×
12.12.2019
219.017.ec41

Результат интеллектуальной деятельности: Способ создания противоопухолевой иммунологической защиты к клеткам лимфомы EL-4

Вид РИД

Изобретение

Аннотация: Изобретение относится к области биохимии, в частности к способу создания противоопухолевой иммунной защиты организма к клеткам лимфомы EL-4. Изобретение позволяет эффективно противостоять клеткам лимфомы EL-4. 1 ил., 3 табл., 1 пр.

Изобретение относится к области молекулярной биотехнологии и касается Т-лимфоцитов, имеющих новый рецептор.

В процессе иммунного ответа на антигены бактерий, вирусов и опухолей в организме формируется популяция клеток памяти - лимфоцитов, способных к ускоренному и усиленному ответу на тот же антиген, введенный повторно. Встреча организма с антигеном ведет к дифференцировке наивных Т-лимфоцитов в эффекторные клетки, а затем в клетки памяти. Это пул клеток, составляющий около 5% от общего количества лимфоцитов, способных длительно персистировать и осуществлять эффективный иммунный ответ при повторной встрече организма с антигеном (Rocha В., 1997; Jacob J. et al., 1997, Rocha В., 1999, Murali K.K. et al., 1998). Все известные методы вакцинации основаны на возникновении клеток памяти.

Специфическое узнавание антигена Т-лимфоцитами происходит благодаря наличию Т-клеточного рецептора (ТКР). ТКР состоит из α- и β-цепей, которые являются уникальными для каждого клона Т-лимфоцитов. Пул Т-лимфоцитов организма представляют собой смесь клеток, на поверхности каждой из которых присутствует своя уникальная комбинация α- и β-цепей ТКР, которая передается ее потомкам, образующимся в результате деления (клонам).

Получение Т-лимфоцитов с ТКР нужной специфичности происходит в несколько этапов:

1. Проведение Т-клеточного клонирования. В пуле Т-лимфоцитов индуцируют размножение отдельных клеток с нужной специфичностью ТКР путем добавления к ним специфического антигена. Чтобы получить достаточное количество таких клеток, проводят несколько раундов рестимуляции их пролиферации специфическим антигеном. В результате получают необходимое количество Т-лимфоцитов, несущих ту же комбинацию α- и β-цепей ТКР, что и исходная клетка (клон). Данная процедура требует значительных временных и технических затрат, связанных с длительностью роста индивидуальных клонов и необходимостью подбора и обеспечения достаточно сложных (иногда индивидуальных) условий их поддержания и дальнейшего тестирования.

2. Проведение генного клонирования, идентификация и определение нуклеотидных последовательностей α- и β-цепей каждого клона Т-лимфоцитов. Полученные генетические последовательности при помощи экспрессионных векторов вводят в активированные Т-лимфоциты, в результате чего их потомки приобретают способность к экспрессии ТКР с новой заданной специфичностью.

Этот подход был использован для адоптивной иммунотерапии опухолей в онкологии [Robbins PF, Morgan RA, Feldman SA., Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA.Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1.J Clin Oncol. 2011 Mar 1; 29(7):917-24.; Blankenstein T, Leisegang M, Uckert W, Schreiber H. Targeting cancer-specific mutations by T cell receptor gene therapy. Curr Opin Immunol. 2015; 33:112-9].

Недостатки данного подхода: необходимость проведения процедуры клеточного клонирования. Использована полная конфигурация ТКР, состоящая из α- и β-цепей.

Ранее мы обнаружили, что среди Т-лимфоцитов присутствуют Т-лимфоциты с ТКР, специфичность которых к заданному антигену определяет только α-цепь [Казанский Д.Б. Трансгенные технологии создания иммунологической защиты организма. В сборнике докладов семинара Фонда перспективных исследований "Проблемные вопросы иммунологии", 03 октября 2014 г., Москва, ООО "Б-принт", 2015, С. 17-25]. Такие ТКР распознают антиген вне зависимости от того, в комбинации с какой β-цепью он присутствует на мембране Т-лимфоцита. Это дает возможность избежать процедуры клеточного клонирования и отказаться от трансгенного переноса α-цепей при получении ТКР с нужной специфичностью. В данном способе технология идентификации нужного рецептора сводится к получению библиотек кДНК из поликлональных клеток памяти и определению и секвенированию генов биологически активных α-цепей методом секвенирования нового поколения (NGS-секвенирования). Данный подход позволяет значительно сократить процедуру поиска и идентификации нужных рецепторов и облегчает техническое выполнение переноса в клеточный геном генетических конструкций благодаря уменьшению их размеров. Этот способ предполагает использование индивидуальных трансгенных α-цепей, которые при взаимодействии с эндогенными β-цепями, присутствующими в клетке, формируют ТКР для защиты от онкологических заболеваний.

