×
10.12.2019
219.017.ebe8

Результат интеллектуальной деятельности: Способ эксплуатации обводненной газовой или газоконденсатной скважины

Вид РИД

Изобретение

№ охранного документа
0002708430
Дата охранного документа
06.12.2019
Аннотация: Изобретение относится к нефтегазодобывающей промышленности, а именно к эксплуатации обводненных газовых или газоконденсатных скважин, и может быть использовано на нефтегазоконденсатных месторождениях при разработке газовых и газоконденсатных залежей на завершающей стадии. Согласно способу осуществляют снабжение скважины основной лифтовой колонной и концентрично размещенной в ней центральной лифтовой колонной с образованием кольцевого пространства между ними, внутри торцевой части центральной лифтовой колонны через каждые 200-250 м от башмака устанавливают диспергаторы в виде кольца с конусообразной поверхностью, при этом высота кольца диспергатора составляет 5-7 мм, ширина - 10-14 мм, а угол между конусной внутренней поверхностью кольца и внутренней поверхностью трубы составляет 130-140°, торец центральной лифтовой колонны размещают ниже торца основной лифтовой колонны, а отбор газа осуществляют одновременно по центральной лифтовой колонне и кольцевому пространству. При этом по центральной лифтовой колонне добывают газожидкостную смесь, отбор газа из нее ведут с дебитом, в полтора раза превышающим дебит, необходимый для выноса жидкости из колонны, а дебит газа по кольцевому пространству задают такой величины, чтобы он не превышал значения рабочего дебита. Газожидкостную смесь центральной лифтовой колонны сепарируют на поверхности с получением газа и жидкости, жидкость утилизируют после извлечения ценных компонентов, а из жидкости газоконденсатных скважин предварительно выделяют конденсат. Технический результат - эффективное удаление жидкости с забоя скважины путем ее подъема на дневную поверхность и эксплуатация обводненных газовых или газоконденсатных скважин на завершающей стадии разработки. 2 ил., 2 табл.

Изобретение относится к нефтегазодобывающей промышленности, а именно к эксплуатации обводненных газовых или газоконденсатных скважин и может быть использовано на нефтегазоконденсатных месторождениях при разработке газовых и газоконденсатных залежей на завершающей стадии.

Известно, что при отборе газа более чем на 80-85% происходит значительное снижение пластового давления, что дает импульс к активному проявлению водонапорного режима, уменьшению дебитов добывающих скважин, подъему газоводяного контакта. Все это приводит к значительному обводнению добывающих скважин с образованием в стволе скважин жидкостных пробок.

По мере накопления в газовом потоке пластовой воды и насыщения газа водой происходит утяжеление извлекаемого из скважины столба газового потока, что приводит к увеличению статического давления в скважине. При этом снижается скорость газового потока, жидкая фаза начинает выпадать из системы и скапливаясь на забое приводит к «самозадавливанию» скважины. Основным способом противодействия выпадению жидкости из газожидкостного потока является поддержание необходимой скорости потока выше критических значений.

С целью устранения указанного явления помимо поддержания скорости потока используют также различные методы и устройства для изменения структуры газожидкостного потока. Известно, что движение разнофазных многокомпонентных систем в трубах по своей природе значительно сложнее, чем движение однофазных сред. Основная сложность заключается в том, что в газожидкостном потоке происходит относительное движение фаз, обусловленное различием их плотностей и вязкостей, а также поверхностным натяжением на границе фаз.

Известен способ дробления и перемешивания газа в жидкости и устройство для его осуществления, содержащий корпус с набором диафрагм и сопло для подачи газовой фазы (см. Муравьев И.М. и др. Исследование движения многокомпонентных смесей в скважинах. -М.: Недра, 1972. - 138 с.).

Недостаток способа заключается в некачественном перемешивании смеси и наличии крупных пузырьков свободного газа в насосно-компрессорных трубах, что отрицательно сказывается при их совместном движении.

