×
13.12.2019
219.017.ed20

Результат интеллектуальной деятельности: СПОСОБ МЕТАЛЛИЗАЦИИ СКВОЗНЫХ ОТВЕРСТИЙ В ПОЛУИЗОЛИРУЮЩИХ ПОЛУПРОВОДНИКОВЫХ ПОДЛОЖКАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронной технике и предназначено для создания дискретных полупроводниковых приборов и интегральных схем с использованием трехмерной 3D-интеграции посредством электрического соединения их металлических конструктивных элементов сквозными металлизированными отверстиями с обратными металлизированными сторонами полуизолирующих полупроводниковых подложек. Способ металлизации внутренних поверхностей сквозных отверстий в полупроводниковых структурах включает формирование на лицевой стороне поверхности полупроводниковой структуры металлических конструкций, утонение с обратной стороны несущей полупроводниковой полуизолирующей подложки, нанесение на нее маски с расположенными напротив металлических конструкций окнами заданной формы и размера, травление в полупроводниковой полуизолирующей подложке по нанесенной маске сквозных отверстий с положительным, вертикальным, или отрицательным наклоном стенок до расположенных на противоположной стороне металлических конструкций и металлизацию обратной стороны подложки. Металлизацию внутренней поверхности сквозных отверстий с отношением глубины отверстия к его диаметру h/D>3 осуществляют путем латерального (бокового) электрохимического заращивания внутренней поверхности отверстия металлической пленкой без нанесения адгезионных или затравочных слоев, используя электрохимическое осаждение металла из электролита с катодным потенциалом U<ϕ, где ϕ - высота барьера Шоттки в образующемся при электрохимическом осаждении контакте металл-полупроводник, с последующим электрохимическим утолщением металлической пленки. Изобретение обеспечивает получение сплошной и однородной по толщине металлизации внутренней поверхности сквозных отверстий. 3 ил.

Изобретение относится к электронной технике и предназначено для создания дискретных полупроводниковых приборов (ПП) и монолитных интегральных схем (МИС) с использованием трехмерной (3D) интеграции посредством электрического соединения их металлических конструктивных элементов (контактных площадок, индуктивностей, обкладок конденсаторов, контактов стока и истока HEMT (High-Electron-Mobility Transistor) сквозными металлизированными отверстиями с обратными металлизированными сторонами полуизолирующих полупроводниковых подложек.

Известен способ металлизации внутренней поверхности сквозных отверстий с положительным наклоном стенок в полуизолирующих полупроводниковых подложках путем их магнетронного запыления металлизацией ванадий-никель Ni-V с последующим гальваническим утолщением золотом Au или медью Cu [1].

Недостатком известного способа является невозможность получать сплошные и однородные по толщине покрытия внутренних поверхностей сквозных отверстий в полуизолирующих полупроводниковых подложках с вертикальными стенками и с большими (>3) аспектными соотношениями (отношение глубины h отверстия к его диаметру D).

Наиболее близким аналогом – прототипом [2], является способ металлизации поверхности сквозных отверстий в полуизолирующих полупроводниковых подложках посредством химического осаждения пленок никеля Ni или палладия Pd.

Недостатком аналога, является то, что для отверстий с большим (>3) аспектным соотношением в большинстве случаев химическое осаждение металлических пленок никеля Ni или палладия Pd на внутреннюю поверхность стенок отверстий лимитируется диффузионными процессами подвода реагентов и отвода продуктов реакций в приповерхностных диффузионных слоях электролитов, что не позволяет воспроизводимо получать сплошную и однородную по толщине металлизацию внутренней поверхности сквозных отверстий.

Целью изобретения является устранение указанных недостатков.

Поставленная цель осуществляется за счет того, что в известном способе – аналоге, для нанесения металлических слоев на внутреннюю поверхность сквозных отверстий в полуизолирующих полупроводниковых подложках используется не химическое, а электрохимическое осаждение металлов.

Технический результат достигается за счет использования эффекта электрохимического заращивания металлом полуизолирующей полупроводниковой поверхности. Данный эффект проявляется в гальваностатическом режиме (при постоянной плотности тока Js) электрохимического осаждения металлов из некоторых электролитов с низким катодным потенциалом Uк<ϕ электрохимического осаждения, где ϕ≈ϕb - высота барьера Шоттки в образующемся при электрохимическом осаждении контакте металл-полупроводник.

