×
14.11.2019
219.017.e1d2

Результат интеллектуальной деятельности: Способ комплексной оценки состояния окружающей среды

Вид РИД

Изобретение

Аннотация: Изобретение относится к экологии и может быть использовано в системе мониторинга окружающей среды в зоне освоения нефтегазовых месторождений в районах Крайнего Севера. Для этого методам биоиндикации определяют наличие индикаторов в пробах среды, присутствие которых свидетельствует о ненарушенных условиях среды, обозначают их как положительные индикаторы (Ipos). Также определяют наличие индикаторов, присутствие которых свидетельствует о нарушении состояния среды, и обозначают их как отрицательные индикаторы в районе нефтегазодобычи (Nneg) и на данном участке (Ineg). Состояние окружающей среды на участке оценивают путем расчета суммарной балльной оценки (K) по формуле K=∑(n Ipos)+(Nneg-∑(n Ineg). Затем формируют эталонную шкалу с разбивкой ее по классам качества среды. Количество классов качества соответствует количеству видов-индикаторов на участке, при этом значение K, равное количеству видов-индикаторов, соответствует эталонному классу качества среды, значение K=0 определяет класс качества среды, соответствующий экологической катастрофе, а промежуточные значения K определяют классы качества, соответствующие разной степени нарушенности условий окружающей среды. Изобретение обеспечивает повышение точности и достоверности результатов оценки состояния окружающей среды в районах Крайнего Севера. 8 табл.

Изобретение относится к экологическому мониторингу окружающей среды методами биоиндикации, использующими в качестве биоиндикаторов для оценки состояния почв и поверхностных вод беспозвоночные организмы, и может быть использовано в системе производственного экологического мониторинга в зоне освоения нефтегазовых месторождений в районах Крайнего Севера.

Наиболее близким аналогом заявленного изобретения является способ биоиндикации среды (см. патент RU 2213350 G01N 33/24, G01N 33/18, опубл. 27.09.2003), включающий выбор группы индикаторов, формирование эталонной среды с разбивкой ее по классам качества, определение видов индикаторов, способных существовать в диапазоне классов качества эталонной среды, извлечение из среды всех возможных видов из группы индикаторов, установление по каждому классу качества среды видов индикаторов, способных существовать в диапазоне классов качества эталонной среды, и определение класса качества среды по максимальному значению суммарной классовой значимости индикаторов (Sкз)k, определяемой соотношением

(Sкз)k=Nk(ne)-1⋅102,

где Nk - количество видов индикаторов, извлеченных из среды и способных существовать в классе качества "k" эталонной среды,

(ne)k - количество видов индикаторов, существующих в классе качества "k" эталонной среды,

в котором осуществляют оценку возможности самоочищения среды путем дополнительных извлечений индикаторов из среды и определений суммарной классовой значимости индикаторов до момента расположения максимального значения суммарной классовой значимости и наибольшего после него значения в соседних областях классности качества среды, а о возможности самоочищения судят при расположении наибольшего значения относительно максимального в области понижения классности среды.

Недостатком упомянутого выше способа является низкая репрезентативность результатов в плане оценки микроэлементного статуса биоиндикаторов и невозможность экстраполяции полученных результатов на экосистему большого природного региона, а также недостаточная эффективность упомянутого выше способа оценки из-за неполного извлечения индикаторов из среды, выполняемого ручным методом.

Задачей, на решение которой направлено заявленное изобретение, является разработка доступного и эффективного способа комплексной оценки состояния окружающей среды с возможностью применения его в регионах Крайнего Севера.

Технический результат, на достижение которого направлено заявленное изобретение, заключается в повышении точности и достоверности результатов оценки состояния окружающей среды за счет более полного учета реакций беспозвоночных на нарушение условий окружающей среды.

Биоиндикация основана на тесной взаимосвязи живых организмов с условиями среды, в которой они обитают. Изменения этих условий может привести к исчезновению определенных видов организмов, наиболее чувствительных к этим изменениям и появлению других, для которых такая среда будет оптимальной. В качестве биоиндикаторов могут использоваться различные группы организмов.