В качестве одного из подходов для лечения некоторых раковых заболеваний (меланомы, лейкозов) используют лимфоциты с генетически модифицированным химерным рецептором (CAR) (С.Slaney, B.Scheidt, А. Davenport, P.Beavis, J.Westwood, S.Mardiana, D.Tscharke, S.Ellis, H. M. Prince, J.Trapani, R. Johnstone, M. Smyth, M.Teng, A. Ali, Z.Yu, S. Rosenberg, N. Restifo, P. Neeson, P. Darcy, M.Kershaw. Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clin Cancer Res; 23(10) May 15, 2017; Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancertherapy. Nat Rev Cancer 2013; 13:525-41.).

Недостаток данного подхода: CAR - это полностью искусственный рецептор, сочетающий элементы Т- и В-клеточных рецепторов. Для изготовления химерного рецептора приходится использовать фрагменты нескольких различных молекул и результирующий белок часто становится иммуногенным [Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, Zhao Y, Kalos M, June CH. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res. 2013 Jul; 1(1):26-31. doi: 10.1158/2326-6066.CIR-13-0006].

Известен подход, направленный на усиление иммунного ответа при помощи получения высокоаффинных ТКР путем отбора и мутагенеза цепей ТКР [Schendel D, Wilde S, Frankenberger В, Uckert W. High affinity T cell receptor and use thereof. Patent US 8697854 B2. Priority date 2008-11-24; Jakobsen BK, Harwood N, Liddy NR T cell receptors. Patent WO 2011001152 A1; Priority date 2009-07-03].

Отличие данного подхода от заявляемого состоит в использовании полной конфигурации ТКР, состоящей из α- и β-цепей.

Еще один способ терапии опухолей трансгенными ТКР - ретровирусная трансдукция Т-лимфоцитов в культуре in vitro с их последующей активацией и получением лимфокинактивированных киллеров [Schendel DJ. Expression of transgenic t cell receptors in lak-t cells. Patent US 20110020308 Al. Priority date: 2006-12-12].

Отличие данного подхода от предлагаемого в использовании полной конфигурации ТКР, состоящей из α- и β-цепей.

Известен метод усиления иммунного ответа на раковые опухоли и патогены, где описаны модифицированные Т-лимфоциты, одновременно экспрессирующие ТКР или химерный антигенный рецептор и антитело (Патент WO 2017147383A1 (2017-08-31)).

Недостатком данного метода в необходимости экспрессии трансгенной β-цепи ТКР и процедуры Т-клеточного клонирования для идентификации α- и β-цепей таких ТКР.

Предлагается метод усиления иммунного ответа путем модификации различных ТКР, приводящей к увеличению уровня их экспрессии на поверхности Т-лимфоцита (Патент WO 2016170320 A1 (2016-10-27)).

Недостатком данного метода является необходимость присутствия в генетической конструкции ТКР β-цепи и необходимость процедуры Т-клеточного клонирования для идентификации α- и β-цепей таких ТКР.

Задачей заявляемого изобретения является: разработка нового способа создания противоопухолевой иммунологической защиты с помощью трансгенеза Т-лимфоцитов в системе in vitro и in vivo.

Задача решается получением Т-лимфоцитов с экспрессией α-цепи ТКР. Трансдукцию Т-лимфоцитов мыши проводили ретровирусными частицами, содержащими ген α-цепи ТКР 1D1 (SEQ ID NO 1, GenBank: DQ983579.1) с последующим адоптивным переносом модифицированных клеток мышам -реципиентам с целью оценки функциональной активности трансдуцированных клеток in vitro и in vivo.

Технический результат изобретения: разработан способ создания противоопухолевой иммунологической защиты с помощью трансгенеза Т-лимфоцитов.

Изобретение иллюстрируется фиг. 1, табл. 1-3 и перечнем использованных последовательностей.

