×
06.12.2019
219.017.ea51

СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к химической промышленности, а именно к технологии получения наночастиц серебра с использованием в качестве восстановителя растительного экстракта. Описан способ получения наночастиц серебра, заключающийся в смешивании с раствором нитрата серебра фруктозо-глюкозного сиропа из растительного экстракта, полученного с использованием пищевой лимонной кислоты при рН 3,0-4,0, нагревании при температуре 80-85°С в течение 10-20 мин и концентрировании при температуре 60-70°С или растворении сухого экстракта - высушенный сироп в горячей воде, затем с полученным фруктозо-глюкозным сиропом готовят золь, для чего смешивают с ним раствор нитрата серебра в соотношении объемов 5(6):1, обрабатывают раствором гидроксида аммония до рН 8,0-8,5 и подвергают воздействию СВЧ-полем при температуре 65-70°С, где растительный экстракт получают из измельченных корней одуванчика лекарственного путем смешивания - диспергирования их с горячей водой в соотношении объемов 1:3(5), нагреванием при температуре 80-90°С в течение 20-30 мин, воздействием ультразвуком в течение 10-15 мин и фильтрованием, а воздействие СВЧ-полем при приготовлении золя осуществляют в течение 20-40 мин. Техническим результатом изобретения является сокращение длительности всего процесса получения наночастиц серебра, сокращение длительности процесса обработки фруктозо-глюкозного сиропа с раствором нитрата серебра СВЧ-полем при получении золя наночастиц, снижение стоимости растительного сырья. 1 табл., 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к химической промышленности, а именно, к технологии получения наночастиц серебра с использованием в качестве восстановителя растительного экстракта.

Для синтеза металлических наночастиц используются различные физические и химические процессы, включая облучение материала ультрафиолетом, аэрозольные технологии, литографию, лазерную абляцию, ультразвуковые поля, фотохимическое восстановление. Однако эти методы дорогостоящие, в них часто используются ядовитые реагенты. В связи с этим особое внимание уделяется альтернативным, экологически безопасным и дешевым методам. К их числу относятся, в частности, «зеленая» химия и применение для получения наночастиц биологических процессов [Горелкин П. Синтез наночастиц с использованием растений / П. Горелкин, Н. Калинина, А. Лав, В. Макаров и др. // Перспективные проекты в нанотехнологиях. - 2012. - №7. - С. 16-22].

Известен способ получения коллоидного раствора наночастиц серебра, который включает растворение в воде AgNO3 и полимера-стабилизатора - карбоксиметилхитина - при его концентрации 0,1-3 мас. % в воде и концентрации AgNO3 3,5-10,1 мМ в растворе карбоксиметилхитина, барботирование инертного газа через слой раствора и гамма-облучение раствора дозой 2-12 кГр с восстановлением ионов серебра в наночастицы серебра. До барботирования в полученный раствор добавляют спирт: изопропиловый спирт или этанол, или этиленгликоль [Патент №2474471 РФ МПК B01J 13/00, C09D 1/00, В82 В 3/00. Коллоидный раствор наночастиц серебра, металл-полимерный нанокомпозитный пленочный материал, способы их получения, бактерицидный состав на основе коллоидного раствора и бактерицидная пленка из металл-полимерного материала / Александрова В.А., Широкова Л.Н.; заявитель и патентообладатель ИНХС РАН.-№2011118785; заявл. 12.05.2011; опубл. 10.02.2013].

К недостаткам способа следует отнести использование дорогостоящих реактивов: спирта и аргона (в качестве инертного газа), а также вредное воздействие гамма-облучения на людей.