Технический результат достигается за счет того, что в способе комплексной оценки состояния окружающей среды, а именно почвы и поверхностных вод в районе нефтегазодобычи, выбирают участки для взятия проб с различными типами ландшафта, находящиеся в зоне возможного загрязнения объектами производственной инфраструктуры, а также в незагрязненной зоне, причем для каждого типа ландшафта выбирают не менее двух участков, в пределах каждого из выбранных участков отбирают пробы среды и выбирают группы индикаторов, при этом для каждой группы индикаторов определяют количество видов-индикаторов, каждый из которых должен быть типичным для выбранного участка и должен быть встречен в более чем 50% проб, после чего определяют наличие индикаторов в каждой пробе, присутствие которых в каждой из упомянутых проб среды свидетельствует о ненарушенных условиях среды, обозначают их как положительные индикаторы и присваивают им балл далее определяют наличие индикаторов, присутствие которых в пробе среды свидетельствует о нарушении состояния среды, обозначают их как отрицательные индикаторы и присваивают им балл после чего оценивают состояние окружающей среды на участке в зависимости от наличия индикаторов в каждой пробе, путем расчета суммарной балльной оценки K с прибавлением одного балла за присутствие каждого вида-индикатора с баллом и прибавлением одного балла за отсутствие каждого вида-индикатора с баллом в отобранных пробах, для расчета используют соотношение:

где

n Ipos - число встреченных положительных индикаторов на данном участке,

n Ineg - число встреченных отрицательных индикаторов на данном участке,

Nneg - общее число отрицательных индикаторов в районе нефтегазодобычи, в котором осуществляют оценку качества среды,

затем формируют эталонную шкалу с разбивкой ее по классам качества среды, количество классов качества соответствует количеству видов-индикаторов на участке, при этом полученное при расчете значение K равное количеству видов-индикаторов соответствует эталонному классу качества среды, значение K=0 определяет класс качества среды, соответствующий экологической катастрофе, а промежуточные значения K, полученные при расчете, определяют классы качества, соответствующие разной степени нарушенности условий окружающей среды.

В способе комплексной оценки состояния окружающей среды исследуемой средой являются почвы и поверхностные воды. Для оценки качества почв используют группы почвенных беспозвоночных, относящиеся к микрофауне (клещи, ногохвостки и др.) и мезофауне (дождевые черви, пауки, муравьи, жуки, моллюски, многоножки, мокрицы, личинки чешуекрылых, двукрылых, прямокрылых и др.), а для поверхностных вод используют беспозвоночных, относящихся к зоопланктону (кладоцеры, коловратки и др.) и зообентосу (каланиды, амфиподы, личинки двукрылых, стрекоз, ручейников, веснянок и др.).

Способ комплексной оценки состояния окружающей среды осуществляют следующим образом.

Выбирают участки для взятия проб с различными типами ландшафта, находящиеся в зоне возможного загрязнения объектами производственной инфраструктуры, а также в незагрязненной зоне, причем для каждого типа ландшафта выбирают не менее двух участков. В пределах каждого из выбранных участков отбирают пробы среды, выявляют видовые списки исследуемых групп беспозвоночных животных, выбирают группы индикаторов, при этом для каждой группы индикаторов определяют количество видов-индикаторов, каждый из которых должен быть типичным для выбранного участка в исследуемом регионе Крайнего Севера и должен быть встречен в более чем 50% проб.

Виды-индикаторы выявляют в пределах исследуемого участка по трем критериям:

1. Вид должен быть встречен в более чем 50% проб на всех участках;

2. По результатам анализа встречаемости вид должен быть встречен в 66% проб на контрольных или на нарушенных участках соответственно;

3. По результатам однократного дисперсионного анализа (уровень статистической достоверности р<0,05) численность вида в пределах одного класса качества среды должна быть либо достоверно выше, либо достоверно ниже, чем в других классах.