На фиг. 1 представлена оценка уровня трансдукции клеток вирусом Migr1-PGK-1-GFP методом проточной цитофлуориметрии. А- нетрансдуцированные клетки (контроль); Б- Т-клетки, трансдуцированные вирусом.

На табл. 1 представлена оценка функциональной активности трансдуцированных Т-лимфоцитов в системе in vitro. Соотношение киллер-мишень 10:1.

На табл. 2 представлена оценка функциональной активности трансдуцированных Т-лимфоцитов в системе in vivo. Абсолютное количество клеток лимфомы EL-4 на 6 день после адоптивного переноса Т-лимфоцитов. Соотношение киллер-мишень 10:1.

На табл. 3 представлена оценка защитной активности трансдуцированных Т-лимфоцитов в системе in vivo. Анализ клеток EL-4 в перитонеальной полости мышей B10.D2(R101) с адоптивно перенесенными трансдуцированными Т-лимфоцитами за 7, 14 и 28 дней до введения клеток опухоли. Соотношение киллер-мишень 10:1.

Способ осуществляется следующим образом.

1. Создание генетических конструкций.

В работе для сборки частиц ретровируса использовали два ДНК-вектора с генетическими конструкциями. Для получения первого ДНК-вектора коммерческую генетическую конструкцию MigR1 (Addgene, США), содержащую ген зеленого флуоресцентного белка (green fluorescent protein, GFP), модифицировали путем удаления из нее последовательности гена GFP и введения промотора PGK и гена α-цепи ТКР 1D1 (SEQ ID NO 1). Созданный вектор получил название MigR1-PGK-1D1a. Так как к цепи 1D1a не существует коммерческих антител, то для оценки уровня трансдукции была создана вторая генетическая конструкция, которая была получена также на основе MigR1 (Addgene, США) путем вставки промотора PGK в область сайта для множественного клонирования этой плазмиды. Полученный таким образом вектор MigR1-PGK-GFP, содержащий ген GFP, использовали в дальнейшей работе для контроля эффективности процедуры введения генетических конструкций в целевые клетки.

В качестве второго ДНК-вектора использовали коммерческую генетическую конструкцию pCL-Eco (Addgene, США). Данная плазмида содержит все гены белков, необходимых для сборки вирусной частицы с экотропной оболочкой (белок оболочки (env), полимераза (pol), ревертаза (rev), интеграза).

2. Получение частиц ретровирусов.

2.1. Трансфекция клеток линии HEK293T и получение среды, содержащей вирусные частицы.

2.1.1 Подготовка клеток HEK293T, пакующей вирусные частицы.

Клетки пакующей линии HEK293T выращивали в культуральном флаконе площадью 75 см2(Costar, США) в 12 мл стандартной ростовой среды DMEM (Панэко, Россия), содержащей с 4,5 г/л глюкозы и 10% эмбриональной телячьей сыворотки (Панэко, Россия) до достижения конфлюэнтности 60-80%.

2.1.2. Трансфекция HEK293T, получение вирус-содержащей среды.

В 1,5 мл стерильной воды смешивали плазмиды MigR1-PGK-1D1a, содержащую ген α-цепи ТКР 1D1(SEQ ID NO 1), и pCl-Есо в соотношении 1:1 по 20 мкг каждой плазмиды. К смеси добавляли 75 мкл 2М CaCl2 и перемешивали путем пипетирования. Затем по каплям при помешивании вносили 750 мкл двукратного HBS буфера (50 мМ HEPES, рН 7.05; 10 мМ KCl, 12 мМ декстроза, 280 мМ NaCl, 1,5 мМ Na2HPO4). Смесь инкубировали 5 мин при комнатной температуре и по каплям вносили в среду роста, содержащуюся в культуральных флаконах с клетками пакующей линии. Трансфекцию клеток HEK293T проводили в течение 24 часов, после чего удаляли модифицированную ростовую среду и заменяли на стандартную среду роста DMEM.

Контроль эффективности трансфекции осуществляли при помощи белка GFP. Для этого параллельно при тех же условиях проводили трансфекцию клеток HEK293T плазмидами MigR1-PGK-GFP, содержащей ген GFP, и pCL-Eco. Наличие экспрессии белка GFP в клетках HEK293T оценивали при помощи флюоресцентного микроскопа (Nikon, Япония). Уровень трансфекции экстраполировали на клетки HEK293T с 1D1 геном (SEQ ID NO 1). Трансфекцию считают успешной, если не менее, чем у 60% клеток пакующей линии наблюдают флюоресценцию GFP. Сбор ростовой среды клеток HEK293T проводили через 48 и 72 часа после заражения клеток HEK293T плазмидами MigR1-PGK-1D1a и pCl-Есо. Полученную таким образом вирус-содержащую среду в свежем виде использовали для трансдукции Т-клеток мыши. Возможно замораживание вирус-содержащей среды при температуре -70°С. Допускается однократное размораживание.

