×
01.12.2019
219.017.e97a

Результат интеллектуальной деятельности: Способ количественного определения хлоридов в концентрате тетраметиламмония гидроксида

Вид РИД

Изобретение

Аннотация: Изобретение относится к аналитической химии, в частности, к способу количественного определения хлоридов в концентрате тетраметиламмония гидроксида, который может быть использован в исследовательской и производственной практике. Сущность способа: количественное определение хлоридов в концентрате тетраметиламмония гидроксида осуществляют полярографически на фоне серной или азотной кислоты с концентрацией от 5 до 10% при дифференциальном токовом режиме, а расчет концентрации хлоридов проводят по градуировочному графику или по формулам. Техническим результатом предлагаемого изобретения является создание полярографического метода анализа хлоридов в концентрате тетраметиламмония гидроксида, повышающего точность анализа концентрации хлоридов в продукте и чувствительность метода, что обеспечит ему практическое использование. 1 табл., 4 ил.

Изобретение относится к аналитической химии, в частности, к способу количественного определения хлоридов в концентрате тетраметиламмония гидроксида, который может быть использован в исследовательской и производственной практике. Концентрат тетраметиламмония гидроксида, представляющий собой от 20 до 25%-ный водный раствор гидроксида тетраметиламмония, является исходным продуктом для получения безметального проявителя фоторезистов, широко используемых в микроэлектронном производстве. Концентрат гидроксида тетраметиламмония в промышленном масштабе преимущественно получают мембранным электролизом водного раствора хлорида тетраметиламмония [Пат. США №352068, 1966, Кл. 204-72, В01к 1/00; Пат. США №4394226, 1983, МКИ С25В 1/00; Заявка Японии №63-109183, 1983, МКИ С25В 3/00; Заявка Японии №57-181385, 1982, МКИ С25В 3/00] и в результате неселективности катионообменной мембраны в образующийся продукт попадают хлорид-ионы, снижая этим его качество. Для очистки концентрата гидроксида тетраметиламмония от хлоридов используют различные технологические приемы, в частности, применяют электродиализ, используют повторный мембранный электролиз, а также осуществляют очистку на ионообменных смолах или сначала получают разбавленные растворы гидроксида тетраметиламмония на ионообменных смолах, а затем следует мембранный электролиз.

В [Пат. РФ №2413796, 2010, МПК С25В 3/00] отмечается, что в концентрате тетраметиламмония гидроксида содержание хлоридов (ионных и латентных) не должна быть более 0,4%. Однако в производстве интегральных схем с нанометровыми топологическими нормами к безметальному проявителю, изготовленному из концентрата тетраметиламмония гидроксида, предъявляются еще более жесткие требования по содержанию примесей хлоридов Их содержание в концентрате тетраметиламмония гидроксида должно быть не более 1×10-4 % масс.

Поэтому возникает острая необходимость в разработке высокочувствительного, простого, точного, легко реализуемого в производственных условиях способа количественного анализа хлоридов в концентрате тетраметиламмония гидроксида, приводящего к обеспечению требуемого его качества и к оптимизации процесса электросинтеза концентрата тетраметиламмония гидроксида.

Широкое распространение количественного определения хлоридов в растворах получили методы осаждения, основанные на реакциях образования труднорастворимых солей серебра [Крешков А.П. Основы аналитической химии. Из-во Химия, 1970, 471 с.]. К ним относится метод Мора, в основе которого лежит реакция взаимодействия ионов серебра с ионами галогенов: Ag+ + Cl- = AgCl↓. Для установления конечной точки титрования в анализируемый неокрашенный раствор добавляют хромат калия, образующий с избытком серебра осадок по реакции: 2Ag+ + CrO42- = Ag2CrO4↓, вызывающий переход окраски раствора от желтой до красно-коричневой. Однако эти методы не могут быть использованы для количественного анализа хлоридов в концентрате тетраметиламмония гидроксида из-за разложения титранта в сильно щелочной среде, создающей анализируемой пробой продукта.

