×
20.04.2016
216.015.3422

Результат интеллектуальной деятельности: СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ С ИСПОЛЬЗОВАНИЕМ КОНДЕНСАТОРА-ПЛЕНКОФОРМИРОВАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего формирование тонких безволновых пленок жидкости высокой равномерности и качества. Технический результат - обеспечение более интенсивного, контролируемого и экономичного охлаждения. 1 ил.
Основные результаты: Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя, при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, сформированной с помощью пленкоформирователя и за счет движения пара в мини- или микроканале, отличающийся тем, что в качестве пленкоформирователя используют конденсатор пара, обеспечивающий формирование тонких, безволновых пленок жидкости высокой равномерности и качества.

В последние десятилетия существенное развитие получило использование двухфазных потоков для охлаждения высоконапряженных по тепловым потокам электронных компонентов, таких как компьютерные чипы, силовая электроника (транзисторы, тиристоры), чипы конверторов и инверторов в гибридных автомобилях, мощные лазеры и др. Ведутся исследования, в которых для охлаждения электронных компонентов используется пленка жидкости, увлекаемая потоком газа в микро- и мини-каналах. В ряде случаев поток жидкости в микроканале может охлаждать сразу несколько электронных компонентов, между которыми находятся адиабатические секции. В таких системах жидкость вводится в поток газа с использованием специального устройства - пленкоформирователя. Основной задачей данного устройства является обеспечить равномерное распределение жидкости поперек канала, а также ввести жидкость без излишней дестабилизации границы раздела газ-жидкость. Неравномерность жидкости и дестабилизация границы раздела газ-жидкость могут привести к нежелательным разрывам тонкой пленки жидкости. Обычно роль такого устройства выполняет плоская щель в подложке под острым углом к потоку газа, плоская пластина, установленная параллельно подложке или отверстие в подложке. Во всех случаях устройство пленкоформирователя обладает целым рядом недостатков и, как правило, не обеспечивает нужного качества создаваемой пленки. Например, проблематичным является создание очень тонких пленок от 1·10-5 м до 2·10-5 м. Как правило, затруднительно изготовить детали сопла с погрешностью от 1·10-6 м до 2·10-6 м и менее и отъюстировать зазор с погрешностью от 5·10-6 м до 1·10-5 м и менее. Это приводит к значительным неоднородностям в расходе жидкости и толщине пленки. Экспериментально было установлено, что сразу после щелевого сопла жидкости для канала высотой 1·10-4 м формировалось неустойчивое течение двухфазного потока.

Известен способ, описанный в статье (Kabov О.А., Kuznetsov V.V., and Legros J-C, Heat transfer and film dynamic in shear-driven liquid film cooling system of microelectronic equipment, Second Int. Conference on Microchannels and Minichannels, Ed. S.G. Kandlikar, June 17-19, 2004, Rochester, NY, ASME, New York, pp. 687-694 (2004)), при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости. Тонкая пленка диэлектрической жидкости FC-72 движется со спутным потоком газа (азота) в микроканале с электронными тепловыделяющими элементами.

Наиболее близкое техническое решение, которое можно рассматривать как прототип, описано в статье (Kabov О.А., Kuznetsov V.V., and Legros J-C, Heat transfer and film dynamic in shear-driven liquid film cooling system of microelectronic equipment, Second Int. Conference on Microchannels and Minichannels, Ed. S.G. Kandlikar, June 17-19, 2004, Rochester, NY, ASME, New York, pp. 687-694 (2004)), при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, которая создается за счет движения пара в мини- или микроканале. Тонкая пленка жидкости движется с потоком пара в микроканале с электронными тепловыделяющими элементами, расположенными либо на одной стороне канала, либо на двух противоположных сторонах канала. Тонкая пленка жидкости формируется за счет использования щелевого пленкоформирователя.

Недостатки описанных выше способов:

1) усложнение конструкции и, как следствие, дороговизна способа за счет использования пленкоформирователя;

2) проблематичным является создание очень тонких пленок от 1·10-5 м до 2·10-5 м.

Как правило, затруднительно изготовить детали сопла с погрешностью от 1·10-6 м до 2·10-6 м и менее и отъюстировать зазор с погрешностью от 5·10-6 м до 1·10-5 м и менее. Это приводит к значительным неоднородностям в расходе жидкости и толщине пленки.