3. Получение лимфоцитов из селезенки и лимфатических узлов мыши.

Мышей линии B10.D2(R101) умерщвляли путем цервикальной дислокации и извлекали селезенку и лимфоузлы (мезентериальный, 2 подмышечных и 2 паховых). Селезенку помещали в гомогенизатор Поттера с 3 мл питательной среды RPMI-1640 (Панэко, Россия), содержащей 10 мкг/мл ципрофлоксацина (KRK, Словения). После гомогенизации селезенки суспензию клеток переносили в центрифужную пробирку и осаждали центрифугированием при 1500 об/мин в течение 5 мин при 4°С. Надосадочную жидкость удаляли, осадок клеток ресуспендировали и проводили гипотонический лизис эритроцитов. Для этого к осадку спленоцитов добавляли 360 мкл стерильной дистиллированной воды, пробирку встряхивали в течение 10-20 сек и добавляли 40 мкл 10-кратного фосфатно-солевого буфера и 6-7 мл 1-кратного фосфатно-солевого буфера. Затем клетки осаждали центрифугированием при 1500 об/мин в течение 5 мин при 4°С, удаляли надосадочную жидкость и ресуспендировали осадок в 3 мл питательной среды RPMI-1640 (Панэко, Россия), содержащей 10 мкг/мл ципрофлоксацина (KRK, Словения).

Лимфатические узлы гомогенизировали описанным выше образом, осаждали центрифугированием при 1500 об/мин в течение 5 мин при 4°С. Надосадочную жидкость удаляли, осадок клеток ресуспендировали в 2 мл питательной среды RPMI-1640 (Панэко, Россия) и вносили в суспензию спленоцитов. Полученную смесь клеток осаждали центрифугированием при 1500 об/мин в течение 5 мин при 4°С, удаляли надосадочную жидкость и ресуспендировали в 3 мл полной среды (ПС) для культивирования лимфоцитов, состоящей из питательной среды RPMI 1640 (Панэко, Россия) с добавлением 10% сыворотки эмбрионов крупного рогатого скота (Панэко, Россия), 5×10-5М 2-меркаптоэтанола (Merck, США), 2 мМ L-глютамина (Sigma, США), 20 мМ HEPES (Панэко, Россия) и 10 мкг/мл ципрофлоксацина (KRK, Словения). Количество спленоцитов в суспензии подсчитывали в камере Горяева в присутствии смеси красителей 1% трипанового синего и 1% эозина в соотношении 1:1 и доводили до концентрации 107кл/мл.

3.1. Активация лимфоцитов мыши.

Смесь клеток селезенки и лимфатических узлов мыши в количестве 5×107 клеток помещали в 5 мл ПС в культуральные флаконы с площадью роста 25 см2 (Costar, США). В среду дополнительно вносили митоген Т-лимфоцитов конканавалин А (КонА, Sigma, США) до конечной концентрации 3 мкг/мл и интерлейкин-2 (ИЛ-2) до конечной концентрации 10 МЕ/мл (Neto Е.Н., Coelho A.L., Sampaio A.L. и др. Activation of human T lymphocytes via integrin signaling induced by RGD-disintegrins. Biochim.Biophys. Acta.2007, 1773(2): 176-84). Лимфоциты культивировали в СО2-инкубаторе при 37°С, 5% СО2 в течение 24 часов. Данный подход обеспечивал активацию и пролиферацию только Т-лимфоцитов селезенки и лимфатических узлов мыши (Neveu P.J., Perdoux D. Polyclonal activation of guinea pig spleen lymphocytes- Int. Arch. Allergy. Appl. Immunol. 1985; 78(4):401-405).

4. Трансдукция Т-лимфоцитов мыши вирусными частицами.

Трансдукцию активированных Т-лимфоцитов мыши вирусными частицами, содержащими ген α-цепи ТКР 1D1 (SEQ ID NO 1), проводили в два этапа.