В случае окрашенных растворов для количественного анализа хлоридов используют также метод осаждения нитратом серебра, но точку эквивалентности определяют кондуктометрически: по изменению электропроводности раствора [Крешков А.П. Основы аналитической химии. Из-во Химия, 1970, 471 с.; Худякова Т.А., Крешков А.П. Теория и практика кондуктометрического и хроно-кондуктометрического анализа. Из-во Химия, 1976, 304 с.]. Этот метод может обеспечить очень точные результаты, однако общим его недостатком является использование дорогостоящего и дефицитного реактива - нитрата серебра, а в случае определения хлоридов в концентрате тетраметиламмония гидроксида использование нитрата серебра исключается из-за его разложения в сильно щелочной среде.

Метод, исключающий применение нитрата серебра, основан на использовании растворов Hg(NO3)2 (меркуриметрический метод) или растворов Hg2(NO3)2 (меркуметрический метод).

При определении хлоридов меркуриметрическим методом образуется хлорид ртути(II) по реакции: 2NaCl+Hg(NO3)2→HgCl2+2NaNO3. Хлорид ртути(II) мало диссоциирован, и поэтому реакция проходит практически количественно в направлении образования HgCl2 и NaNO3. В качестве индикатора применяют нитропруссид натрия, который с избытком Hg(NO3)2 образует белое малорастворимое соединение - нитропруссид ртути. Точку эквивалентности определяют по слабому помутнению титруемого раствора. Титрование проводят в кислой среде.

Меркурометрический метод основан на взаимодействии хлорида натрия и нитрата ртути(I) с образованием малорастворимого соединения Hg2Cl2:

2NaCl+Hg2(NO3)2→Hg2Cl2↓+2NaNO3

В качестве индикатора применяют дифенилкарбазон, который с избытком нитрата ртути(I) образует соединение, окрашенное в фиолетовый цвет. Несмотря на широкое применение этих методов для количественного определения хлоридов в водных растворах, эти методы не могут быть использованы для определения содержания хлоридов в концентрате гидроксида тетраметиламмония, так как они реализуются в кислых средах и мало чувствительны к низким концентрациям хлорид-ионов.

Известно [Кольтгоф И.М., Дж. Дж Лингейн. Полярография, Госиздат. 1940. С. 312-314], что если ртутный капающий электрод поляризовать анодно в растворе, не содержащем ионы, образующие нерастворимые соли или комплексные ионы со ртутью, в частности, в растворе KNO3, то наблюдается анодный ток, обусловленный реакцией: 2Hg→Hg22++2е.

В то же время, если раствор содержит ионы, образующие нерастворимые соли или комплексные ионы со ртутью, то анодная волна ртути сдвигается в область более отрицательных значений потенциала и при этом регистрируется хорошо выраженная диффузионная волна, если концентрация деполяризатора меньше 0,01 М. Если в качестве деполяризующегося иона выступает хлорид-ион, то на ртутном капающем электроде протекает реакция: 2Hg+2Cl-→Hg2Cl2+2е. При этом регистрируемый предельный анодный ток определяется скоростью диффузии хлорид-иона к поверхности электрода и он пропорционален его концентрации. На фоне 0,1 М раствора KNO3 при концентрации хлоридов 0,001 М потенциал полуволны составляет +0,25 В (насыщенный каломельный электрод).

Аналогичные данные, касающиеся анодного окисления хлорид-ионов на фоне 0,1 М раствора KNO3, приведены в [Гейровский Я., Кута Я. Основы полярографии. М:. Издательство «Мир». 1965. С. 155-157]. В цитируемых работах приводится лишь технический подход для полярографического анализа хлоридов в нейтральных водных растворах.