Задачей заявляемого изобретения является обеспечение более интенсивного, контролируемого и экономичного охлаждения электронного оборудования за счет создания тонких, безволновых пленок жидкости высокой равномерности и качества.

Поставленная задача решается тем, что в способе охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя, при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, сформированной с помощью пленкоформирователя и за счет движения пара в мини- или микроканале, согласно изобретению в качестве пленкоформирователя используют конденсатор пара, обеспечивающий формирование тонких, безволновых пленок жидкости высокой равномерности и качества.

Использование конденсатора пара в качестве пленкоформирователя позволяет создавать ровные, равномерные по ширине, практически идеально гладкие (безволновые) тонкие пленки жидкости.

Известно, что в тонких пленках жидкости (порядка 1·10-4 м) тепло передается практически только теплопроводностью. В результате коэффициент теплоотдачи можно описать следующей зависимостью:

где δ - толщина слоя жидкости; λ - коэффициент теплопроводности жидкости (Вт/м К).

Зависимость показывает, что снижение толщины пленки на порядок, например от 1·10-4 м до 1·10-5 м, ведет к интенсификации испарения на порядок.

Для обеспечения равномерности пленки по ширине канала достаточно обеспечить равномерное охлаждение конденсатора пара. Конденсатор пара может создавать очень тонкие пленки, от 1·10-5 м до 5·10-5 м и менее. Практически толщина в меньшую сторону не ограничена и может составлять даже несколько мкм. Толщина пленки может точно регулироваться и достаточно точно рассчитываться с помощью имеющейся математической модели (Marchuk I.V., Lyulin Y.V., and Kabov O.A., Theoretical and Experimental Study of Convective Condensation inside Circular Tube, Interfacial Phenomena and Heat Transfer, vol. 1(2), pp. 153-171, 2013). Регулировка толщины пленки осуществляется простой регулировкой температуры стенки конденсатора пара.

Экспериментальные и теоретические исследования показывают, что конденсация подавляет неустойчивость в пленке жидкости. Это связано с тем, что утонение пленки в силу ее неустойчивости вызывает интенсификацию теплообмена в этой области и выпадающий конденсат частично сглаживает утонение пленки. Этот факт потенциально позволяет создавать пленки очень высокого качества, в том числе и при относительно больших расходах жидкости. Можно ожидать снижение расхода жидкости, необходимой для охлаждения электронных компонентов в таких системах, за счет более высокого качества создаваемых пленок. Это, в свою очередь, приведет к снижению энергозатрат на прокачку жидкости и газа и повышению общей эффективности системы.

Данные системы могут работать как двухфазные однокомпонентные системы. В этом случае в качестве рабочего тела используется чистая жидкость, т.е. без неконденсирующихся примесей. В качестве рабочего тела может использоваться смесь жидкостей. Использование добавки неконденсирующегося газа может позволить существенно расширить параметры системы и управляемость ее работы. Известно, что присутствие неконденсирующегося газа существенно снижает интенсивность теплообмена при конденсации, но действие газа снижается с ростом скорости парогазовой смеси. Снижение интенсивности конденсации позволяет более точно контролировать толщину пленки и ее равномерность за счет снижения к требованию по распределению температуры на стенке конденсатора. Регулировкой концентрации неконденсирующегося газа можно добиться ситуации, когда отклонения температуры на стенке конденсатора от 0,1°C до 0,5°C практически не будут влиять на толщину пленки. В таких случаях может использоваться обычное водяное охлаждение конденсатора, где нагрев воды, абсорбирующей тепло конденсации, в пределах от 1°C до 0,5°C вдоль тракта охлаждения не приведет к заметным изменениям толщины пленки. Для очень точной регулировки толщины пленки в однокомпонентных системах для охлаждения конденсатора могут использоваться Пельтье-элементы с последующим их охлаждение водой или воздухом.

На фиг. 1 представлен общий вид системы охлаждения микроэлектронного оборудования с использованием конденсатора-пленкоформирователя, где обозначено: 1 - подложка, 2 - электронный компонент, 3 - конденсатор пара, 4 - система охлаждения конденсатора пара, 5 - мини- или микроканал, 6 - конденсирующаяся и испаряющаяся пленка жидкости, 7 - дополнительный подогреватель, 8 - резервуар пара, 9 - насос, 10 - вход пара или парогазовой смеси.