1) Через 24 часа после активации подсчитывали количество спленоцитов с помощью камеры Горяева и переносили в 6-луночный планшет (Costar, США) из расчета 12×106 клеток на лунку. Затем среду отбирали и добавляли вирус-содержащую среду роста клеток HEK293T из расчета 6 мл среды на одну лунку и 3 мл ПС. Конечный объем среды в каждой лунке составлял 9 мл. В лунки планшета также вносили КонА (3 мкг/мл), ИЛ-2 (10МЕ/мл) и полибрен до конечной концентрации 8 мкг/мл. Клетки центрифугировали (спинокулировали) при 2000 g в течение 90 мин при комнатной температуре. Затем лимфоциты помещали в СО2-инкубатор.

2) По истечении 16-20 часов культивирования проводили еще одну смену среды роста спленоцитов на вирус содержащую среду и повторно выполняли трансдукцию спленоцитов при тех же параметрах спинокуляции. По окончании второй спинокуляции спленоциты культивировали в СО2-инкубаторе при 37°С, 5% СО2 в течение 2 часов, после чего проводили замену вирус-содержащей среды на свежую ПС, содержащую ИЛ-2 и КонА в указанных выше концентрациях, и продолжали культивирование в течение 48 часов при тех же условиях.

5. Оценку уровня трансдукции Т- лимфоцитов проводили путем анализа методом проточной цитометрии (FacsCantoII, Beckton Dickenson, США) с использованием флуоресцентно меченных антител к молекуле CD3, которая является специфическим маркером Т- лимфоцитов. Уровень трансдукции определяли по экспрессии белка GFP.

Анализ клеток на проточном цитофлуориметре. При анализе на проточном цитофлуориметре исключали слипшиеся клетки, а также мертвые клетки, окрашенные пропидий йодидом. Среди одиночных живых лимфоцитов определяли Т-лимфоциты по наличию маркера CD3, для которых оценивают уровень экспрессии белка GFP по флуоресценции в области спектра 520 нм.

5.1. Обработка результатов цитофлюориметрического анализа.

Результаты анализа клеток на проточном цитофлуориметре обрабатывали при помощи программного обеспечения FlowJo (Beckton Dickenson, США). Функциональную эффективность трансдуцированных Т-лимфоцитов определяли при уровне трансдукции не менее 50% (Фиг.).

6. Оценка функциональной активности трансдуцированных Т-лимфоцитов в системе in vitro.

Т-лимфоциты, трансдуцированные геном α-цепи 1D1 (SEQ ID NO 1), в количестве 500×103 клеток помещали в культуру с клетками лимфомы EL-4 в соотношении трансдуцированные Т-лимфоциты: EL-4 = 10:1. Культивирование проводили в 96 луночных пластиковых планшетах (Costar, США) в ПС во влажной атмосфере в СО2-инкубаторе при 37°С, 5% СО2 в течение 48 часов. В качестве контроля использовали активированные нетрансдуцированные клетки, а также Т-клетки, трансдуцированные GFP, в аналогичном соотношении.

По истечении времени инкубации методом проточной цитофлуориметрии проводили анализ относительного количества опухолевых клеток, которые определяли при помощи флюоресцентно меченых антител к маркеру Кb (Табл. 1).

Было показано, что Т-лимфоциты, трансдуцированные геном α-цепи 1D1a (SEQ ID NO 1), значительно быстрее устраняют опухолевые клетки лимфомы EL-4 in vitro по сравнению с нетрансдуцированными клетками (контроль). При этом данный эффект являлся специфичным, т.к. в культуре с Т- лимфоцитами, трансдуцированными GFP, обнаруженное количество EL-4 было сопоставимо с контролем (14.1% и 17.2%, соответственно, Табл. 1).

7. Оценка функциональной активности трансдуцированных Т-лимфоцитов в системе in vivo.

7.1. Адоптивный перенос трансдуцированных Т-лимфоцитов. После оценки уровня трансдукции Т-лимфоциты, трансдуцированные ретровирусными частицами, содержащими ген α-цепи ТКР 1D1 (SEQ ID NO 1), вводили внутрибрюшинно мышам линии B10.D2(R101) из расчета 5,0×106 трансдуцированных клеток в 1 мл фосфатно-солевого буфера. В качестве контроля использовали нетрансдуцированные Т-лимфоциты, которые активировали и культивировали аналогично клеткам, подвергшимся трансдукции. Контрольные Т-лимфоциты вводили в количестве, равном количеству адоптивно перенесенных трансдуцированных Т- лимфоцитов.