Известен способ получения наночастиц с модифицированной лигандной оболочкой, заключающийся в том, что к водному раствору нитрата серебра добавляют раствор стабилизатора, в качестве которого используют 11-меркаптоундекановую кислоту, и раствор восстановителя, в качестве которого используют борогидрид натрия. Образованную на поверхности полученных наночастиц лигандную оболочку модифицируют путем смешивания полученного раствора наночастиц серебра с раствором гомобифункционального вещества - гексаметилендиамина, функциональные группы которого несут заряд, противоположный знаку заряда указанного стабилизатора [Патент №2367512 РФ МПК B01J 13/00, В82В 3/00, C01G 5/00. Способ получения наночастиц с модифицированной лигандной оболочкой / Гребенников Е.П., Адамов Г.Е.; заявитель и патентообладатель ОАО ЦНИТИ «Техномаш». - №2007146615; заявл. 18.12.2007; опубл. 20.09.2009].

К недостаткам способа следует отнести использование токсичного борогидрида натрия, а также применение дорогостоящей и труднодоступной 11-меркаптоундекановой кислоты.

Известен способ получения наночастиц металлов, характеризующийся тем, что приготавливают экстракт из каллуса путем растирания каллусной массы в воде с дальнейшим центрифугированием, смешивают экстракт каллуса с нитратом серебра, инкубируют раствор на шейкере с последующим центрифугированием, промывают полученный продукт. Культуру клеток растения перед получением экстракта каллуса предварительно трансформируют агробактериальным вектором Agrobacterium tumefaciens GV3101/pMP90RK/pPCV002/35S-LoSilA1-nos, содержащим ген силикатеина LoSilA1, который обеспечивает биосинтез мономорфных наночастиц серебра. Изобретение позволяет получать наночастицы серебра размером 20-80 нм [Патент №2477172 РФ МПК B01J 19/00, В82В 3/00, C12N 15/63, B22F 9/24. Способ получения наночастиц металлов / Шкрыль Ю.Н., Булгаков В.П., Веремейчик Г.Н., Авраменко Т.В., Журавлев Ю.Н., Кульчин Ю.Н.; заявитель и патентообладатель Учреждение Рос. Академии наук Биолого-почвенный ин-т Дальневосточного отд-я РАН. - №2011145718; заявл. 10.11.2011; опубл. 10.03.2013].

К недостаткам способа следует отнести:

- дороговизну и трудоемкость производства каллуса табака;

- сложность в подготовке культуры клеток растения перед получением экстракта каллуса (предварительно трансформируют агробактериальным вектором Agrobacterium tumefaciens GV3101/pMP90RK/pPCV002/35S-LoSilA1-nos, содержащим ген силикатеина LoSilA1);

- длительность процесса получения наночастиц серебра (инкубация на шейкере в течение 24 ч с последующим центрифугированием в течение 20 мин);

- большие затраты электроэнергии на центрифугирование (20000 g).

Наиболее близким по технической сущности и достигаемому результату, то есть прототипом, является способ получения наночастиц серебра, заключающийся в смешивании фруктозо-глюкозного сиропа из растительного экстракта с раствором нитрата серебра, в котором в качестве растительного экстракта используют фруктозо-глюкозный сироп из клубней топинамбура, который получают или отжимом сока из клубней топинамбура, смешиванием его с горячей водой в соотношении 1:1(2), с последующим добавлением в полученный раствор пищевой лимонной кислоты до рН 3,0-4,0 и воздействием СВЧ- полем при температуре 80-85°С в течение 20-30 мин и концентрированием при температуре 60-70°С до содержания в фруктозо-глюкозном сиропе не менее 70-80% сухих веществ, или растворением порошка (высушенный сироп) в горячей воде, затем с полученным фруктозо-глюкозным сиропом готовят золь, для чего смешивают с ним раствор нитрата серебра в соотношении объемов 5(6): 1, обрабатывают раствором гидроксида аммония до рН 8,0-8,5 и подвергают воздействию СВЧ-полем при температуре 65-70°С в течение 1,5-2 ч. [Пат. 2611520 РФ, МПК С01G 5/00, В22F 9/24, В01J 19/00, В82Y 40/00. Способ получения наночастиц серебра [Текст] / Никифорова Т.Е., Козлова Е.С.; заявитель и патентообладатель Иван. гос. хим-тех. ун-т. - №2015142753; заявл. 07.10.2015; опубл. 27.02.2017, Бюл. №6.] Недостатками прототипа являются:

- длительность всего процесса получения наночастиц серебра в целом;

- длительность процесса обработки (1,5-2 ч) фруктозо-глюкозного сиропа с раствором нитрата серебра СВЧ-полем при получении золя наночастиц, что приводит к высоким затратам электроэнергии и удорожанию процесса получения наночастиц серебра;

- сравнительная дороговизна растительного сырья. Техническим результатом изобретения является:

- сокращение длительности всего процесса получения наночастиц серебра;

- сокращение длительности процесса обработки фруктозо-глюкозного сиропа с раствором нитрата серебра СВЧ- полем при получении золя наночастиц, что позволит снизить затраты электроэнергии и удешевить процесс получения наночастиц серебра.

- снижение стоимост растительного сырья.

Указанный результат достигается тем, что в способе получения наночастиц серебра, заключающемся в смешивании с раствором нитрата серебра фруктозо-глюкозного сиропа из растительного экстракта, полученного с использованием пищевой лимонной кислоты при рН 3,0-4,0, нагреванием при температуре 80-85°С в течение 10-20 мин и концентрированием при температуре 60-70°С до содержания в фруктозо-глюкозном сиропе не менее 70-80% сухих веществ или растворением сухого экстракта (высушенный сироп) в горячей воде, затем с полученным фруктозо-глюкозным сиропом готовят золь, для чего смешивают с ним раствор нитрата серебра в соотношении объемов 5(6): 1, обрабатывают раствором гидроксида аммония до рН 8,0-8,5 и подвергают воздействию СВЧ- полем при температуре 65-70°С, согласно изобретению, растительный экстракт получают из измельченных корней одуванчика лекарственного путем смешивания (диспергирования) их с горячей водой в соотношении 1:3(5), воздействием ультразвуком течение 5-10 мин и фильтрования, а воздействие СВЧ-полем при приготовлении золя осуществляют в течение 20-40 мин.

Изобретение поясняется чертежами, где на фиг.1 представлено изображение со сканирующего электронного микроскопа (СЭМ - изображение) наночастиц серебра на углеродной подложке, полученных восстановлением фруктозо-глюкозным сиропом (гидролизатом экстрака) из корней одуванчика, на фиг. 2 и 3 представлены электронные спектры поглощения золей наночастиц серебра, полученных при помощи фруктозо-глюкозного сиропа из корней одуванчика и фруктозо-глюкозного сиропа из сухого экстракта из корней одуванчика.

Для осуществления изобретения используют следующие реагенты: Одуванчик лекарственный (Taraxacum officinale) - это широко распространенное неприхотливое многолетнее травянистое растение, которое произрастает на всей территории России за исключением Крайнего Севера. В состав корней одуванчика входят полисахариды, прежде всего фруктозаны и инулин (его содержание колеблется от 20 до 40%), а также небольшие количества пектина, смол и слизей, различные флавоноиды [Губанов И.А., Киселева К.В., Новиков B.C., Тихомиров В.Н. Иллюстрированный определитель растений Средней России. Том 3, Покрытосеменные (двудольные: раздельнолепестные). - М.: Товарищество научных изданий КМК, 2004. - 520 с.].

- пищевая лимонная кислота [ГОСТ 908-2004. Кислота лимонная моногидрат пищевая. Технические условия];

- нитрат серебра [ГОСТ 1277-75. Реактивы. Серебро азотнокислое. Технические условия];

- гидроксид аммония [ГОСТ 3760-79. Реактивы. Аммиак водный. Технические условия].

Изобретение осуществляют следующим образом.

Пример 1.

Сначала готовят растительный экстракт, для чего берут 100 г сырых корней одуванчика лекарственного, измельчают до однородной массы с размером частиц 5 мм, загружают в колбу и заливают горячей водой с соотношением компонентов 1:5(500 мл), нагревают в течение 30 мин при температуре 80°С, затем подвергают воздействию ультразвуком течение 10 мин и отфильтровывают.