Изобретение иллюстрируется рисунками.

Фиг. 1. Схема двухэлектродной электрохимической ячейки с платиновым Pt электродом.

Фиг. 2. Схематическое изображение основных технологических этапов одного из возможных вариантов предлагаемого способа металлизации сквозных отверстий с вертикальными стенками в полуизолирующей полупроводниковой подложке.

Фиг. 3. Электронно-микроскопическое изображение металлизированного отверстия в полуизолирующей подложке карбида кремния 4H-SiC глубиной 100 мкм с аспектным соотношением K=4 соединяющее исток GaN HEMT с обратной стороной металлизированной 4H-SiC подложки.

В известном способе, после формирования металлизации омических контактов истока или стока HEMT-транзистора и/или иных металлических конструктивных элементов МИС на лицевой стороне поверхности гетероструктуры полупроводниковой пластины, утонения с обратной стороны несущей полуизолирующей полупроводниковой подложки, травления по маске в ней отверстий до металлических стопслоев, или до вышеупомянутых металлических конструктивных элементов, на внутреннюю поверхность сквозных отверстий в гальваностатическом режиме осуществляют электрохимическое осаждение слоя металла при катодном потенциале Uкb с последующим его утолщением алюминием, золотом, или медью.

Например, при гальваностатическом режиме электрохимического осаждения палладия Pd из фосфатного электролита на полуизолирующую поверхность 4H-SiC при катодном потенциале Uк≈0.6 В (барьер Шоттки Pd/4H-SiC ϕb≈1.6 В [3]) происходит его латеральное разрастание и заращивание поверхности.

В этом случае закрывающая противоположный торец отверстия металлизация металлических стопслоев, омических контактов HEMT, или иных металлизированных конструктивных элементов МИС выступает в роли затравки, на которую в начале процесса электрохимически осаждаются зерна палладия Pd. Срастаясь, зерна Pd образуют пленку на вскрытых в отверстиях поверхностях металлизированных конструкций, которая, достигая внутренней полуизолирующей 4H-SiC поверхности отверстий, образует с ней контакт металл-полупроводник с барьером Шоттки (фиг. 1, область I) величиной ϕb≈1.6 В [3]. Согласно теории контакта Шоттки [4] в прилегающей к такому контакту участку поверхности возникает область объемного заряда (фиг. 1, область II, space charge). Согласно [4] разность потенциалов между металлом и окружающей его полупроводниковой поверхностью может достигать значений ϕ≈ϕb (фиг. 1, область II). В результате, в окружающей палладиевый контакт области электролита при наличии потока ионов палладия Pd+ (при протекании катодного тока Js) реализуются условия по катодному потенциалу Uкb пригодные для электрохимического осаждения Pd на прилегающую к контакту полупроводниковую поверхность, что приводит к его латеральному разрастанию в плоскости (x,y). Скорость латерального разрастания такой металлической пленки может в несколько раз превышать скорость её вертикального роста, так как полностью определяется условиями электрохимического осаждения Pd в области II (фиг. 1). Данный процесс не зависит от угла наклона стенок отверстия, что приводит к быстрому покрытию металлом его внутренней поверхности, как с положительным, так с вертикальным и даже с отрицательным наклоном (фиг. 1, область III, пунктирные стрелки).

В общем случае такой технологический процесс осаждения металла на полуизолирующую полупроводниковую поверхность в гальваностатическом режиме можно реализовать только для электролитов катодный потенциал Uк электрохимического осаждения металлов которых меньше ϕb. Для электролитов, Uк которых равен, или превышает ϕb такой процесс реализовать невозможно по причине того, что в области II фиг. 1 не реализуются условия по катодному потенциалу для протекания процессов электрохимического осаждения.

На фиг. 2 показаны ключевые моменты одного из возможных вариантов предлагаемого способа металлизации внутренней поверхности сквозного отверстия в полупроводниковой полуизолирующей подложке.