7.2. Приготовление лаважа брюшной полости.

Через 6 дней после введения клеток опухоли и адоптивного переноса Т-лимфоцитов, мышей умерщвляли методом цервикальной дислокации и извлекали клетки из брюшной полости. Для этого в перитонеальную полость мышей вводили 2 мл охлажденной среды RPMI-1640 и отбирали жидкость. Полученную клеточную суспензию отмывали центрифугированием (200×g, 5 мин) и подсчитывали количество клеток при помощи камеры Горяева в присутствии смеси красителей трипанового синего и эозина. Часть клеток (1×106) использовали для анализа на проточном цитофлуориметре, окрашивая флюоресцентно меченными антителами к молекуле Кb, для определения опухолевых клеток EL-4. Статистическую обработку данных проводили по статистическому критерию для малых выборок Манна-Уитни.

При адоптивном переносе трансдуцированных лимфоцитов в соотношении киллер: мишень 10:1 было обнаружено в 25 раз меньшее количество опухолевых клеток в лаваже мышей - реципиентов на 6 день после иммунизации EL-4 по сравнению с животными, которым вводили нетрансдуцированные лимфоциты (Табл. 2).

8. Определение продолжительности сохранения состояния иммунологической памяти у животных с перенесенными трансгенными Т-лимфоцитами.

Для оценки защитного потенциала трансдуцированных Т-лимфоцитов проводили адоптивный перенос трансдуцированных или нетрансдуцированных (контрольных) Т-лимфоцитов в количестве 5,0×106 клеток/мышь. Через 7, 14 или 28 дней мышей иммунизировали клетками лимфомы EL-4 в дозе 5,0×105 клеток/мышь. Таким образом, соотношение введенных Т-клеток и клеток EL-4 составило 10:1. Группы были составлены из 5 животных.

Защитный эффект трансдуцированных Т-лимфоцитов проявлялся следующим образом: введение лимфоцитов за 7 и 14 дней до иммунизации EL-4 способствовало полному либо ускоренному отторжению клеток опухоли к 6 дню и не проявлялся в случае адоптивного переноса за 28 дней до иммунизации (Табл. 3). Аналогичный защитный эффект наблюдали при соотношении киллер: мишень = 20:1.

Таким образом, при внутрибрюшинном адоптивном переносе трансдуцированных Т-лимфоцитов в соотношении 10:1 или 20:1 к клеткам лимфомы EL-4 формируется иммунологическая защита мышей дикого типа B10.D2 (R101) сроком на 14 дней.

Способ создания противоопухолевой иммунологической защиты организма к клеткам лимфомы EL-4 при помощи трансдукции Т-лимфоцитов ретровирусными частицами, содержащими ген ТКР, представленный последовательностью SEQ ID NO:1, характеризующийся тем, что трансгенез Т-лимфоцитов мыши in vitro проводится путем введения гена только α-цепи ТКР, специфичного к клеткам опухоли, а затем производится адоптивный перенос животным Т-лимфоцитов, модифицированных ретровирусными частицами, содержащими ген ТКР, представленный последовательностью SEQ ID NO:1, с последующей функциональной оценкой активности Т-лимфоцитов in vivo.
Способ создания противоопухолевой иммунологической защиты к клеткам лимфомы EL-4
Способ создания противоопухолевой иммунологической защиты к клеткам лимфомы EL-4
Источник поступления информации: Роспатент

Showing 1-10 of 174 items.
13.01.2017
№217.015.88dc

Одномодовый плазмонный волновод

Изобретение относится к плазмонной интегральной оптике и может быть использовано при конструировании компонентов плазмонных устройств различного назначения. Одномодовый плазмонный волновод, выполненный в виде заполненного диэлектриком протяженного V-образного канала в пленке металла на...
Тип: Изобретение
Номер охранного документа: 0002602737
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b204

Квантовый генератор случайных чисел

Изобретение относится к квантовым генераторам случайных чисел и может быть использовано в криптографии. Техническим результатом является повышение качества, степени надежности и скорости генерации. Устройство содержит источник фотонов, однофотонный детектор, измеритель времени, задающий...
Тип: Изобретение
Номер охранного документа: 0002613027
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b401