Для получения фруктозо-глюкозного сиропа к полученному экстракту прибавляют мелкими порциями пищевую лимонную кислоту (18 г в 100 мл воды) до рН 3,0 и подвергают гидролизу при температуре 85°С в течение 10 мин. Далее гидролизат концентрируют при температуре 60°С до содержания в фруктозо-глюкозном сиропе не менее 70% сухих веществ.

Фруктозо-глюкозный сироп используют как «зеленый» реагент, то есть проводят процесс восстановления серебра фруктозо-глюкозным сиропом в отсутствии какого-либо дополнительного стабилизатора.

Готовят золь смешением растворов нитрата серебра (0,005 моль/л) с фруктозо-глюкозным сиропом в соотношении объемов 1:6. Обработку смеси проводят раствором гидроксида аммония до рН 8,0, так как размеры наночастиц серебра зависят от рН среды. Затем золь подвергают воздействию СВЧ- полем при температуре 70°С в течение 20 мин.

Пример 2.

Сначала готовят растительный экстракт, для чего берут 100 г сырых корней одуванчика лекарственного, измельчают до однородной массы с размером частиц 5 мм, загружают в колбу и заливают горячей водой с соотношением компонентов 1:3(300 мл), нагревают в течение 20 мин при температуре 90°С, затем подвергают воздействию ультразвуком течение 15 мин и отфильтровывают.

Для получения фруктозо-глюкозного сиропа к полученному экстракту прибавляют мелкими порциями пищевую лимонную кислоту (18 г в 100 мл воды) до рН 4,0 и подвергают гидролизу при температуре 80°С в течение 20 мин. Далее гидролизат концентрируют при температуре 70°С до содержания в фруктозо-глюкозном сиропе не менее 80% сухих веществ.

Фруктозо-глюкозный сироп используют как «зеленый» реагент, то есть проводят процесс восстановления серебра фруктозо-глюкозным сиропом в отсутствии какого-либо дополнительного стабилизатора.

Готовят золь смешением растворов нитрата серебра (0,005 моль/л) с фруктозо-глюкозным сиропом в соотношении объемов 1:5. Обработку смеси проводят раствором гидроксида аммония до рН 8,5, так как размеры наночастиц серебра зависят от рН среды. Затем золь подвергают воздействию СВЧ- полем при температуре 65°С в течение 30 мин.

Пример 3.

35 г порошка, полученного высушиванием фруктозо-глюкозного сиропа, с влажностью 5%, заливают 14 мл горячей воды с температурой 65°С и перемешивают до его полного растворения и получения сиропа с содержанием сухих веществ 70%.

Готовят золь смешением растворов нитрата серебра (0,005 моль/л) с фруктозо-глюкозным сиропом в соотношении объемов 1:5. Обработку смеси проводят раствором гидроксида аммония до рН 8,4, так как размеры наночастиц серебра зависят от рН среды. Затем золь подвергают воздействию СВЧ- полем при температуре 66°С в течение 35 мин.

Максимум поглощения в оптическом спектре поглощения образующегося золя серебра составляет 420 нм.

Пример 4.

40 г порошка, полученного высушиванием фруктозо-глюкозного сиропа, с влажностью 6%, заливают 7 мл горячей воды с температурой 70°С и перемешивают до его полного растворения и получения сиропа с содержанием сухих веществ 80%.

Готовят золь смешением растворов нитрата серебра (0,005 моль/л) с фруктозо-глюкозным сиропом в соотношении объемов 1:6. Обработку смеси проводят раствором гидроксида аммония до рН 8,2, так как размеры наночастиц серебра зависят от рН среды. Затем золь подвергают воздействию СВЧ- полем при температуре 68°С в течение 40 мин.