Наиболее близкий к предлагаемому способу по технической сущности и достигаемому результату является способ определения хлоридов в водных растворах полярографическим методом на фоне 0,01 М KNO3 [Жирухин Д.А., Козлова Л.С, Новиков В.Т. // Успехи в химии и химической технологии. 2013. Т. 27. №7. С. 7-11]. Волна окисления хлорид-ионов регистрируется в классическом режиме полярографирования и имеет потенциал полуволны +0,30 В (насыщенный каломельный электрод), а минимальная концентрация хлоридов, определяемая этим методом, составляет от 1 до 2⋅10-4 % масс. Однако этот способ полярографического анализа хлоридов не может быть использован для анализа хлоридов в концентрате тетраметиламмония гидроксида из-за сильно щелочной среды, образующейся при добавлении анализируемой пробы к 0,01 М раствору KNO3, используемого в качестве фона. В сильно щелочной среде волна окисления хлорид-ионов скрыта током окисления ртутного электрода. Кроме того, следует отметить, что использование классического режима полярографирования снижает чувствительность метода, что очень важно при анализе низких концентраций хлоридов в растворе, а наблюдаемые волны окисления имеют искаженную форму, что затрудняет определение величины предельного тока (или высоты волны) и уменьшает точность анализа.

Раскрытие изобретения

Задачей предлагаемого изобретения является разработка полярографического способа количественного определения хлоридов в концентрате тетраметиламмония гидроксида, позволяющего повысить точность определения хлоридов и чувствительность метода анализа.

Техническим результатом предлагаемого изобретения является создание полярографического метода анализа хлоридов в концентрате тетраметиламмония гидроксида, повышающего точность анализа концентрации хлоридов в продукте и чувствительность метода, что обеспечит ему практическое использование. Предлагаемый способ полярографического количественного определения хлоридов в концентрате тетраметиламмония гидроксида позволяет точно регистрировать в нем содержание хлоридов от 0,0001 до 0,0004 % масс.

Для решения поставленной задачи в известном способе полярографического количественного определения хлоридов в растворе по анодной волне, включающем построение градуированного графика, измерение высоты анодной волны и расчет их концентрации, отличающемся тем, что количественное определение хлоридов в концентрате тетраметиламмония гидроксида осуществляют на фоне растворов серной кислоты или азотной кислоты с концентрацией от 5 до 10% при дифференциальном токовом режиме, а расчет концентрации хлоридов X (% масс.) проводят по градуировочному (калибровочному) графику или по следующим формулам:

- фоновый раствор серной кислоты:

где: Ся - концентрация хлоридов в ячейке, г/л;

Id - высота волны (пика) анализируемого раствора, мм;

Vф - объем фонового раствора, мл;

Vпр - объем пробы анализируемого раствора, мл;

49999 - тангенс угла наклона градуировочной прямой;

10 - коэффициент пересчета концентрации хлоридов в % масс.

- фоновый раствор азотной кислоты:

где: Ся - концентрация хлоридов в ячейке, г/л;

Id - высота волны (пика) анализируемого раствора, мм;

Vф - объем фонового раствора, мл;

Vпр - объем пробы анализируемого раствора, мл;

25106 - тангенс угла наклона градуировочной прямой.

10 - коэффициент пересчета концентрации хлоридов в % масс.

Для решения этой задачи предложен способ полярографического количественного определения хлоридов в концентрате тетраметиламмония гидроксида на фоне растворов серной или азотной кислоты с концентрацией от 5 до 10% при дифференциальном токовом режиме. При этом на дифференциальной полярограмме наблюдается четко выраженный анодный пик с потенциалом полуволны - 0,05 В (насыщенный каломельный электрод), высота которого пропорциональна концентрации хлоридов. Следует отметить, что в предлагаемых условиях полярографирования анодная волна окисления хлоридов регистрируется в более отрицательной области потенциалов по сравнению с имеющимися данными в растворах азотнокислого калия.

Технический результат, получаемый при реализации изобретения, состоит в повышении точности и объективности анализа при снижении трудозатрат на его проведение, а также в расширении функционального диапазона способа.

Осуществление способа

Предлагаемый способ осуществляют в стеклянной термостатируемой полярографической ячейке с использованием электронного полярографа ПУ-1 и двухкоординатного самописца. В качестве рабочего электрода применяют ртутный капающий электрод с принудительным отрывом капли лопаточкой со следующими характеристиками, определенными в 0,1 н растворе хлорида калия при разомкнутой цепи и высоте столба ртути 50 см: m=1,2 мг/с, τ=0,6 с, а электродом сравнения служит насыщенный каломельный электрод.