На фиг. 2, а) показано сечение полупроводниковой гетероструктуры, содержащей расположенные на контактном полупроводниковом слое 1 металлизацию омического контакта истока 2 с гальваническим утолщением 3 и металлизацию омического контакта стока 4 с гальваническим утолщением 5, расположенный в канале на барьерном слое 6 в окне диэлектрического слоя 7 полевой затвор Шоттки 8, пассивирующий лицевую сторону диэлектрический слой 9, полуизолирующую подложку 10, нанесенный на обратную сторону подложки диэлектрический слой 11 и маску 12, протравленное в полуизолирующей подложке по маске до металлизации омического контакта истока сквозное отверстие 13 диаметром D и глубиной h.

На фиг. 2, б) показано сечение описанной на фиг. 2, а полупроводниковой гетероструктуры после удаления с обратной стороны маски 12, нанесения на лицевую сторону химически стойкого лака (ХСЛ) 14, и электрохимическое заращивание пленкой палладия Pd 15 (показано стрелками) внутренней поверхности сквозного отверстия 13 в полуизолирующей подложке 10 с маскирующим слоем диэлектрика 11.

На фиг. 2, в) показано сечение описанной на фиг. 2, б полупроводниковой гетероструктуры после удаления с лицевой стороны лака ХСЛ 14 и удаления с обратной стороны маскирующего диэлектрика 11 с последующим напылением металлизации 16.

На фиг. 2, г) показано сечение описанной на фиг. 2, в полупроводниковой гетероструктуры после повторного нанесения на лицевую сторону лака ХСЛ 17 и электрохимического утолщения 18 металлизации поверхности отверстия 13 и металлизации обратной стороны подложки 16.

Пример: Технический результат использовался в технологическом процессе изготовления мощных нитридгаллиевых (AlGaN/GaN, или AlInN/GaN) мощных HEMT для электрического соединения контактов истока с металлизированной обратной стороной несущей 4H-SiC полуизолирующей полупроводниковой подложкой посредством металлизированных отверстий глубиной 100 мкм с большим аспектным соотношением K>4.

Изготовление мощного полевого транзистора, включало выделение активной области химическим, или физическим травлением, или имплантацией, создание омических контактов истока 2 и стока 4 на контактном слое полупроводниковой структуры с гальваническим утолщением 3 и 5, формирование Ni-Au затвора Шоттки 8 на барьерном слое 6 в окнах диэлектрика Si3N4 7, пассивацию поверхности диэлектриком Si3N4 9, утонение полуизолирующей подложки 4H-SiC 10 до толщины 100 мкм, нанесение на обратную сторону подложки маскирующего слоя SiO2 толщиной 0.3 мкм 11, нанесения маски на основе борида никеля NiB/Ni 12, химическое удаление слоя SiO2 в окнах маски 12, формирование по маске методом сухого физического травления со стороны подложки до контактов истока сквозных с вертикальными стенками отверстий 13 шириной 25 мкм и глубиной 100 мкм (аспектное соотношение K=h/D=4), нанесение защитного лака ХСЛ 14 на лицевую сторону структуры, отличающийся тем, что для металлизации внутренней поверхности сквозного отверстия 13 в полуизолирующей полупроводниковой подложке 4H-SiC 10 вместо химически осажденного адгезионного металлического подслоя Pd использовался электрохимически осажденный в гальваностатическом активационном режиме из фосфатного электролита подслой палладия Pd 15 толщиной 0.1 мкм. Процесс электрохимического осаждения палладия Pd из фосфатного электролита на внутреннюю полупроводниковую поверхность отверстия в полуизолирующей 4H-SiC подложке становился возможным при плотности тока 0.045 мА/см2 и катодном потенциале относительно платинового Pt-электрода Uк(Pt)≈-0.6 В (фиг. 1, область II). Напомним, что высота барьера Шоттки палладия Pd на 4H-SiC составляет приблизительно ϕb ≈1.6 эВ [3], что превышает значение Uк(Pt)≈-0.6 В и, как указывалось выше, создает необходимые условия для электрохимического осаждения Pd в области II на прилегающую к контакту поверхность и эффективного зарастания внутренней стороны отверстия. Окна в маскирующем слое SiO2 11 выполняют роль маски, обеспечивающей формирование ровного края входного торца отверстия 13. Затем лак ХСЛ 14 и маскирующий слой SiO2 11 удалялись, и осуществлялась металлизация обратной стороны подложки напылением металлизации V-Au 16. Затем лицевая поверхность пластины вновь защищалась лаком ХСЛ 17, и осуществлялось электрохимическое осаждение золота Au 18 толщиной 5 мкм. После этого лак ХСЛ 17 удалялся.