Известен способ изменения структуры газожидкостного потока с помощью устройств «Диспергатор», предназначенный для дробления и перемешивания газа в жидкости в системах сбора нефти и газа (см. А.с. №970039, опубл. 30.10.1982)

Недостатком устройства является необходимость работы в горизонтальном положении, а также раздельный ввод жидкости и газа.

Известен способ диспергирования жидкости в газожидкостной поток с помощью устройства «Диспергатор для выноса водных скоплений из газовых скважин» (см. патент РФ №66413, опубл. 10.09.2007).

Недостатками способа являются возможность его применения только после резкого снижения дебита скважины, установка устройства в жидкости ниже ее уровня и высокое его газодинамическое сопротивление.

Наиболее близким к предлагаемому изобретению является способ эксплуатации газовой скважины (см. патент РФ №2513942, опубл. 20.04.2014), по которому газовую скважину снабжают основной лифтовой колонной и концентрично размещенной в ней центральной лифтовой колонной с образованием кольцевого пространства между ними. Торец центральной лифтовой колонны размещают ниже торца основной лифтовой колонны на 1-3 м, а отбор газа осуществляют одновременно по центральной лифтовой колонне и кольцевому пространству. При этом отбор газа по центральной лифтовой колонне ведут с дебитом, в полтора раза превышающим дебит, необходимый для выноса жидкости из колонны, а дебит газа по кольцевому пространству задают такой величины, чтобы он не превышал значения рабочего (общего) дебита скважины.

Способ обеспечивает оптимизацию режима работы газовых скважин, позволяющую эксплуатировать их без остановки для удаления жидкости.

Недостатком способа является небольшой объем поднимаемой на дневную поверхность жидкости из-за ее выделения из газожидкостного потока и стекания по внутренней стенке лифтовой колонны, что связано с пленочно-дисперсионной (стержневой) структурой образующего газожидкостного потока, и невозможность эксплуатации обводненных и обводняющихся скважин.

Задачей изобретения является создание способа эксплуатации обводненной газовой или газоконденсатной скважины, обеспечивающего эффективное удаления жидкости с забоя скважины путем ее подъема на дневную поверхность при сохранении дебита газа.

Поставленная задача решается тем, что в способе эксплуатации обводненной газовой или газоконденсатной скважины осуществляют снабжение скважины основной лифтовой колонной и концентрично размещенной в ней центральной лифтовой колонной с образованием кольцевого пространства между ними, торец центральной лифтовой колонны размещен ниже торца основной лифтовой колонны, а отбор газа осуществляют одновременно по центральной лифтовой колонне и кольцевому пространству, при этом по центральной лифтовой колонне газожидкостную смесь пропускают через диспергаторы, устанавливаемые внутри торцевой части центральной лифтовой колонны через каждые 200-250 м от башмака, для диспергирования жидкости с внутренней поверхности колонны в газожидкостной поток, отбор газа из нее ведут с дебитом, в полтора раза превышающим дебит, необходимый для выноса жидкости из нее, а дебит газа по кольцевому пространству задают такой величины, чтобы он не превышал значения рабочего дебита. В качестве диспергатора используют устройство в виде кольца с конусообразной поверхностью, при этом высота конуса диспергатора составляет 5-7 мм, ширина - 10-14 мм, а угол между конусной внутренней поверхностью кольца и внутренней поверхностью трубы составляет 130-140°. Газожидкостную смесь из центральной лифтовой колонны сепарируют на поверхности с получением газа и жидкости, жидкость утилизируют после извлечения ценных компонентов, а из жидкости газоконденсатных скважин предварительно выделяют конденсат.

Заявленное изобретение поясняется следующим графическим материалом. На фиг. 1 схематично изображен разрез газовой скважины, оборудованной концентрической лифтовой колонной с установленной в центральной лифтовой колонне деспергаторами.