В предлагаемом способе полярографического количественного определения хлоридов в концентрате тетраметиламмония гидроксида на фоне растворов серной или азотной кислоты с концентрацией от 5 до 10% при дифференциальном токовом режиме регистрируется также анодный пик хлоридов, но смещенный в более катодную область потенциалов, в то время как в приведенных выше работах анодное окисление хлорид-ионов наблюдается в фоновых растворах азотнокислого калия с концентрацией от 0,01 до 0,10 М.

Применение для полярографирования в качестве фона растворов серной или азотной кислоты с концентрацией от 5 до 10% обусловлено определением хлоридов в сильно щелочной среде, какой являются растворы тетраметиламмония гидроксида (от 20 до 25 % масс). При меньшей концентрации применяемых кислот не удается нейтрализовать сильно щелочную среду анализируемой пробы, что приводит к анодному растворению ртути, а при более высокой концентрации кислот - к нецелесообразному расходу реагента. Поэтому рекомендуемые концентрации серной и азотной кислот позволяют определять хлориды в концентрате тетраметиламмония гидроксида, полученного после электролиза или в ходе электролиза, без дополнительной пробоподготовки, что также упрощает способ анализа.

На фиг. 1 представлены на фоне раствора серной кислоты с концентрацией 5% типичные дифференциальные полярограммы окисления хлоридов. Аналогичные дифференциальные полярограммы окисления хлоридов, содержащихся в концентрате тетраметиламмония гидроксида, наблюдаются на фоне от 5 до 10% растворе азотной кислоты. Концентрацию хлоридов в концентрате тетраметиламмония гидроксида рассчитывают либо по предварительно построенному градуировочному графику зависимости высоты пика окисления от концентрации хлоридов (фиг. 2), либо по формуле, приведенной ниже.

Линейная зависимость предельного тока пика (волны) окисления хлоридов от их концентрации наблюдается до концентрации стандарта 0,0015% в электрохимической ячейке.

Использование постоянного дифференциального токового режима полярографирования позволяет существенно повысить чувствительность метода анализа (фиг. 3). Как видно из фиг. 3, при одинаковой концентрации хлоридов, составляющей 0,0014%, высота волны в классическом режиме полярографирования составляет 11 мм, а в дифференциальном (высота пика) - 71 мм, что 6,5 раз превышает классическую высоту волны. Поэтому не представляется возможным точно определять содержание хлоридов с концентрацией 0,0006% и меньше из-за низкой чувствительности полярографического способа, приведенного в прототипе.

Для построения градуировочного графика готовят шкалу стандартных растворов хлорида тетраметиламмония согласно табл. 1. Для приготовления стандартного раствора хлорида тетраметиламмония с концентрацией хлоридов 0,015 % масс используют хлорид тетраметиламмония с содержанием основного вещества 99,5%, точную навеску которого взвешивают и растворяют ее в дистиллированной воде в мерной колбе вместимостью 100 см3, а затем доводят объем раствора дистиллированной водой до метки.

В термостатируемую электрохимическую ячейку заливают 5 мл фонового раствора (5%-ного раствора серной кислоты), продувают азотом 2 минуты и записывают дифференциальную полярограмму фонового раствора при скорости развертки потенциала 20 мВ/с от -0,4 до +0,15 В в анодном направлении с использованием электронного полярографа ПУ-1 и двухкоординатного самописца. К этому фоновому раствору прибавляют 0,1 мл стандартного раствора хлорида тетраметиламмония, полученный раствор продувают азотом в течение 2 минут и записывают полярограмму стандарта в области потенциалов от - 0,4 до +1,0 В. В анодной области наблюдается диффузионный пик (волна) с Е1/2 - 0,05 В, отвечающий процессу окисления хлоридов, и измеряют его высоту. Затем в этот же раствор добавляют еще 0,1 мл стандартного раствора, продувают азотом 2 минуты и записывают полярограмму и т.д.

Для каждого раствора хлорида тетраметиламмония записывают полярограмму на фоне 5%-ного раствора серной кислоты и измеряют высоту пика окисления. Для построения градуировочного графика используют программу «MicrosoftExcel».