Максимум поглощения в оптическом спектре поглощения образующегося золя серебра составляет 420 нм. Эта длина волны свидетельствуют об образовании наночастц серебра сферической формы диаметром до 40 нм.

Результаты опытов в сравнении с прототипом представлены в таблице.

Полученные наночастицы изучали методом сканирующей электронной микроскопии (СЭМ) с помощью сканирующего электронного микроскопа TESCAN VEGA 3 SBH. Оптические спектры поглощения золей серебра регистрировали в области 300-700 нм на спектрофотометре U-2001 (Япония) в кварцевой кювете, длина оптического слоя 1 см, при комнатной температуре.

На фиг.1 представлено СЭМ- изображение наночастиц серебра на углеродной подложке, полученных восстановлением фруктозо-глюкозным сиропом из корней одуванчика. Использование фруктозо-глюкозного сиропа обеспечивает образование мономорфных частиц металлического серебра сферической формы с преобладающим размером 20-40 нм, небольшая доля наночастиц ассоциирована и имеет размеры до 60 нм.

На фиг. 2 и 3 представлены спектры поглощения золей наночастиц серебра, полученных при помощи фруктозо-глюкозного сиропа из корней одуванчика и фруктозо-глюкозного сиропа из сухого экстракта из корней одуванчика. Максимум поглощения в оптическом спектре поглощения образующегося золя серебра составляет 420 нм. Эта длина волны свидетельствует об образовании наночастиц серебра сферической формы диаметром до 40 нм. Полученный золь наночастиц имеет характерную для наночастиц серебра желтую окраску.

Предлагаемый способ позволяет решить поставленные задачи и достичь ожидаемого технического результата, а именно: сократить длительность всего процесса получения наночастиц серебра, а также сократить длительность процесса обработки фруктозо-глюкозного сиропа с раствором нитрата серебра СВЧ- полем при получении золя наночастиц с 1,5-2 ч до 20-40 мин, что позволит снизить затраты электроэнергии и удешевить процесс получения наночастиц серебра.

В качестве растительного сырья для восстановления серебра использованы корни одуванчика лекарственного, широко распространенного в России, неприхотливого многолетнего травянистого растения, поэтому очень дешевого.

Способ получения наночастиц серебра, заключающийся в смешивании с раствором нитрата серебра фруктозо-глюкозного сиропа из растительного экстракта, полученного с использованием пищевой лимонной кислоты при рН 3,0-4,0, нагреванием при температуре 80-85°С в течение 10-20 мин и концентрированием при температуре 60-70°С или растворением сухого экстракта - высушенный сироп в горячей воде, затем с полученным фруктозо-глюкозным сиропом готовят золь, для чего смешивают с ним раствор нитрата серебра в соотношении объемов 5(6):1, обрабатывают раствором гидроксида аммония до рН 8,0-8,5 и подвергают воздействию СВЧ-полем при температуре 65-70°С, отличающийся тем, что растительный экстракт получают из измельченных корней одуванчика лекарственного путем смешивания - диспергирования их с горячей водой в соотношении объемов 1:3(5), нагреванием при температуре 80-90°С в течение 20-30 мин, воздействием ультразвука в течение 10-15 мин и фильтрованием, а воздействие СВЧ-полем при приготовлении золя осуществляют в течение 20-40 мин.
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА
Источник поступления информации: Роспатент

Showing 1-10 of 67 items.
13.01.2017
№217.015.86e4

Способ приготовления катализатора среднетемпературной конверсии оксида углерода водяным паром

Изобретение относится к способу приготовления катализаторов для среднетемпературной конверсии оксида углерода водяным паром, которые могут быть использованы в промышленности при получении азотоводородной смеси для синтеза аммиака. Способ заключается в механической активации железосодержащего...
Тип: Изобретение
Номер охранного документа: 0002603641
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8ab5

Способ получения смазочной композиции

Настоящее изобретение относится к способу получения смазочной композиции, заключающемуся в измельчении, смешивании, ультразвуковом диспергирующем воздействии композиции, состоящей из смеси, содержащей вспученный вермикулит, модифицированный поверхностно-активными веществами, согласно...
Тип: Изобретение
Номер охранного документа: 0002604202
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9249