Таким образом, была достигнута поставленная цель и осуществлено электрическое соединение металлизированными с вертикальными стенками отверстиями глубиной 100 мкм с большим аспектным соотношением (фиг. 3) контактов истока нитрид-галлиевого HEMT с металлизированной обратной стороной полуизолирующей подложкой 4H-SiC.

Преимущество предлагаемого способа металлизации сквозных отверстий в полуизолирующих полупроводниковых подложках перед аналогом заключается в возможности получения сплошных и однородных по толщине покрытий поверхностей сквозных отверстий с большими аспектными соотношениями не только с положительным, но и с вертикальным, и даже с отрицательным наклоном стенок.

Использование электролитов способных в гальваностатических режимах при малых значениях катодных потенциалов Uкb, где ϕb – барьер Шоттки металла с полупроводником, осуществлять электрохимическое осаждение металлов не только на проводящие, но и на полуизолирующие полупроводниковые поверхности.

Активационный характер процессов происходящих в гальваностатических режимах электрохимического осаждения металлов при Uкb гарантирует воспроизводимо металлизировать узкие отверстия практически с любым аспектным соотношением. Скорости электрохимических реакций в активационных процессах определяются только энергиями их активаций и не зависят от диффузионных процессов подвода реагентов и отвода продуктов реакций.

Источники информации:

[1]. Patent US 7923842 B2, Int. Cl. H01L 23/48. GaAs integrated circuit device and method of attaching same / Shen H. (US), Ramanathan R. (US), Luo Q. (US), Warren R. W (US), Abdali U. K (US). – Appl. No 11/377,690; filed 03.16.2006; pub. date 04.12.2011.

[2]. US 2012/0153477 A1, Int. Cl. H01L 23/532, H01L 21/768. Method for metal plating and related devices / Shen H. (US). – Appl. No 12/972,119; filed 12.17.2010; pub. date 06.21.2012.

[3]. Porter L.M., Davis R.F. A critical review of ohmic and rectifying contacts for silicon carbide. Mat. Sci. Eng. B. B 34, N2–3. (1995) 83–105.

[4]. Н.А. Торхов. Влияние электростатического поля периферии на вентильный фотоэффект в контактах металл−полупроводник с барьером Шоттки. Физика и техника полупроводников. 52(10), (2018) 1150-1171.

Способ металлизации сквозных отверстий в полуизолирующей полупроводниковой подложке, включающий формирование на лицевой стороне поверхности полупроводниковой структуры металлических конструкций, утонение несущей полупроводниковой полуизолирующей подложки с обратной стороны, нанесение на нее маски с расположенными напротив металлических конструкций окнами заданной формы и размера, травление в полупроводниковой полуизолирующей подложке по нанесенной маске сквозных отверстий с положительным, вертикальным, или отрицательным наклоном стенок до расположенных на противоположной стороне металлических конструкций и металлизацию обратной стороны подложки, отличающийся тем, что металлизацию внутренней поверхности сквозных отверстий с отношением глубины отверстия к его диаметру h/D>3 осуществляют путем латерального (бокового) электрохимического заращивания внутренней поверхности отверстия металлической пленкой без нанесения адгезионных или затравочных слоев, используя электрохимическое осаждение металла из электролита с катодным потенциалом U<ϕ, где ϕ - высота барьера Шоттки в образующемся при электрохимическом осаждении контакте металл-полупроводник, с последующим электрохимическим утолщением металлической пленки.
СПОСОБ МЕТАЛЛИЗАЦИИ СКВОЗНЫХ ОТВЕРСТИЙ В ПОЛУИЗОЛИРУЮЩИХ ПОЛУПРОВОДНИКОВЫХ ПОДЛОЖКАХ
СПОСОБ МЕТАЛЛИЗАЦИИ СКВОЗНЫХ ОТВЕРСТИЙ В ПОЛУИЗОЛИРУЮЩИХ ПОЛУПРОВОДНИКОВЫХ ПОДЛОЖКАХ
СПОСОБ МЕТАЛЛИЗАЦИИ СКВОЗНЫХ ОТВЕРСТИЙ В ПОЛУИЗОЛИРУЮЩИХ ПОЛУПРОВОДНИКОВЫХ ПОДЛОЖКАХ
Источник поступления информации: Роспатент