По степени соответствия этим критериям (в %) определяется надежность биоиндикатора, которая должна колебаться в пределах от 50 до 100%.

Кроме того, виды - потенциальные биоиндикаторы должны быть относительно крупными по размеру, легкими в определении таксономической принадлежности и обычными для данного региона.

Для обеспечения наибольшей точности оценки состояния окружающей среды количество видов-индикаторов, входящих в биоиндикационную систему, не должно превышать семи.

В некоторых случаях можно выбирать менее 7, но не менее 4, т.к. при этом снижается репрезентативность результатов исследований (оценки).

При оценке качества почв в пределах исследуемого участка выделяют пробную площадку (10×10) м, на которой проводят отбор проб почвы буром диаметром 10 см до глубины 5 см. Из отобранных проб извлекают все возможные виды-индикаторов из размерных групп мезо- и микрофауны.

Для выделения почвенных беспозвоночных из проб используют метод термоэкстракции, что позволяет получать животных как из группы микрофауны (0,2-2 мм), так и из группы мезофауны (2-20 мм) одновременно. Для этого используют воронку Берлезе (25 см в диаметре + сеть с ячейкой 2 мм + лампа мощностью 60 Вт на расстоянии около 25 см). Воронку вставляют в колбу с фиксатором (2 части 75%-ного спирта и 1 часть глицерола). Пробу осторожно переносят в воронку и над всей этой системой размещают электролампу. Принцип действия воронки Берлезе заключается в том, что благодаря лампе накаливания в образце почвы будет создаваться градиент влажности. Поэтому почвенные микроартроподы, предпочитающие влажные места, будут самостоятельно сползать вниз воронки и оттуда падать в фиксатор.

Большая часть почвенных беспозвоночных может быть идентифицирована лишь после их фиксации. Всех беспозвоночных фиксируют при экстракции из почвы 70°-ным этиловым спиртом.

Для оценки качества поверхностных вод выбирают участок непроточного водоема, примыкающий в непосредственной близости к участку отбора проб почвы. Отбор проб бентоса проводят дночерпателем диаметром 10 см на расстоянии 1-2 метров от берега водоема. Отобранную пробу поднимают и просматривают небольшими порциями в лотке с прозрачной водой. Обитающих в отложениях беспозвоночных фиксируют в 70%-ном растворе этилового спирта. Сбор планктона проводят планктонной сетью с объемом накопительного стакана 100 мл. Фиксацию планктона проводят 4%-ным раствором формалина.

В каждой отобранной пробе (почвы и воды) определяют наличие индикаторов, присутствие которых в каждой из упомянутых проб среды свидетельствует о ненарушенных условиях среды, обозначают их как положительные индикаторы и присваивают им балл «+1», далее определяют наличие индикаторов, присутствие которых в пробе среды свидетельствует о нарушении состояния среды, обозначают их как отрицательные индикаторы и присваивают им балл «-1», после чего оценивают состояния окружающей среды на участке в зависимости от наличия индикаторов в каждой пробе, путем расчета суммарной балльной оценки K с прибавлением одного балла за присутствие каждого вида индикатора с баллом «+1» и прибавлением одного балла за отсутствие каждого вида индикатора с баллом в отобранных пробах, для расчета используют соотношение:

где

n Ipos - число встреченных положительных индикаторов на данном участке,

n Ineg - число встреченных отрицательных индикаторов на данном участке,

Nneg - общее число отрицательных индикаторов в районе нефтегазодобычи, в котором осуществляют оценку качества среды,

затем формируют эталонную шкалу с разбивкой ее по классам качества среды, количество классов качества соответствует количеству видов-индикаторов на участке, при этом полученное при расчете значение K равное количеству видов-индикаторов соответствует эталонному классу качества среды, значение K=0 определяет класс качества среды, соответствующий экологической катастрофе, а промежуточные значения K, полученные при расчете, определяют классы качества, соответствующие разной степени нарушенности условий окружающей среды.

