.2006
19.04.2019
№219.017.1d35

Реагентный метод регенерации солянокислого медно-хлоридного раствора травления меди

Изобретение может быть использовано в производстве печатных плат. Для регенерации солянокислого медно-хлоридного раствора травления меди ионы двухвалентной меди восстанавливают гидразином до ионов одновалентной меди в одной из двух заранее рассчитанных частей общего объема раствора травления...
Тип: Изобретение
Номер охранного документа: 0002685103
Дата охранного документа: 16.04.2019
29.04.2019
№219.017.428c

Способ модификации анионообменной мембраны ма-40

Изобретение относится к модификации мембран для электродиализных установок. Техническим результатом изобретения является улучшение обменных свойств мембраны. Способ модификации анионообменной мембраны МА-40 заключается в том, что анионобменную мембрану МА-40 обрабатывают путем погружения при...
Тип: Изобретение
Номер охранного документа: 0002303835
Дата охранного документа: 27.07.2007
Showing 1-10 of 14 items.
10.06.2013
№216.012.48ae

Способ очистки электролита хромирования на основе соединений шестивалентного хрома от примеси катионов трехвалентного железа

Изобретение относится к гальваническому производству, а именно к способу восстановления работоспособности электролита хромирования на основе соединений шестивалентного хрома, загрязненного вредной примесью - катионами трехвалентного железа. Способ включает удаление катионов трехвалентного...
Тип: Изобретение
Номер охранного документа: 0002484186
Дата охранного документа: 10.06.2013
10.04.2014
№216.012.af74

Электролит и способ осаждения меди на тонкий проводящий подслой на поверхности кремниевых пластин

Изобретение относится к гальванотехнике и может быть использовано в технологии микроэлектроники, в которой слой меди необходимо нанести на тонкий подслой кобальта или его сплавов (кобальт-фосфор, кобальт-вольфрам-фосфор) или меди, находящейся на поверхности кремниевых пластин. Электроосаждение...
Тип: Изобретение
Номер охранного документа: 0002510631
Дата охранного документа: 10.04.2014
27.11.2014
№216.013.09b2

Способ очистки промывной воды в ванне улавливания от соединений свинца, олова и борфторид-анионов

Изобретение относится к области гальванотехники. Способ очистки промывной воды ванны улавливания от соединений свинца, олова и борфторид-анионов с помощью двухкамерного мембранного электролизера включает удаление из католита - промывной воды - соединений олова и свинца путем восстановления на...
Тип: Изобретение
Номер охранного документа: 0002533890
Дата охранного документа: 27.11.2014
10.04.2015
№216.013.3821

Обезвреживание раствора химического никелирования методом мембранного электролиза (варианты)

Изобретение относится к вариантам способа удаления катионов никеля, гипофосфит- и фосфит-анионов из раствора химического никелирования методом мембранного электролиза. В способе используют трехкамерный мембранный электролизер, в котором на погруженном в раствор химического никелирования катоде...
Тип: Изобретение
Номер охранного документа: 0002545857
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5b5a

Способ обработки анионообменной мембраны ма-40 в растворе пероксида водорода

Изобретение относится к способу химической обработки анионообменной мембраны марки МА-40 в растворе пероксида водорода с целью облегчения переноса через обработанную таким способом мембрану под действием электрического тока анионов, содержащих соединения шестивалентного хрома (хромат, бихромат-...
Тип: Изобретение
Номер охранного документа: 0002554927
Дата охранного документа: 10.07.2015
20.03.2019
№219.016.e355

Солевой комбинированный мембранный аккумулятор

Изобретение относится к вторичным источникам электрической энергии. Согласно изобретению солевой аккумулятор представляет собой аккумулятор, в котором электроды, погруженные каждый в свой солевой электролит (католит и анолит), разделены химически стойкой анионной мембраной. Техническим...
Тип: Изобретение
Номер охранного документа: 0002279161
Дата охранного документа: 27.06.2006
20.03.2019
№219.016.e3ac

Кислотный комбинированный мембранный аккумулятор

Изобретение относится к области электротехники и может быть использовано при изготовлении кислотного комбинированного аккумулятора, в котором электроды, погруженные каждый в свой электролит, разделены химически стойкой перфторированной катионной мембраной. В первых двух вариантах отрицательный...
Тип: Изобретение
Номер охранного документа: 0002282918
Дата охранного документа: 27.08.2006
19.04.2019
№219.017.1d35

Реагентный метод регенерации солянокислого медно-хлоридного раствора травления меди

Изобретение может быть использовано в производстве печатных плат. Для регенерации солянокислого медно-хлоридного раствора травления меди ионы двухвалентной меди восстанавливают гидразином до ионов одновалентной меди в одной из двух заранее рассчитанных частей общего объема раствора травления...
Тип: Изобретение
Номер охранного документа: 0002685103
Дата охранного документа: 16.04.2019
19.06.2019
№219.017.8a9e

Способ извлечения катионов меди из кислых растворов, содержащих сильные окислители

Изобретение относится к гальваническому производству, а именно к способу восстановления работоспособности кислых растворов и электролитов, содержащих сильные окислители. Способ включает добавление в раствор при температуре от 5 до 25°С твердой щавелевой кислоты или дигидрата щавелевой кислоты,...
Тип: Изобретение
Номер охранного документа: 0002436874
Дата охранного документа: 20.12.2011
20.06.2019
№219.017.8dc0

Способ изготовления электрода из армированного диоксида свинца

Изобретение относится к способу изготовления нерастворимого анода из армированного диоксида свинца с рабочей поверхностью из диоксида свинца, в котором электрохимическим методом на токопроводящую подложку из титана или ниобия осаждают предварительный тонкий слой диоксида свинца толщиной не...
Тип: Изобретение
Номер охранного документа: 0002691967
Дата охранного документа: 19.06.2019
+ добавить свой РИД