Скважина состоит из эксплуатационной колонны 1, основной лифтовой колонны 2, концентрично размещенной в ней центральной лифтовой колонны 3 с образованием межтрубного кольцевого пространства 4. В центральной лифтовой колонне размещены диспергаторы 5. Нижний торец центральной лифтовой колонны 3 размещен ниже торца основной лифтовой колонны 2. Скважина оборудована фонтанной арматурой 6.

На фиг. 2 изображен фрагмент центральной лифтовой колонны с диспергатором, на котором:

7 - торец трубы лифтовой колонны;

5 - диспергаторное кольцо;

а - ширина диспергаторного кольца;

h - высота конуса диспергаторного кольца;

D - внешний диаметр диспергаторного кольца;

d - внутренний диаметр диспергаторного кольца.

Принцип работы диспергаторного кольца для обеспечения возврата жидкости с внутренней поверхности трубы в общий поток газожидкостной смеси основан на использовании явления гидродинамической неустойчивости Рэлея-Тейлора (Taylor G.l. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. Roy. Soc., v.A201, p. 192, 1950) и связанного с нею турбулентного перемешивания. Неустойчивость Рэлея-Тейлора развивается на границе раздела двух сред разной плотности, движущейся с ускорением, направленным от более легкой среды к более тяжелой. Газ легче конденсированной среды (жидкости) и поэтому граница между газом и жидким слоем будет неустойчивой, если ускорение направлено от газа к жидкости.

При попадании жидкостного кольца, движущегося за счет взаимодействия с газовым потоком вдоль стенки трубы, на конусную поверхность диспергатора, вектор момента импульса частиц жидкости перенаправляется под углом 45° к вектору момента импульса частиц газа. При достижении вершины конуса поток жидкости разрывается потоком газа в конечном итоге на устойчивые капли, которые вновь переориентируют свой момент импульса, теперь уже вверх по направлению движения потока газа. В результате практически весь объем жидкости диспергируется в газе и в дальнейшем подъем жидкости осуществляется уже не за счет трения слоев газа и жидкости, а за счет силы сопротивления среды при падении в ней частиц по закону Ньютона. Последнее в плане подъема жидкости значительно эффективнее.

Известно, что границы существования пленочно-диспергированной и эмульсионной структур потока мало зависят от диаметра труб и определяются в основном степенью турбулизации потока и свойствами сосуществующих фаз. Предлагаемый способ способствуют переходу пленочно-диспергированной структуры газоводяного потока в эмульсионную структуру капельно-туманного типа, т.к. при этом уже жидкость диспергируется в газе, что приводит к увеличению жидкости в газожидкостном потоке.

При увеличении интервала установки диспергатора более 250 м уменьшается количества жидкости в газожидкостном потоке из-за ее выпадения из системы. Уменьшение интервала установки диспергатора ниже 200 м приводит к повышению газодинамического сопротивления и снижению дебита газа.

Уменьшение высоты кольца диспергатора менее 5 мм приводит к снижению эффективность диспергации жидкости в газожидкостной поток, а при увеличении высоты кольца более 7 мм увеличивается газодинамическое сопротивление и соответственно снижается дебит газа.

Ширина диспергатора 10-14 мм обеспечивает оптимальный угол между конусной внутренней поверхностью кольца и внутренней поверхностью трубы и надежное соединение с трубой лифтовой колонны. При изменении этих параметров выше или ниже предельных значений приводит к снижению эффективность диспергации жидкости в газожидкостной поток и уменьшению количества удаляемой жидкости из скважины.

При повышении угла между конусной части диспергатора и внутренней поверхностью трубы более 140° снижается эффективность диспергации жидкости в газожидкостной поток, а при его снижении менее 130° увеличивается газодинамическое сопротивление, что приводит к снижению дебита газа.

Преимуществами заявляемого способа эксплуатации обводненной газовой или газоконденсатной скважины являются: обеспечение эффективного удаления жидкости с забоя скважины путем ее подъема на дневную поверхность за счет использования энергии собственного газового потока добычной скважины при сохранении дебита газа и попутное извлечение ценных компонентов из пластовых промышленных вод.