Градуировочный график в координатах Id (мм) - С (%) (фиг. 2), представляющий прямую линию, проходящую практически через начало координат, описывается уравнением: Id=49999Ся+0,7094 (1), из которого по высоте пика, измеренного экспериментально, рассчитывают концентрацию хлоридов, содержащихся в растворе в электрохимической ячейке: Ся=(Id-0,7094)/49999.

Дальнейший расчет содержания хлоридов (X) в анализируемом концентрате тетраметиламмония гидроксида проводят по формуле:

где: Ся - концентрация хлоридов в ячейке, г/л;

Id - высота волны (пика) анализируемого раствора, мм;

Vф - объем фонового раствора, мл;

Vпр - объем пробы анализируемого раствора, мл;

49999 - тангенс угла наклона градуировочной прямой (уравнение 1).

Аналогично строят градуировочный график в координатах Id (мм) - С (%) при использовании в качестве фона раствор азотной кислоты с концентрацией от 5 до 10% (фиг. 4), который описывается уравнением: Id=25106Ся+0,5704 (2), и по высоте пика, измеренного экспериментально, рассчитывают концентрацию хлоридов, содержащихся в растворе в электрохимической ячейке: Ся=(Id-0,5704)/25106.

Дальнейший расчет содержания хлоридов (X) в анализируемом концентрате тетраметиламмония гидроксида проводят по формуле:

где: Ся - концентрация хлоридов в ячейке, г/л;

Id - высота волны (пика) анализируемого раствора, мм;

Vф - объем фонового раствора, мл;

Vпр - объем пробы анализируемого раствора, мл;

25106 - тангенс угла наклона градуировочной прямой (уравнение 2).

Изобретение иллюстрируется следующими примерами.

Пример 1. В термостатируемую электрохимическую ячейку заливают 5 мл фонового раствора: 5%-ный раствор серной кислоты, продувают азотом 2 минуты и записывают дифференциальную полярограмму фонового раствора при скорости развертки потенциала 20 мВ/с от -0,4 до +0,15 В в анодном направлении с использованием электронного полярографа ПУ-1 и двухкоординатного самописца. К этому фоновому раствору прибавляют 1 мл концентрата тетраметиламмония гидроксида, полученного после электролиза, раствор продувают азотом в течение 2 минут и записывают его полярограмму также от -0,4 до +0,15 В. В анодной области также наблюдается пик с Е1/2 - 0,05 В, соответствующий процессу окисления хлоридов, содержащихся в концентрате, и измеряют его высоту. Высота пика составляет 11 мм. По полученным экспериментальным данным рассчитывают содержание хлоридов в концентрате тетраметиламмония гидроксида по формуле, приведенной выше. Содержание хлоридов в концентрате составляет 0,00012%.

Относительная ошибка определения концентрации хлоридов в концентрате тетраметиламмония гидроксида составляет 2,0-2,5%., а время, затрачиваемое на анализ, 15-20 мин.

Пример 2. Концентрат тетраметиламмония гидроксида анализируют аналогично примеру 1, но на фоне 10% раствора серной кислоты. При этом регистрируется высота пика окисления хлоридов, содержащихся в концентрате, 33 мм. По полученным экспериментальным данным рассчитывают содержание хлоридов в концентрате тетраметиламмония гидроксида по формуле, приведенной выше. Содержание хлоридов в концентрате составляет 0,00039%.

Относительная ошибка определения концентрации хлоридов в концентрате тетраметиламмония гидроксида составляет 2,0-2,5%.

Пример 3. Концентрат тетраметиламмония гидроксида анализируют аналогично примеру 1, но на фоне 5% раствора азотной кислоты. При этом регистрируется высота пика окисления хлоридов, содержащихся в концентрате, 16 мм. По полученным экспериментальным данным рассчитывают содержание хлоридов в концентрате гидроксида тетраметиламмония по формуле, приведенной выше. Содержание хлоридов в концентрате составляет 0,00037%.

Относительная ошибка определения концентрации хлоридов в концентрате тетраметиламмония гидроксида составляет 2,0-2,5%.