В случае включения в биоиндикационную систему семи видов-индикаторов выделяют семь классов качества среды. Для случая, приведенного в таблице 1, наилучшему качеству окружающей среды соответствует класс 0 - эталонный класс, а участкам с полностью уничтоженным природным биогеоценозом класс 6 - экологическая катастрофа (см. таблицу 1).

Систему видов-индикаторов разрабатывают для каждого конкретного района нефтегазодобычи на примере пар контрастных участков - ненарушенных (контрольных) и загрязненных, определяемых с использованием химического анализа и превышением ПДК по основным типам загрязнений. В зависимости от наличия видов, входящих в биоиндикационную систему, каждому виду присваивается соответствующий балл биоиндикационного значения. Полученную систему балльной оценки с помощью многоуровневой системы биоиндикаторов используют для оценки качества среды во всем районе нефтегазодобычи.

При проведении долгосрочных исследований шкалу качества среды ежегодно уточняют и актуализируют по мере накопления статистических данных и межгодовых колебаний климатической обстановки в районе объектов нефтегазодобычи. Возможно увеличение или уменьшение количества классов качества среды в связи с появлением новых или исключением уже выделенных организмов из числа индикаторов состояния среды по мере развития геоэкологической ситуации.

Сущность предлагаемого решения поясняется примером оценки состояния почв в окрестностях Бованенковского нефтегазоконденсатного месторождения (НГКМ).

Для оценки качества почв используют группу Oribatida - панцирных клещей. В выборке было обнаружено 30 видов орибатид, численность которых (экз. м-2) на разных участках в окрестностях Бованенковского нефтегазоконденсатного месторождения (НГКМ) представлена в таблице 2.

Выбор видов-индикаторов среди панцирных клещей осуществлялся в результате тестирования каждого вида по трем критериям:

1. Вид должен быть встречен в более чем 50% проб на всех участках;

2. По результатам анализа встречаемости вид должен быть встречен в 66% проб на контрольных или на нарушенных участках соответственно;

3. По результатам однократного дисперсионного анализа (уровень статистической достоверности р<0,05) численность вида в пределах одного класса качества среды должна быть либо достоверно выше, либо достоверно ниже, чем в других классах.

Результаты анализа пригодности видов панцирных клещей по критериям выбора видов-индикаторов представлены в таблице 3.

В представленном массиве данных удалось выделить четыре вида-индикатора: Liacarus xylaria (Schrank 1803), Moritzoppia unicarinata (Paoli, 1908), Nothrus palustris (C.L. Koch 1839) и Oppiella nova (Oudemans 1902). Все виды кроме M. unicarinata вида являются «отрицательными» индикаторами, т.е. индикаторами, встречающимися исключительно на нарушенных участках, которым в соответствии с предлагаемым способом оценки присвоен балл «-1». М. unicarinata присваивается балл «+1».

Результаты вычисления суммарной балльной оценки состояния окружающей среды K и определения класса качества среды представлены в таблице 4.

При включении в биоиндикационную систему четырех видов-индикаторов выделяют четыре класса качества среды - 0-й, 1-й, 2-й, 3-й классы, что соответствует эталонному состоянию среды, низкой и средней степени нарушенности условий окружающей среды и экологической катастрофе. В предложенном примере участок номер 18 относится к 3-ему классу качества среды, который соответствует экологической катастрофе, участок номер 15 ко 2-ому классу качества среды, который соответствует средне нарушенным условиям окружающей среды. Остальные участки характеризуются слабой степенью нарушенности, либо эталонным состоянием среды.

Пример расчета классов качества среды на основе данных о фауне и населении почвенных беспозвоночных, зоопланктоне и зообентосе в окрестностях Бованенковского НГКМ.

Для иллюстрации работы биоиндикационной системы ниже приведен гипотетический пример расчета индекса качества окружающей среды, рассчитанный на примере данных о почвенных беспозвоночных, планктоне и зообентосе в окрестностях Бованенковского НГКМ.