Таким образом, отличительным признаком предлагаемого способа является преобразование пленочно-дисперсионной структуры газожидкостного потока в эмульсионную за счет периодического диспергирования жидкости с внутренней поверхности лифтовой колонны в газожидкостной поток с помощью диспергаторных колец.

Предлагаемое изобретение поясняется конкретным примером осуществления заявленного способа и прилагаемым чертежами (см. фиг. 1 и фиг. 2).

Пример

Для расчета основных показателей необходимо сначала определить скорость и расход газа, обеспечивающие вынос жидкости с забоя скважины движущейся потоком газа, по формулам Тернера [Арбузов В.Н. Эксплуатация нефтяных и газовых скважин. - Томск, Издательство Томского политехнического университета, 2012. - 272 с.].

С учетом данных по разности между минимальным и максимальным давлениями депрессионной воронки на примере Уренгойской площади, а также данных не превышения депрессии в размере 30% от пластового для расчета величина забойного давления Рз принято 16,6 атм.

При этом скорость потока газа составит:

Расход газа для выноса жидкости:

Возможные объемы жидкости, извлекаемые в составе газожидкостного потока, можно оценить по методике Крылова А.П. [Муравьев В.М. Эксплуатация нефтяных и газовых скважин. - М., «Недра», 1973. - 384 с.]

Дебиты жидкости и расход газа определяются по следующим формулам:

где Qмaкс и Qопт максимальный и оптимальный дебит жидкости, т/сут.;

Rмакс и Rопт - максимальный и оптимальный расход газа, м3/т;

d - внутренний диаметр лифтовой колонны НКТ, мм;

ρ - плотность жидкости, кг/м3;

p1 и р2 - давления у башмака и у устья соответственно, Па;

L - длина колонны НКТ, м.

Для расчетов приняты следующие значения: L - 1135 м; d - 62 мм; ρ - 1100 кг/м3; p1 -1660000 Па и р2- 850000 Па.

Расчетные величины дебита жидкости и расхода газа приведены в таблице 1.

Осуществление предлагаемого способа рассматривается на примере его реализации для обводненных скважин Уренгойского газоконденсатного месторождения, где основная газоносная залежь расположена в сеноманских отложениях (1030-1277 м). Исходный дебит опытной скважины - 130 тыс. м3/сут. Пластовые воды содержат промышленные концентрации йода.

В эксплуатационную колонну (1) диаметром 219 мм обводненной газовой скважины спускают основную лифтовую колонну (2) диаметром 168 мм. В нее дополнительно спускают центральную лифтовую колонну (3) диаметром 73 мм с установленными внутри торцевой части труб (7) диспергаторными кольцами (4) через каждые 200-250 м от башмака и размещением нижнего торца центральной лифтовой колонны на 2 м ниже торца основной лифтовой колонны. При этом высота конуса диспергаторного кольца (h) составляет 5-7 мм, ширина (а) - 10-14 мм, а угол между конусной внутренней поверхностью кольца и внутренней поверхностью трубы - 130-140°. Основная и центральная лифтовые колонны образуют между собой кольцевое пространство (4).

Скважину оборудуют фонтанной арматурой (6), включающей трубопроводы устьевой обвязки, первый трубопровод устьевой обвязки соединяют с межтрубным кольцевым пространством (МКП), второй - с трубным пространством центральной лифтовой колонны (ЦЛК).

Выход второго трубопровода устьевой обвязки от ЦЛК соединяют с сепаратором для отделения жидкости.