Пример 4. Концентрат тетраметиламмония гидроксида анализируют аналогично примеру 1, но на фоне 10% раствора азотной кислоты. При этом регистрируется высота пика окисления хлоридов, содержащихся в концентрате, 16 мм. По полученным экспериментальным данным рассчитывают содержание хлоридов в концентрате тетраметиламмония гидроксида по формуле, приведенной выше. Содержание хлоридов в концентрате составляет 0,00037%.

Относительная ошибка определения концентрации хлоридов в концентрате тетраметиламмония гидроксида составляет 2,0-3,0%.

Таким образом, предлагаемый полярографический способ количественного определения хлоридов в концентрате тетраметиламмония гидроксида существенным образом упрощает и повышает точность анализа концентрации хлоридов в продукте, а также чувствительность метода, что обеспечит ему практическое использование.


Способ количественного определения хлоридов в концентрате тетраметиламмония гидроксида
Способ количественного определения хлоридов в концентрате тетраметиламмония гидроксида
Способ количественного определения хлоридов в концентрате тетраметиламмония гидроксида
Способ количественного определения хлоридов в концентрате тетраметиламмония гидроксида
Способ количественного определения хлоридов в концентрате тетраметиламмония гидроксида
Способ количественного определения хлоридов в концентрате тетраметиламмония гидроксида
Источник поступления информации: Роспатент

Showing 201-210 of 374 items.
12.01.2017
№217.015.5b60

Способ изготовления обтекателя гидроакустической станции методом намотки

Использование: изобретение относится к области судостроения, а именно к способам изготовления обтекателей антенн гидроакустических станций, и касается вопросов их конструирования. Сущность: изготовление обтекателя гидроакустической станции по частям с последующим их соединением, при этом...
Тип: Изобретение
Номер охранного документа: 0002589504
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5b8d

Устройство с пониженным коэффициентом отражения радиоволн в широком диапазоне частот

Изобретение относится к области радиотехники и касается разработки конструкций с пониженным коэффициентом отражения радиоволн для защиты плавающих средств от воздействия падающего излучения и внешних факторов окружающей среды. Устройство с пониженным коэффициентом отражения радиоволн в широком...
Тип: Изобретение
Номер охранного документа: 0002589501
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5bdd

Устройство термостабилизации и отвода тепла от электронных модулей радиотелевизионной аппаратуры

Изобретение относится к области радиоэлектроники и может быть использовано для обеспечения температурных режимов работы элементов и узлов радиоэлектронной и телевизионной аппаратуры при рассеивании ими значительного количество тепла. Технический результат - повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002589744
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6a1a

Устройство для контроля в эксплуатации деградации материала и защитных покрытий турбинных лопаток газотурбинных двигателей

Изобретение относится к устройству контроля деградации материала и защитных покрытий турбинных лопаток газотурбинных двигателей. Устройство содержит теплоизолятор, установленный на корпусе, крышку со стяжным стержнем и термопарами, электронагреватель, расположенный во внутреннем пространстве...
Тип: Изобретение
Номер охранного документа: 0002592946
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6a45

Радиопоглощающее покрытие

Изобретение относится к области радиотехники, к материалам для поглощения электромагнитных волн, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов морской, наземной, авиационной и космической техники, а также обеспечения...
Тип: Изобретение
Номер охранного документа: 0002592898
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6ac2

Научно-исследовательский тренажерный комплекс моделирования операций управления ледовой обстановкой вокруг морских плавучих и гравитационных сооружений

Научно-исследовательский тренажерный комплекс моделирования операций управления ледовой обстановкой вокруг морских плавучих и гравитационных сооружений содержит универсальный навигационный тренажер, блок физического моделирования движения ледокольных судов. Универсальный навигационный тренажер...
Тип: Изобретение
Номер охранного документа: 0002593171
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.725d

Система добычи железомарганцевых конкреций

Изобретение относится к горному делу и может быть применено для освоения минеральных ресурсов дна морей и океанов при отработке поверхностных россыпных месторождений твердых полезных ископаемых. Система содержит добывающее судно, самоходный агрегат сбора, соединенный с трубопроводом гибкой...
Тип: Изобретение
Номер охранного документа: 0002598010
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.75e6