Showing 31-40 of 173 items.
13.01.2017
№217.015.7150

Способ вакуумно-плазменного азотирования изделий из нержавеющей стали в дуговом несамостоятельном разряде низкого давления

Изобретение относится к области вакуумно-плазменных химико-термических технологий обработки материалов и изделий и может быть использовано при химико-термической упрочняющей обработке методом азотирования конструкционных изделий из нержавеющей стали в машиностроении, приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002596554
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.715f

Питательная среда для культивирования каллусной культуры болиголова пятнистого (conium maculatum l)

Изобретение относится к области биотехнологии. Изобретение представляет собой питательную среду для культивирования каллусной ткани болиголова пятнистого, содержащую компоненты в следующем количестве, мг/л: KNO 1900; KHPO 170; NHNO 1650; MgSO×7HO 370; CaCl×2HO 440; FeSO×7HO 37,3; NaEDTA×2HO...
Тип: Изобретение
Номер охранного документа: 0002596402
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7162

Способ получения керамического биорезорбируемого материала на основе смеси фосфатов кальция

Изобретение относится к способу получения биорезорбируемого материала на основе фосфатов кальция (ФК) с использованием микроволнового (СВЧ) излучения. Способ включает в себя следующие стадии: приготовление и перемешивание смеси гидроксида кальция и концентрированного 60-80%-ного раствора...
Тип: Изобретение
Номер охранного документа: 0002596739
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7690

Способ термомеханической обработки метастабильной аустенитной стали

Изобретение относится к области металлургии и может быть использовано, например, для изготовления высоконагруженных деталей в машиностроении. Для получения субмикрокристаллической структуры в стали способ включает нагрев листа из стали 08Х18Н10Т до температуры 1100°С, выдержку 1 час,...
Тип: Изобретение
Номер охранного документа: 0002598744
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.78d2

Способ определения меди

Изобретение относится к области аналитической химии, а именно к методам определения меди, и может быть использовано при ее определении в природных и питьевых водах, а также в технологических растворах. Способ включает приготовление раствора меди(II), извлечение меди(II) мембраной с...
Тип: Изобретение
Номер охранного документа: 0002599517
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7946

Таблетированное лекарственное средство на основе экстракта манжетки обыкновенной

Изобретение относится к таблетированному лекарственному средству для лечения синдрома повышенной вязкости крови. Указанное средство включает 6 мас.% густого экстракта манжетки обыкновенной, полученного упариванием спиртовой вытяжки до остаточной влажности 25%, 46,8 мас.% глюкозы, 46,8 мас.%...
Тип: Изобретение
Номер охранного документа: 0002599020
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79b5

Способ непрерывного промышленного получения глиоксаля

Настоящее изобретение относится к непрерывному способу получения глиоксаля путем окисления этиленгликоля кислородом воздуха в смеси с рециркулируемым инертным газом на катализаторе, содержащем серебро. При этом рециркулирующий газ, используемый в качестве разбавителя, и раствор этиленгликоля,...
Тип: Изобретение
Номер охранного документа: 0002599247
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a09

Способ получения тонкопленочного покрытия

Изобретение относится к тонкопленочным стеклокерамическим покрытиям, широко применяемым в материаловедении и медицинском материаловедении. Способ получения тонкопленочного покрытия на основе SiO-TiO-PO-CaO включает приготовление пленкообразующего раствора (ПОР) с дальнейшим нанесением этого...
Тип: Изобретение
Номер охранного документа: 0002599294
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8294

Движитель с подвижными спицами

Изобретение относится к движителям подводного транспорта, а именно к движителям подводных роботов. Движитель с подвижными спицами содержит цилиндрический обод, приводной вал обода и радиальные спицы и оборудован эксцентриком и приводным валом эксцентрика. Ось вращения обода совпадает с осью...
Тип: Изобретение
Номер охранного документа: 0002601491
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.852a

Штамм бактерий desulfovibrio sp. vk-9 для очистки кислых сточных вод от ионов тяжелых металлов