Способ регенерации экстракционной воды в производстве полиамида-6

Изобретение относится к химической промышленности, а именно к способу регенерации экстракционной воды в производстве полиамида-6 гидролитической полимеризацией капролактама. Способ заключается в том, что собирают экстракционную воду и охлаждают ее до температуры 6÷10°С с образованием суспензии...
Тип: Изобретение
Номер охранного документа: 0002605694
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a88a

Способ получения катализатора окисления метанола до формальдегида

Изобретение относится к способу получения катализатора окисления метанола до формальдегида и может быть использовано в производстве формальдегида и карбамидо-формальдегидных смол. Способ заключается во взаимодействии железосодержащего компонента с триоксидом молибдена с последующим формованием...
Тип: Изобретение
Номер охранного документа: 0002611419
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aa11

Асфальтобетонная смесь

Изобретение относится к технологии получения дорожно-строительных материалов, а именно асфальтобетонных смесей при строительстве и ремонте автомобильных дорог, строительстве гидротехнических сооружений, в гражданском строительстве. Асфальтобетонная смесь, включающая битум, минеральный материал...
Тип: Изобретение
Номер охранного документа: 0002611801
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.ab98

Гетерогенный катализатор окисления серосодержащих соединений

Изобретение относится к химической промышленности, а именно к получению катализаторов, в частности гетерогенных катализаторов на основе полимерного носителя и производного фталоцианина кобальта, который может быть использован в химической и нефтехимической промышленности для очистки сточных...
Тип: Изобретение
Номер охранного документа: 0002612255
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.addb

Способ регенерации сорбента

Изобретение относится к технологии регенерации сорбентов. Регенерация сорбента включает размещение его в емкости, подачу плазмообразующего газа - кислорода и последующую обработку в диэлектрическом барьерном разряде при напряжении, вкладываемом в разряд 10,0-20,0 кВ. Регенерации подвергают...
Тип: Изобретение
Номер охранного документа: 0002612722
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b23e

Установка для регенерации моторного масла

Изобретение относится к устройствам для регенерации работающих моторных масел и может быть использовано в процессе эксплуатации автомототехники с двигателями внутреннего сгорания. Установка для регенерации моторного масла, содержащая маслозаборник, систему трубопроводов, в том числе и гибких,...
Тип: Изобретение
Номер охранного документа: 0002613558
Дата охранного документа: 17.03.2017
25.08.2017
№217.015.b305

Способ получения лантансодержащего металлоорганического каркасного соединения трёхмерной структуры на основе терефталевой кислоты

Изобретение относится к химической промышленности, а именно к получению лантансодержащего металлоорганического каркасного соединения формулы La(ВDС)(НO) трехмерной структуры на основе терефталевой кислоты, которое можно использовать в качестве катализатора различных процессов, в том числе...
Тип: Изобретение
Номер охранного документа: 0002613976
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.bb54

Реактор для каталитической паровой и пароуглекислотной конверсии углеводородов

Изобретение относится к реактору для каталитической паровой и пароуглекислотной конверсии углеводородов, содержащему цилиндрический корпус с эллиптическим дном, закрытый крышкой, при этом во внутренней полости корпуса вдоль цилиндрической его части закреплены на крышке множество вертикальных...
Тип: Изобретение
Номер охранного документа: 0002615768
Дата охранного документа: 11.04.2017
Showing 1-10 of 22 items.
20.10.2013
№216.012.75da

Способ извлечения ионов тяжелых металлов из водных растворов

Изобретение может быть использовано для совершенствования мембранных и сорбционных технологий, в водоподготовке, при разработке технологий утилизации ионов тяжелых металлов из водных растворов и сточных вод. Для осуществления способа проводят контактирование водных растворов в течение 1-20 мин...
Тип: Изобретение
Номер охранного документа: 0002495830
Дата охранного документа: 20.10.2013
27.08.2014
№216.012.f0bc