После подключения скважину осваивают и вводят в эксплуатацию. Отбор газа осуществляют одновременно по центральной лифтовой колонне и кольцевому пространству с подачей газа в газосборный коллектор. Вынос жидкости из скважины происходит по центральной лифтовой колонне за счет управления дебитом газа. Для этого производится непрерывный контроль расхода газа по всей скважине и из межколонного кольцевого пространства. При этом скорость газожидкостной смеси в ЦЛК поддерживается выше 7 м/с.Отбор газа по ЦЛК ведут с дебитом, превышающим в полтора раза минимальный дебит, необходимый для выноса жидкости с забоя скважины (50 тыс. м3/сут). Дебит газа по МКП задают такой величины, чтобы он не превышал значения рабочего дебита (130 тыс. м3/сут). Газожидкостную смесь из ЦЛК подвергают сепарации с получением газа и жидкости. Добываемая жидкость направляют на утилизацию после извлечения ценных компонентов. При наличии в жидкости газового конденсата его предварительно отделяют до извлечения ценных компонентов.

Результаты проведенных исследований с учетом расчетных параметров приведены в таблице 2.

Таким образом, по предлагаемому способу обеспечивается добыча жидкости по центральной лифтовой колонне в объеме 15,1-15,8 м3/сут при сохранении дебита газа. Дебит газа по ЦЛК составляет примерно третью часть от общего объема добычи газа скважины. При этом предотвращается «самозадавливание» и обеспечивается нормальный режим эксплуатации газовой или газоконденсатной скважины.

Реализация способа для газоконденсатных скважин позволит получить вместе с пластовой водой и газовый конденсат. После отделения конденсата пластовые промышленные воды перед утилизацией перерабатывают с получением ценной химической и редкометальной продукции, что обеспечивает диверсификацию продукции скважины и получение дополнительного дохода.

Способ эксплуатации обводненной газовой или газоконденсатной скважины, включающий снабжение скважины основной лифтовой колонной и концентрично размещенной в ней центральной лифтовой колонной с образованием кольцевого пространства между ними, торец центральной лифтовой колонны размещен ниже торца основной лифтовой колонны, а отбор газа осуществляют одновременно по центральной лифтовой колонне и кольцевому пространству, при этом по центральной лифтовой колонне добывают газожидкостную смесь, отбор газа из нее ведут с дебитом, в полтора раза превышающим дебит, необходимый для выноса жидкости из колонны, а дебит газа по кольцевому пространству задают такой величины, чтобы он не превышал значения рабочего дебита, отличающийся тем, что в центральной лифтовой колонне газожидкостную смесь пропускают через диспергаторы в виде кольца с конуснообразной поверхностью, при этом высота кольца диспергатора составляет 5-7 мм, ширина - 10-14 мм, а угол между конусной внутренней поверхностью кольца и внутренней поверхностью трубы составляет 130-140°, устанавливаемые внутри торцевой части центральной лифтовой колонны через каждые 200-250 м от башмака, газожидкостную смесь центральной лифтовой колонны сепарируют на поверхности с получением газа и жидкости, жидкость утилизируют после извлечения ценных компонентов, а из жидкости газоконденсатных скважин предварительно выделяют конденсат.
Способ эксплуатации обводненной газовой или газоконденсатной скважины
Способ эксплуатации обводненной газовой или газоконденсатной скважины
Источник поступления информации: Роспатент

Showing 11-20 of 100 items.
13.01.2017
№217.015.671a

Ингибитор сероводородной коррозии и наводороживания

Изобретение относится к области защиты металлов от сероводородной коррозии и наводороживания в нефтяной и газовой промышленности и может быть использовано для защиты стального оборудования и трубопроводов в средах с высоким содержанием сероводорода. Ингибитор содержит азотсодержащую активную...
Тип: Изобретение
Номер охранного документа: 0002591923
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6852

Способ снижения теплообмена в скважине при разработке многопластового месторождения

Изобретение относится к нефтегазодобывающей промышленности, а именно к способу теплоизоляции скважин, в том числе для скважин, осуществляющих совместно раздельную добычу промышленных пластовых вод и углеводородов многопластового месторождения. В способе снижения теплообмена в скважине при...
Тип: Изобретение
Номер охранного документа: 0002591325
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7c27