Изобретение относится к промышленной микробиологии. Штамм бактерий Desulfovibrio sp. VK-9 обладает высокой устойчивостью к повышенным концентрациям ионов меди (до 125 мг/л), ионов никеля (до 250 мг/л), ионов кобальта (до 350 мг/л) и ионов кадмия (до 60 мг/л) и может быть использован при...
Тип: Изобретение
Номер охранного документа: 0002603249
Дата охранного документа: 27.11.2016
Showing 1-8 of 8 items.
20.10.2014
№216.012.fe53

Электролит для электрохимического осаждения иридия на арсенид галлия и способ его приготовления

Изобретение относится к области гальванотехники и может быть использовано в полупроводниковой СВЧ-электронике для получения выпрямляющих иридиевых контактов к арсениду галлия. Кроме того, иридиевые покрытия пригодны для защиты электрических контактов, работающих в условиях эрозионного износа,...
Тип: Изобретение
Номер охранного документа: 0002530963
Дата охранного документа: 20.10.2014
27.03.2016
№216.014.c84d

Способ изготовления высокочастотного транзистора с нанометровыми затворами

Изобретение относится к электронной технике и предназначено для создания дискретных приборов и сверхвысокочастотных интегральных схем с использованием полевых транзисторов. Техническим результатом изобретения является получение затворов длиной менее 100 нм, а также уменьшение толщины...
Тип: Изобретение
Номер охранного документа: 0002578517
Дата охранного документа: 27.03.2016
20.01.2018
№218.016.1735

Способ изготовления диода с вискером терагерцового диапазона

Изобретение относится к полупроводниковой электронике. Способ изготовления диода с вискером "Меза-подложка" терагерцового диапазона включает нанесение на поверхность гетероэпитаксиальной структуры диэлектрической пленки, в которой по маске фоторезиста травлением до высоколегированного катодного...
Тип: Изобретение
Номер охранного документа: 0002635853
Дата охранного документа: 16.11.2017
04.10.2018
№218.016.8ed5

Способ изготовления мощного нитрид-галлиевого полевого транзистора

Изобретение относится к электронной технике и предназначено для создания дискретных приборов и сверхвысокочастотных интегральных схем с использованием полевых HEMT транзисторов. Техническим результатом является более качественное удаление электронного резиста в окнах резистной маски,...
Тип: Изобретение
Номер охранного документа: 0002668635
Дата охранного документа: 02.10.2018
01.11.2018
№218.016.9883

Способ изготовления высокочастотного полевого транзистора с дополнительным полевым электродом

Использование: для создания дискретных приборов и сверхвысокочастотных (СВЧ) интегральных схем. Сущность изобретения заключается в том, что способ изготовления полевого транзистора с дополнительным полевым электродом включает в себя выделение активной области химическим, физическим травлением...
Тип: Изобретение
Номер охранного документа: 0002671312
Дата охранного документа: 30.10.2018
29.11.2019
№219.017.e804

Способ изготовления высокочастотного транзистора с дополнительным активным полевым электродом

Изобретение относится к электронной технике и предназначено для создания мощных полевых транзисторов с затвором Шоттки и дополнительным активным полевым («Field plate» - FP) электродом. Может быть использовано в мощных СВЧ транзисторах на основе нитридных (GaN) гетероэпитаксиальных структур для...
Тип: Изобретение
Номер охранного документа: 0002707402
Дата охранного документа: 26.11.2019
16.05.2023
№223.018.61bd

Способ изготовления t-образного гальванического затвора в высокочастотном полевом транзисторе

Изобретение относится к электронной технике и предназначено для создания дискретных приборов и сверхвысокочастотных интегральных схем с использованием мощных нитрид-галлиевых полевых транзисторов. Способ изготовления T-образного гальванического затвора в высокочастотном полевом транзисторе...
Тип: Изобретение
Номер охранного документа: 0002746845
Дата охранного документа: 21.04.2021
19.06.2023
№223.018.8222

Способ изготовления планарного диода с анодным вискером и воздушным выводом по технологии "меза-меза"

По способу "Меза-Меза" предлагается изготовление планарного диода с анодным выводом в виде воздушного моста с вискером, включающее нанесение на поверхность гетероэпитаксиальной структуры диэлектрической пленки, в которой по маске резиста химическим или физическим травлением как минимум до...
Тип: Изобретение
Номер охранного документа: 0002797136
Дата охранного документа: 31.05.2023
+ добавить свой РИД