Генератор плазмонных импульсов терагерцовой частоты

Изобретение относится к технике генерации импульсов терагерцовой частоты. Генератор плазмонных импульсов терагерцовой частоты включает спазер в режиме пассивной модуляции добротности на основе активной среды, помещенной в резонансную структуру, образованную в тонкой пленке металла, размещенной...
Тип: Изобретение
Номер охранного документа: 0002613808
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c0b4

Устройство для изготовления интегральной оптической волноводной структуры

Изобретение относится к области изготовления трехмерных интегральных оптических волноводных структур. Устройство для изготовления интегральной оптической волноводной структуры в оптически прозрачном образце с показателем преломления n, включающее в себя трехмерную систему перемещения...
Тип: Изобретение
Номер охранного документа: 0002617455
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.d079

Устройство для сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для проведения подводной многомерной сейсмической разведки на акваториях, покрытых льдом. Устройство для сейсмической разведки снабжено буксируемой капсулой. Капсула состоит из правого и левого бортов, в которых на специальных...
Тип: Изобретение
Номер охранного документа: 0002621272
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d304

Способ подводной сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для поиска и уточнения строения месторождений углеводородов и других полезных ископаемых на акваториях, покрытых льдом круглогодично или большую часть года, и повышения эффективности процесса их освоения. При реализации...
Тип: Изобретение
Номер охранного документа: 0002621638
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d32a

Сеть квантового распределения ключей

Изобретение относится к области сетевой волоконно-оптической квантовой криптографии - к защищенным информационным сетям с квантовым распределением криптографических ключей. Технический результат - создание сети с возможностью реконфигурации, а также обладающей большей выживаемостью при потере...
Тип: Изобретение
Номер охранного документа: 0002621605
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.de15

Подводный буровой модуль для бурения нефтяных и газовых скважин

Изобретение относится к горной промышленности, в частности к буровым модулям, предназначенным для бурения нефтяных и газовых скважин на шельфах морей. Подводный буровой модуль, имеющий открытую рамную конструкцию, включает буровую вышку с вертикальными направляющими для бурильной машины,...
Тип: Изобретение
Номер охранного документа: 0002624841
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e62e

Система детектирования одиночных фотонов

Изобретение относится к области оптического приборостроения и касается системы детектирования одиночных фотонов. Система включает в себя приемный модуль с приемной зоной, блок ориентации, оптический модуль и световод, который имеет оболочку с первым и вторым окончаниями и сердцевину с первым и...
Тип: Изобретение
Номер охранного документа: 0002627025
Дата охранного документа: 02.08.2017
29.12.2017
№217.015.f0bd

Композиция для получения полупроницаемой пористой мембраны

Изобретение относится к составу формовочного раствора для получения нетканого материала методом электроформования и может использоваться для получения водоупорной, воздухо-, паропроницаемой мембраны, а также регулирования комплекса эксплуатационных свойств мембранного материала. Композиция...
Тип: Изобретение
Номер охранного документа: 0002638981
Дата охранного документа: 19.12.2017
Showing 1-10 of 11 items.
27.05.2013
№216.012.438d

Средство, индуцирующее дифференцировку стволовых кроветворных клеток в тромбоциты

Изобретение относится к области медицины. Заявлено средство, индуцирующее дифференцировку стволовых кроветворных клеток в тромбоциты, представляющее собой рекомбинантный циклофилин А человека (рчЦфА). Изобретение обеспечивает расширение ассортимента средств указанного назначения. 2 ил.
Тип: Изобретение
Номер охранного документа: 0002482870
Дата охранного документа: 27.05.2013
20.07.2015
№216.013.649e

Штамм escherichia coli bl21(de3)gold/petmin-cypa - продуцент рекомбинантного циклофилина а человека

Изобретение относится к области биотехнологии и касается штамма Escherichia coli BL21(DE3)Gold/pETmin-CypA - продуцента рекомбинантного циклофилина А человека. Охарактеризованный штамм получен путем трансформации клеток штамма BL21(DE3)Gold плазмидой pETmin-CypA. Плазмида имеет размер 5865 пар...
Тип: Изобретение
Номер охранного документа: 0002557305
Дата охранного документа: 20.07.2015
20.02.2016
№216.014.ce4d