Экологически безопасные антипирены на основе оксиэтилированных полиэфиров метоксиметилфосфоновой кислоты

Изобретение относится к применимым в качестве антипиренов оксиалкилированным эфирам трис-этиленгликоль-тетра-метоксиметил (I) и пентаэритрит-тетра-метоксиметил (II) фосфоновых кислот формул Предложены новые экологически безопасные антипирены и эффективный способ их получения. Предложенный...
Тип: Изобретение
Номер охранного документа: 0002598603
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7cb8

Способ изготовления заготовок в форме стакана из прутка

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении заготовки корпуса снаряда, имеющей форму стакана. В металлообрабатывающем центре от прутка отделяют мерную штучную заготовку и формируют на ее торце зацентровку. Затем заготовку продольно...
Тип: Изобретение
Номер охранного документа: 0002600594
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7d27

Модель оценивания параметров запуска объектов управления

Изобретение относится к автоматизированным системам управления и системам управления запуском летательных аппаратов. Модель основана на методе имитационного статистического моделирования, содержит блок функциональных задач вычислительной системы (ВС), блок задания/приема параметров решения,...
Тип: Изобретение
Номер охранного документа: 0002600964
Дата охранного документа: 27.10.2016
Showing 21-26 of 26 items.
29.06.2019
№219.017.9f02

Способ изготовления структуры кремния на изоляторе

Изобретение относится к методу изготовления пленок монокристаллического кремния на изоляторе. Техническим результатом изобретения является уменьшение количества дефектов и повышение качества пленок кремния на изоляторе за счет сохранения качества исходного материала. Сущность изобретения - в...
Тип: Изобретение
Номер охранного документа: 0002412504
Дата охранного документа: 20.02.2011
13.07.2019
№219.017.b3c5

Способ получения 2-аминоэтансульфоновой кислоты

Изобретение относится к органической химии, а именно к способу получения 2-аминоэтансульфоновой кислоты взаимодействием 2-аминоэтилсерной кислоты с избытком сульфита натрия в водном растворе при кипячении в течении 20 часов с последующим отделением целевого продукта от минеральных солей...
Тип: Изобретение
Номер охранного документа: 0002384568
Дата охранного документа: 20.03.2010
01.09.2019
№219.017.c500

Способ изготовления вертикального низковольтного ограничителя напряжения

Изобретение относится к области полупроводниковой электроники и может быть использовано для изготовления дискретных ограничителей напряжения. Способ изготовления вертикального низковольтного ограничителя напряжения включает формирование на высоколегированной подложке первого типа проводимости...
Тип: Изобретение
Номер охранного документа: 0002698741
Дата охранного документа: 29.08.2019
01.09.2019
№219.017.c550

Способ изготовления полупроводниковой структуры, выступающей из монолитного кремниевого тела

Изобретение относится к способу изготовления полупроводниковой структуры, выступающей из монолитного кремниевого тела, для формирования активных и пассивных элементов интегральных схем. Сущность изобретения заключается в способе изготовления маски для травления вертикальной полупроводниковой...
Тип: Изобретение
Номер охранного документа: 0002698574
Дата охранного документа: 28.08.2019
14.05.2020
№220.018.1ca8

Способ определения фракционного состава сульфированного фталоцианина алюминия

Изобретение относится к способу определения фракционного состава сульфированного фталоцианина алюминия, включающему разделение фракций сульфокислот методом тонкослойной хроматографии в элюенте состава н-бутанол - уксусная кислота – вода. Способ характеризуется тем, что разделение фракций...
Тип: Изобретение
Номер охранного документа: 0002720799
Дата охранного документа: 13.05.2020
27.05.2023
№223.018.71ab

Способ организации сетевого процессорного устройства

Изобретение относится к области компьютерных сетей. Технический результат заключается в обеспечении сохранения разметки произвольных сетевых транспортных протоколов без снижения значения пропускной способности сетевого процессорного устройства. Посредством буферизирующего логического устройства...
Тип: Изобретение
Номер охранного документа: 0002755987
Дата охранного документа: 23.09.2021
+ добавить свой РИД