Композиционный строительный материал

Изобретение относится к составу композиционных строительных материалов, включающих цементную матрицу, армированную целлюлозосодержащими материалами, и может быть использовано в промышленности строительных материалов. Технический результат - создание композиционного строительного материала для...
Тип: Изобретение
Номер охранного документа: 0002527447
Дата охранного документа: 27.08.2014
10.06.2015
№216.013.53dc

Пластичная смазка

Настоящее изобретение относится к пластичной смазке, содержащей смесь двух масел, одно из которых индустриальное, литиевое мыло 12-оксистеариновой кислоты, политетрафторэтилен и полисилоксановую жидкость, суспензию стеарата и ацетата меди в касторовом масле, которая дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002552989
Дата охранного документа: 10.06.2015
20.08.2016
№216.015.4b90

Способ получения ароматизированного текстильного материала

Изобретение относится к текстильной промышленности и касается способа получения ароматизированного текстильного материала. Способ заключается в обработке материала микроэмульсией, содержащей микрокапсулы, образованные полимерным соединением с инкапсулированными в них эфирными маслами, отжиме и...
Тип: Изобретение
Номер охранного документа: 0002594422
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.7209

Способ производства текстильного материала, содержащего нано- и микрокапсулированные биологически активные вещества с замедленным высвобождением (варианты)

Изобретение направлено на усиление и увеличение продолжительности лечебного воздействия биологически активных веществ на кожный покров пациента в области пораженных зон при лечении пролежней и ожогов. Указанный технический результат достигается тем, что текстильный материал обрабатывают нано- и...
Тип: Изобретение
Номер охранного документа: 0002596452
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.767a

Способ извлечения ионов тяжелых металлов из водных растворов

Изобретение относится к способам извлечения ионов тяжелых металлов сорбцией на природных целлюлозосодержащих сорбентах из растворов различного состава и может быть использовано для совершенствования мембранных и сорбционных технологий, в водоподготовке, при разработке технологий утилизации...
Тип: Изобретение
Номер охранного документа: 0002598483
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.910c

Способ получения фруктозо-глюкозного сиропа из клубней топинамбура

Изобретение относится к пищевой промышленности. Способ получения фруктозо-глюкозного сиропа из клубней топинамбура включает мойку и измельчение топинамбура, экстрагирование в течение 15-20 мин, отделение экстракта от твердой фазы, концентрирование и расфасовку. Причем после измельчения из...
Тип: Изобретение
Номер охранного документа: 0002605770
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a61c

Способ извлечения ионов тяжелых металлов из водных растворов

Изобретение относится к способам извлечения ионов тяжелых металлов сорбцией на природных целлюлозосодержащих сорбентах, из растворов различного состава, образующихся в результате проведения разнообразных технологических процессов, и может быть использовано для совершенствования мембранных и...
Тип: Изобретение
Номер охранного документа: 0002608029
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.aac5

Способ получения наночастиц серебра

Изобретение относится к области нанотехнологий. Для получения наночастиц серебра смешивают фруктозо-глюкозный сироп из клубней топинамбура с раствором нитрата серебра. Для получения фруктозо-глюкозного сиропа отжимают сок из клубней топинамбура и смешивают его с горячей водой в соотношении...
Тип: Изобретение
Номер охранного документа: 0002611520
Дата охранного документа: 27.02.2017
20.01.2018
№218.016.1109

Способ извлечения ионов тяжелых металлов из водных растворов

Изобретение может быть использовано в мембранных и сорбционных технологиях, в водоподготовке, при разработке технологий утилизации ионов тяжелых металлов из водных растворов и сточных вод. Для осуществления способа водные растворы, содержащие ионы тяжелых металлов, контактируют при комнатной...
Тип: Изобретение
Номер охранного документа: 0002633913
Дата охранного документа: 19.10.2017
+ добавить свой РИД