Способ низкотемпературного разложения сероводорода с получением водорода и серы

Изобретение относится к области газо- и нефтепереработки, а именно к способам разложения и утилизации сероводорода, и может применяться для производства водорода и серы из сероводорода. Способ включает пропускание сероводорода при температуре 0-35°C через слои катализатора и сорбента серы,...
Тип: Изобретение
Номер охранного документа: 0002600375
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7e53

Установка для исследования каталитических газохимических процессов

Изобретение относится к химической промышленности и может быть использовано, в частности, для исследования каталитических газохимических процессов. Установка для исследования каталитических газохимических процессов включает в себя каталитический реактор, газовый хроматограф, средства контроля...
Тип: Изобретение
Номер охранного документа: 0002601265
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f3d

Способ подвешивания сталеполимерной безмуфтовой гибкой трубы в скважине

Изобретение относится к нефтегазодобывающей промышленности, в частности к эксплуатации скважин на завершающей стадии разработки, а именно к эксплуатации самозадавливающихся газовых скважин. Технический результат заключается в предотвращении вертикального перемещения сталеполимерной безмуфтовой...
Тип: Изобретение
Номер охранного документа: 0002601078
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.85e4

Катализатор процесса окислительной ароматизации низших алканов

Изобретение относится к катализаторам процесса получения ароматических углеводородов из углеводородного сырья. Катализатор окислительной ароматизации низших алканов содержит в мас.%: оксид цинка (в пересчете на металл) 3,00-7,00; оксид галлия (в пересчете на металл) 1,00-3,00; оксид...
Тип: Изобретение
Номер охранного документа: 0002603775
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86de

Катализатор процесса окислительной ароматизации низших алканов

Изобретение относится к катализаторам процесса получения ароматических углеводородов из углеводородного сырья. Катализатор окислительной ароматизации низших алканов содержит в мас.%: оксид цинка (в пересчете на металл) 3,00-7,00, оксид галлия (III) (в пересчете на металл) 0,5-3,00, оксид...
Тип: Изобретение
Номер охранного документа: 0002603774
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8b4e

Летучий ингибитор коррозии

Изобретение относится к области защиты металлов от коррозии и может быть использовано для защиты черных и цветных металлов и изделий из них от атмосферной коррозии при транспортировке и хранении. Летучий ингибитор коррозии (ЛИК) содержит, мас.%: триэтаноламин 0,5-1,0, диметилэтаноламин...
Тип: Изобретение
Номер охранного документа: 0002604164
Дата охранного документа: 10.12.2016
24.08.2017
№217.015.94f8

Биокомпозитный материал для очистки сточных вод от нитрит-, нитрат-, фосфат-ионов

Изобретение относится к биокомпозитному материалу, содержащему нетканый полимер и иммобилизованную ассоциацию микроорганизмов, и может быть использовано при очистке бытовых и промышленных сточных вод от загрязнений нитритами, нитратами, фосфатами. Биокомпозитный материал представляет собой...
Тип: Изобретение
Номер охранного документа: 0002608527
Дата охранного документа: 19.01.2017
24.08.2017
№217.015.9597

Противокоррозионный материал

Изобретение относится к противокоррозионным материалам на основе летучих ингибиторов коррозии и может быть использовано для защиты черных и цветных металлов и изделий из них от атмосферной коррозии при транспортировке и хранении. Противокоррозионный материал на основе силикагеля пропитан...
Тип: Изобретение
Номер охранного документа: 0002608483
Дата охранного документа: 18.01.2017
Showing 11-20 of 27 items.
27.07.2015
№216.013.65d0

Сорбент для очистки и обезвреживания от нефтезагрязнений

Изобретение относится к охране окружающей среды и может быть использовано для очистки и обезвреживания нефтезагрязненных отходов. Предложен сорбент, содержащий негашеную известь в количестве 81,1-83,3%, диатомит в количестве 7,4-12,5% и гидрофобизатор. В качестве гидрофобизатора сорбент...
Тип: Изобретение
Номер охранного документа: 0002557617
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6c0c