Противоопухолевое средство

Изобретение относится к фармацевтической промышленности, а именно к противоопухолевому средству. Противоопухолевое средство, представляющее собой рекомбинантный циклофилин А человека в виде раствора в фосфатном буфере, является продуцентом штамма Escherichia coli (BL21(DE3)Gold/pETCYPopti,...
Тип: Изобретение
Номер охранного документа: 0002575572
Дата охранного документа: 20.02.2016
13.01.2017
№217.015.86a2

Штамм escherichia coli bl21(de3)gold/petcypopti - продуцент рекомбинантного циклофилина а человека

Изобретение относится к области биохимии, генной инженерии и биотехнологии, в частности к штамму Escherichia coli BL21(DE3)GoldpETCYPopti. Настоящий штамм является продуцентом рекомбинантного циклофилина А человека. Штамм получен путем трансформации клеток штамма Escherichia coli BL21(DE3)Gold...
Тип: Изобретение
Номер охранного документа: 0002603283
Дата охранного документа: 27.11.2016
04.04.2019
№219.016.fcdb

Циклофилин а - средство, усиливающее адгезивные свойства тромбоцитов

Предложено средство, усиливающее адгезивные свойства тромбоцитов, представляющее собой циклофилин А. Показано, что циклофилин А, не изменяя количество тромбоцитов, увеличивает коллаген-индуцированную агрегацию тромбоцитов без участия тромбина и не оказывает влияния на АДФ-индуцированную и...
Тип: Изобретение
Номер охранного документа: 0002435607
Дата охранного документа: 10.12.2011
27.04.2019
№219.017.3c90

Рекомбинантный вектор для создания плазмидных генетических конструкций, обладающих повышенной длительностью экспрессии целевых генов

Изобретение относится к области молекулярной генетики, биотехнологии и медицины. Предложен рекомбинантный вектор для создания плазмидных генетических конструкций, обладающих повышенной длительностью экспрессии целевых генов, содержащий гексамер модифицированного S/MAR элемента из человеческого...
Тип: Изобретение
Номер охранного документа: 0002686102
Дата охранного документа: 24.04.2019
15.06.2019
№219.017.8346

Линия мышей, трансгенных по альфа-цепи т-клеточного рецептора клеток памяти, для изучения их функциональной активности

Изобретение относится к области молекулярной биотехнологии, в частности к кассетному вектору, содержащему полноразмерную кДНК альфа-цепи Т-клеточного рецептора клеток памяти, способу получения данного вектора, а также способу получения линии мышей, трансгенных по альфа-цепи Т-клеточного...
Тип: Изобретение
Номер охранного документа: 0002691484
Дата охранного документа: 14.06.2019
21.11.2019
№219.017.e3e3

Способ создания противоинфекционной иммунологической защиты к salmonella typhimurium и listeria monocytogenes с помощью трансгенеза т-лимфоцитов

Изобретение относится к области биохимии, в частности к способу адоптиной клеточной терапии для профилактики или лечения инфекционных заболеваний, вызванных S.thyphimurium, L.monocytogenes. Изобретение позволяет эффективно лечить заболевания, вызванные S.thyphimurium, L.monocytogenes. 8 ил., 1 пр.
Тип: Изобретение
Номер охранного документа: 0002706554
Дата охранного документа: 19.11.2019
31.07.2020
№220.018.39a8

Биомедицинский клеточный продукт с анти-her2 специфической противоопухолевой активностью

Изобретение относится к области биотехнологии, конкретно к биомедицинским клеточным продуктам, и может быть использовано для экспрессии анти-HER2 CAR. Полученный продукт обладает анти-HER2 специфической противоопухолевой активностью и представлен популяциями анти-HER2 CAR-NK и анти-HER2 CAR-T...
Тип: Изобретение
Номер охранного документа: 0002728361
Дата охранного документа: 29.07.2020
12.04.2023
№223.018.4401

Биомедицинский клеточный продукт со специфической противоопухолевой активностью, представленный популяциями лимфокин-активированных киллеров и анти-her2 car-γδτ-оил и анти-her2 car-t-nk

Изобретение относится к области биотехнологии, конкретно к биомедицинскому клеточному продукту со специфической противоопухолевой активностью, представленному двумя популяциями клеток: анти-HER2 CAR-T-NK и CAR-γδT-OИЛ, чья эффективность сопровождается одновременной активацией врожденного и...
Тип: Изобретение
Номер охранного документа: 0002786210
Дата охранного документа: 19.12.2022
+ добавить свой РИД