Всего в гипотетической выборке было встречены представители 12 семейств почвенной мезофауны, 19 видов орибатид, 5 таксонов зоопланктона и 6 отрядов бентических организмов. Численность учтенных на разных участках животных представлена в Таблице 5 (Численность таксонов почвенных беспозвоночных, зоопланктона и зообентоса на различных участках в окрестностях Бованенковского НГКМ).

Выбор таксонов-индикаторов

Выбор видов-индикаторов среди панцирных клещей осуществлялся в результате тестирования каждого вида по критериям, описанным выше. Результаты тестирования представлены в Таблице 6 (Результаты анализа пригодности таксонов почвенных беспозвоночных, зоопланктона и зообентоса по критериям выбора групп-индикаторов).

Таким образом, в представленном массиве данных удалось выделить семь таксонов - индикаторов: пауки Aranea, имаго жуков Staphylinidae, дождевые черви Lumbricidae, панцирные клещи Ceratoppia sphaerica и Oromurcia bicuspidata, планктонные копеподиты и бентические раки Amphipoda. При этом пауки Aranea и оба вида панцирных клещей являются «отрицательными» индикаторами, т.е., встречающиеся преимущественно на нарушенных участках а все остальные - положительными. В соответствии с методикой паукам и панцирным клещам присвоен балл «-1», а остальным «+1».

Результаты вычисления классов нарушенности среды для исследованных участков представлены в Таблице 7. (Расчет класса состояния среды для предложенной системы биоиндикаторов для всех участков из гипотетического массива данных. Номера участков соответствуют таковым в Таблице 5).

В предложенном гипотетическом примере состояние участков (номера 1 и 5) соответствует экологической катастрофе, участок номер 4 характеризуется чрезвычайной степенью нарушенности условий окружающей среды и три участка (номера 6, 7 и 8) соответствуют нарушенным условиям окружающей среды. Остальные участки характеризуются слабой степенью нарушенности, либо эталонным состоянием среды. В целом, результаты проведенного ранжирования хорошо согласуются с данными натурных исследований и когерентны с оценками степени воздействия на окружающую среду, сделанную в поле и приведенную в таблице 1.

Использование предложенного метода биоиндикации возможно в течение вегетационного сезона, и не зависит от сезонных изменений численности и состава биоты пресных вод и почв. Схема отбора проб на контрольных участках и на участках разной степени нарушенности позволяет проводить сравнение их моментального состояния. Это делает предлагаемый метод независимым от времени, сезона отбора проб.

Предложенный способ комплексной оценки состояния окружающей среды позволяет ранжировать экосистемы по классам качества окружающей среды. Практическое значение способа заключается в том, что он может быть использован как интегральный метод оценки состояния окружающей среды в регионах Крайнего Севера, позволяет при незначительных затратах получить объективные результаты проводимого мониторинга. При осуществлении долгосрочных наблюдений, по мере накопления информации, возможно получение ретроспективной оценки экологического состояния окружающей среды.


Способ комплексной оценки состояния окружающей среды
Источник поступления информации: Роспатент

Showing 11-20 of 100 items.
13.01.2017
№217.015.671a

Ингибитор сероводородной коррозии и наводороживания

Изобретение относится к области защиты металлов от сероводородной коррозии и наводороживания в нефтяной и газовой промышленности и может быть использовано для защиты стального оборудования и трубопроводов в средах с высоким содержанием сероводорода. Ингибитор содержит азотсодержащую активную...
Тип: Изобретение
Номер охранного документа: 0002591923
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6852

Способ снижения теплообмена в скважине при разработке многопластового месторождения

Изобретение относится к нефтегазодобывающей промышленности, а именно к способу теплоизоляции скважин, в том числе для скважин, осуществляющих совместно раздельную добычу промышленных пластовых вод и углеводородов многопластового месторождения. В способе снижения теплообмена в скважине при...
Тип: Изобретение
Номер охранного документа: 0002591325
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7c27