Способ осуществляется следующим образом.

В начальном состоянии, перед началом работы, жидкость перетекает в нижнюю часть системы. Включается дополнительный подогреватель 7, который превращает жидкость в пар. Пар или парогазовая смесь равномерно распределяется по системе. Включается насос 9 и начинает подавать пар или парогазовую смесь через вход 10 в микроканал 5. Резервуар пара 8 служит для более устойчивой работы насоса и может быть конструктивно совмещен с подогревателем 7. Включается система охлаждения конденсатора 4, конденсатор 3 начинает генерировать пленку жидкости 6, которая увлекается частью не сконденсировавшегося пара или парогазовой смеси. Пленка натекает на электронный компонент 2, расположенный на подложке 1, и охлаждает его. При этом часть жидкости превращается в пар и уходит по каналу к насосу. Часть жидкости может не испариться и также уходит по каналу в сторону насоса под действием потока пара и гравитации. Эта часть жидкости превращается в пар в подогревателе 7 таким образом, чтобы на вход насоса всегда подавался чистый пар или парогазовая смесь.

Использование заявляемого изобретения позволяет обеспечить более интенсивное, контролируемое и экономичное охлаждение электронного оборудования за счет создания тонких, безволновых пленок жидкости высокой равномерности и качества.

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя, при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, сформированной с помощью пленкоформирователя и за счет движения пара в мини- или микроканале, отличающийся тем, что в качестве пленкоформирователя используют конденсатор пара, обеспечивающий формирование тонких, безволновых пленок жидкости высокой равномерности и качества.
СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ С ИСПОЛЬЗОВАНИЕМ КОНДЕНСАТОРА-ПЛЕНКОФОРМИРОВАТЕЛЯ
Источник поступления информации: Роспатент

Showing 1-10 of 96 items.
27.07.2013
№216.012.5916

Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления

Группа изобретений относится к нефтяной, газовой отраслям промышленности и может быть использована при разделении углеводородных смесей и сжиженных газов. Согласно способу сепарации низкокипящего компонента из смеси паров смесь подают в состоянии пароконденсата и закручивают внутри вертикальной...
Тип: Изобретение
Номер охранного документа: 0002488427
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5dd6

Конденсационная котельная установка (варианты)

Изобретение относится к энергетике. Конденсационная котельная установка включает паровой котел с основным и байпасным газоходами, водяной экономайзер (ЭВ), конденсационный теплообменник-утилизатор теплоты продуктов сгорания топлива (КТУ), дымосос и дымовую трубу, а также поверхностный...
Тип: Изобретение
Номер охранного документа: 0002489643
Дата охранного документа: 10.08.2013
10.11.2013
№216.012.7f86

Способ бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры...
Тип: Изобретение
Номер охранного документа: 0002498319
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8dee

Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления

Изобретение относится к области сжигания отходов или низкосортных топлив. Мусоросжигательный завод состоит из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный...
Тип: Изобретение
Номер охранного документа: 0002502017
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8def

Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов

Изобретение относится к области сжигания отходов или низкосортных топлив. Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов содержит 2 цеха: мусоросжигающий цех (МСЦ) и теплоцех, причем...
Тип: Изобретение
Номер охранного документа: 0002502018
Дата охранного документа: 20.12.2013
27.01.2014
№216.012.9d33

Трансформаторный плазматрон низкого давления для ионно-плазменной обработки поверхности материалов

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкого давления, и может быть использовано в микроэлектронике для обработки полупроводниковых материалов (плазменное травление, оксидирование, очистка поверхности и т.д.), осаждения тонких пленок, в...
Тип: Изобретение
Номер охранного документа: 0002505949
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f7d

Оптический способ измерения мгновенного поля толщины прозрачной пленки

Способ может быть использован для бесконтактных, непрерывных измерений толщин прозрачной пленки. Способ включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую обработку отраженного света. Источник света помещают над пленкой...
Тип: Изобретение
Номер охранного документа: 0002506537
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2fb