Способ прокладки газонефтепровода

Изобретение относится к нефтегазовой промышленности и может быть использовано при проведении строительных и ремонтных работ на газонефтепроводах. В способе прокладки газонефтепровода осуществляют укладку изолированного газонефтепровода в траншею на слой подготовки, обработанный модификатором,...
Тип: Изобретение
Номер охранного документа: 0002559218
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c10

Способ прокладки трубопровода

Изобретение относится к строительству трубопроводов, в частности в нефтегазовой промышленности, и может быть использовано при проведении строительных и ремонтных работ на газонефтепроводах. В способе прокладки трубопровода осуществляют укладку изолированного трубопровода в траншею на слой...
Тип: Изобретение
Номер охранного документа: 0002559222
Дата охранного документа: 10.08.2015
13.01.2017
№217.015.6852

Способ снижения теплообмена в скважине при разработке многопластового месторождения

Изобретение относится к нефтегазодобывающей промышленности, а именно к способу теплоизоляции скважин, в том числе для скважин, осуществляющих совместно раздельную добычу промышленных пластовых вод и углеводородов многопластового месторождения. В способе снижения теплообмена в скважине при...
Тип: Изобретение
Номер охранного документа: 0002591325
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7c27

Способ низкотемпературного разложения сероводорода с получением водорода и серы

Изобретение относится к области газо- и нефтепереработки, а именно к способам разложения и утилизации сероводорода, и может применяться для производства водорода и серы из сероводорода. Способ включает пропускание сероводорода при температуре 0-35°C через слои катализатора и сорбента серы,...
Тип: Изобретение
Номер охранного документа: 0002600375
Дата охранного документа: 20.10.2016
23.08.2018
№218.016.7e90

Способ пайки изделий из оксида алюминия

Изобретение относится к технологии производства алундовой и корундовой керамики и позволяет изготовить длинномерные изделия или изделия сложной формы. Способ пайки изделий из оксида алюминия включает приготовление шликера, нанесение его на обе спаиваемые поверхности, сушку и нагрев соединенных...
Тип: Изобретение
Номер охранного документа: 0002664561
Дата охранного документа: 21.08.2018
01.03.2019
№219.016.ce09

Способ гидравлического разрыва и крепления пластов, сложенных рыхлыми несцементированными породами

Изобретение относится к горной промышленности и может быть использовано для повышения дебитов добычных скважин и приемистости нагнетательных скважин способом ГРП в коллекторах, сложенных рыхлыми несцементированными породами. Технический результат - повышение продуктивности скважин за счет...
Тип: Изобретение
Номер охранного документа: 0002416025
Дата охранного документа: 10.04.2011
01.03.2019
№219.016.cf93

Скважинный каркасно-стержневой сетчатый фильтр

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано в строительстве и эксплуатации нефтяных, газовых, водозаборных и нагнетательных скважин в условиях, осложненных неустойчивостью коллекторов. Скважинный фильтр включает опорный каркас и концентрично...
Тип: Изобретение
Номер охранного документа: 0002433251
Дата охранного документа: 10.11.2011
20.03.2019
№219.016.e5cb

Пневмоклассификатор

Изобретение относится к устройствам для классификации тонкоизмельченного полидисперсного сыпучего материала на две фракции, частицы продукта которых отличаются крупностью и аэродинамическими свойствами. Оно может быть использовано для выделения из продуктов измельчения зерна пшеницы...
Тип: Изобретение
Номер охранного документа: 0002386489
Дата охранного документа: 20.04.2010
29.04.2019
№219.017.42af

Способ получения металлов

Изобретение относится к области электрохимии, в частности к электролитическому получению металлов из их сульфидов. Электролиз ведут с использованием раствора электролита и положительного электрода, содержащего сульфид получаемого металла, порошок вещества, являющегося акцептором атомов серы, и...
Тип: Изобретение
Номер охранного документа: 0002307202
Дата охранного документа: 27.09.2007
+ добавить свой РИД