Способ низкотемпературного разложения сероводорода с получением водорода и серы

Изобретение относится к области газо- и нефтепереработки, а именно к способам разложения и утилизации сероводорода, и может применяться для производства водорода и серы из сероводорода. Способ включает пропускание сероводорода при температуре 0-35°C через слои катализатора и сорбента серы,...
Тип: Изобретение
Номер охранного документа: 0002600375
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7e53

Установка для исследования каталитических газохимических процессов

Изобретение относится к химической промышленности и может быть использовано, в частности, для исследования каталитических газохимических процессов. Установка для исследования каталитических газохимических процессов включает в себя каталитический реактор, газовый хроматограф, средства контроля...
Тип: Изобретение
Номер охранного документа: 0002601265
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f3d

Способ подвешивания сталеполимерной безмуфтовой гибкой трубы в скважине

Изобретение относится к нефтегазодобывающей промышленности, в частности к эксплуатации скважин на завершающей стадии разработки, а именно к эксплуатации самозадавливающихся газовых скважин. Технический результат заключается в предотвращении вертикального перемещения сталеполимерной безмуфтовой...
Тип: Изобретение
Номер охранного документа: 0002601078
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.85e4

Катализатор процесса окислительной ароматизации низших алканов

Изобретение относится к катализаторам процесса получения ароматических углеводородов из углеводородного сырья. Катализатор окислительной ароматизации низших алканов содержит в мас.%: оксид цинка (в пересчете на металл) 3,00-7,00; оксид галлия (в пересчете на металл) 1,00-3,00; оксид...
Тип: Изобретение
Номер охранного документа: 0002603775
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86de

Катализатор процесса окислительной ароматизации низших алканов

Изобретение относится к катализаторам процесса получения ароматических углеводородов из углеводородного сырья. Катализатор окислительной ароматизации низших алканов содержит в мас.%: оксид цинка (в пересчете на металл) 3,00-7,00, оксид галлия (III) (в пересчете на металл) 0,5-3,00, оксид...
Тип: Изобретение
Номер охранного документа: 0002603774
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8b4e

Летучий ингибитор коррозии

Изобретение относится к области защиты металлов от коррозии и может быть использовано для защиты черных и цветных металлов и изделий из них от атмосферной коррозии при транспортировке и хранении. Летучий ингибитор коррозии (ЛИК) содержит, мас.%: триэтаноламин 0,5-1,0, диметилэтаноламин...
Тип: Изобретение
Номер охранного документа: 0002604164
Дата охранного документа: 10.12.2016
24.08.2017
№217.015.94f8

Биокомпозитный материал для очистки сточных вод от нитрит-, нитрат-, фосфат-ионов

Изобретение относится к биокомпозитному материалу, содержащему нетканый полимер и иммобилизованную ассоциацию микроорганизмов, и может быть использовано при очистке бытовых и промышленных сточных вод от загрязнений нитритами, нитратами, фосфатами. Биокомпозитный материал представляет собой...
Тип: Изобретение
Номер охранного документа: 0002608527
Дата охранного документа: 19.01.2017
24.08.2017
№217.015.9597

Противокоррозионный материал

Изобретение относится к противокоррозионным материалам на основе летучих ингибиторов коррозии и может быть использовано для защиты черных и цветных металлов и изделий из них от атмосферной коррозии при транспортировке и хранении. Противокоррозионный материал на основе силикагеля пропитан...
Тип: Изобретение
Номер охранного документа: 0002608483
Дата охранного документа: 18.01.2017
Showing 11-20 of 32 items.
29.12.2017
№217.015.f98c

Способ рекультивации эрозионно-опасных участков тундровых земель

Изобретение относится к области рекультивации нарушенных земель и может быть использовано для восстановления почвенно-растительного покрова на эрозионно-опасных участках тундровых земель. Способ рекультивации эрозионно-опасных участков тундровых земель, в котором между двумя четырехугольными...
Тип: Изобретение
Номер охранного документа: 0002639783
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.027d