Инжектор для криогенной жидкости

Изобретение относится к области криогенной и вакуумной техники и касается устройств дозированной выдачи криогенной жидкости в технологические зоны с высоким и сверхвысоким давлением. Инжектор криогенной жидкости включает узел ввода криогенной жидкости, криорезервуар и узел вывода криогенной...
Тип: Изобретение
Номер охранного документа: 0002507438
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afd9

Система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике и может быть использовано при конструировании эффективных систем охлаждения модулей мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла от расположенных на поверхности модуля полупроводниковых светодиодов при...
Тип: Изобретение
Номер охранного документа: 0002510732
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b21e

Дезинтегратор для помола угля

Изобретение относится к области энергетики и может быть использовано для помола угля в установках глубокой переработки угля в другие виды топлива. Дезинтегратор для помола угля содержит корпус 1, два вращающихся в противоположных направлениях и жестко закрепленных на полых горизонтальных валах...
Тип: Изобретение
Номер охранного документа: 0002511314
Дата охранного документа: 10.04.2014
Showing 1-10 of 67 items.
27.07.2013
№216.012.5916

Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления

Группа изобретений относится к нефтяной, газовой отраслям промышленности и может быть использована при разделении углеводородных смесей и сжиженных газов. Согласно способу сепарации низкокипящего компонента из смеси паров смесь подают в состоянии пароконденсата и закручивают внутри вертикальной...
Тип: Изобретение
Номер охранного документа: 0002488427
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5dd6

Конденсационная котельная установка (варианты)

Изобретение относится к энергетике. Конденсационная котельная установка включает паровой котел с основным и байпасным газоходами, водяной экономайзер (ЭВ), конденсационный теплообменник-утилизатор теплоты продуктов сгорания топлива (КТУ), дымосос и дымовую трубу, а также поверхностный...
Тип: Изобретение
Номер охранного документа: 0002489643
Дата охранного документа: 10.08.2013
10.11.2013
№216.012.7f86

Способ бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры...
Тип: Изобретение
Номер охранного документа: 0002498319
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8dee

Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления

Изобретение относится к области сжигания отходов или низкосортных топлив. Мусоросжигательный завод состоит из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный...
Тип: Изобретение
Номер охранного документа: 0002502017
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8def

Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов

Изобретение относится к области сжигания отходов или низкосортных топлив. Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов содержит 2 цеха: мусоросжигающий цех (МСЦ) и теплоцех, причем...
Тип: Изобретение
Номер охранного документа: 0002502018
Дата охранного документа: 20.12.2013
27.01.2014
№216.012.9d33

Трансформаторный плазматрон низкого давления для ионно-плазменной обработки поверхности материалов

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкого давления, и может быть использовано в микроэлектронике для обработки полупроводниковых материалов (плазменное травление, оксидирование, очистка поверхности и т.д.), осаждения тонких пленок, в...
Тип: Изобретение
Номер охранного документа: 0002505949
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f7d

Оптический способ измерения мгновенного поля толщины прозрачной пленки

Способ может быть использован для бесконтактных, непрерывных измерений толщин прозрачной пленки. Способ включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую обработку отраженного света. Источник света помещают над пленкой...
Тип: Изобретение
Номер охранного документа: 0002506537
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2fb

Инжектор для криогенной жидкости

Изобретение относится к области криогенной и вакуумной техники и касается устройств дозированной выдачи криогенной жидкости в технологические зоны с высоким и сверхвысоким давлением. Инжектор криогенной жидкости включает узел ввода криогенной жидкости, криорезервуар и узел вывода криогенной...
Тип: Изобретение
Номер охранного документа: 0002507438
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afd9

Система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике и может быть использовано при конструировании эффективных систем охлаждения модулей мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла от расположенных на поверхности модуля полупроводниковых светодиодов при...
Тип: Изобретение
Номер охранного документа: 0002510732
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b21e

Дезинтегратор для помола угля

Изобретение относится к области энергетики и может быть использовано для помола угля в установках глубокой переработки угля в другие виды топлива. Дезинтегратор для помола угля содержит корпус 1, два вращающихся в противоположных направлениях и жестко закрепленных на полых горизонтальных валах...
Тип: Изобретение
Номер охранного документа: 0002511314
Дата охранного документа: 10.04.2014
+ добавить свой РИД