Способ очистки почвы от загрязнений нефтепродуктами

Изобретение относится к биотехнологии и может применяться для очистки загрязненных углеводородами и экотоксикантами земель с использованием биопрепарата. Техническим результатом является повышение эффективности очистки загрязненных углеводородами земель, а также расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002630246
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.02cb

Способ рекультивации нарушенных земель

Изобретение относится к биотехнологии и может применяться для очистки загрязненных углеводородами и экотоксикантами земель с использованием биопрепарата. Техническим результатом является упрощение технологии и повышение качества рекультивации при одновременном сокращении затрат на ее...
Тип: Изобретение
Номер охранного документа: 0002630237
Дата охранного документа: 06.09.2017
09.06.2018
№218.016.5cfa

Биосорбент для очистки воды от углеводородных загрязнений и способ его получения

Группа изобретений относится к биотехнологии. Предложены способ получения биосорбента и биосорбент для очистки воды от углеводородных загрязнений. Способ включает предварительную сушку измельченного до фракций 1-1,5 мм торфа при 40-50°С до влажности не более 3%, пиролиз под вакуумом при...
Тип: Изобретение
Номер охранного документа: 0002656146
Дата охранного документа: 31.05.2018
25.10.2018
№218.016.95a6

Способ контроля проведения рекультивации на участках нарушенных земель

Изобретение относится к экологии и может быть использовано для мониторинга состояния нарушенных земель в районах освоения газовых месторождений Крайнего Севера. Для этого, после проведения рекультивации нарушенных земель, проводят комплексное исследование проб почвы рекультивированного и...
Тип: Изобретение
Номер охранного документа: 0002670455
Дата охранного документа: 23.10.2018
18.01.2019
№219.016.b0f2

Способ получения биомассы микроорганизмов

Изобретение относится к области биотехнологии. Предложен способ получения биомассы микрорганизмов. Способ включает культивирование микроорганизмов в условиях аэрации на питательной среде, где до 90% отработанной культуральной жидкости аммонизируют аммиачной водой до достижения рН в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002677311
Дата охранного документа: 16.01.2019
09.02.2019
№219.016.b8a2

Аппарат для выращивания микроорганизмов

Изобретение относится к микробиологической промышленности, в частности к аппаратам для выращивания микроорганизмов. Аппарат для выращивания микроорганизмов содержит корпус с технологическими патрубками в его боковой части для подачи метана, растворов минеральных солей и титрующих агентов,...
Тип: Изобретение
Номер охранного документа: 0002679356
Дата охранного документа: 07.02.2019
01.03.2019
№219.016.cfd7

Способ очистки окружающей среды от углеводородных загрязнений

Изобретение относится к биотехнологии, в частности к микробиологическим способам очистки окружающей среды, и может применяться для очистки окружающей среды от углеводородных загрязнений с использованием консорциума микроорганизмов. Способ включает внесение в очищаемую среду консорциума...
Тип: Изобретение
Номер охранного документа: 0002430021
Дата охранного документа: 27.09.2011
29.04.2019
№219.017.46c2

Способ очистки сточных вод от метанола

Изобретение относится к обработке воды. В метанолсодержащие сточные воды вводят при перемешивании нитрит натрия и соляную кислоту. Образующийся метилнитрит направляют на абсорбцию. Насыщенный раствор абсорбента подают в ректификационную колонну для регенерации метанола. Кубовый остаток после...
Тип: Изобретение
Номер охранного документа: 0002468999
Дата охранного документа: 10.12.2012
13.09.2019
№219.017.cab2

Способ получения биомассы метанокисляющих бактерий methylococcus capsulatus

Изобретение относится к области биотехнологии. Предложен способ получения биомассы метанокисляющих бактерий . Способ включает в условиях аэрации выращивание указанных бактерий в ферментере на содержащей в качестве источника углерода метан питательной среде. При выращивании осуществляют...
Тип: Изобретение
Номер охранного документа: 0002699986
Дата охранного документа: 11.09.2019
+ добавить свой РИД