×
04.11.2019
219.017.de5f

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ МАТЕРИАЛОВ ИЗ АЛЬГИНАТА НАТРИЯ И ПОЛИВИНИЛПИРРОЛИДОНА, СОДЕРЖАЩИХ ФОСФАТЫ КАЛЬЦИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в реконструктивно-пластической хирургии для пластической реконструкции поврежденных костных тканей. Для получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, для заполнения костных дефектов проводят синтез in situ фосфатов кальция в 2% водном растворе поливинилпирролидона при температуре реакционной смеси от 37 до 90°С. После завершения синтеза фосфатов кальция в реакционную смесь добавляют 2% водный раствор альгината натрия, перемешивают в течение 30 мин. Реакционную смесь вспенивают пропусканием через нее воздуха с использованием компрессора. Вспененную массу обрабатывают 5% водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают в морозильной камере при температуре от -10 до -18°С и высушивают в лиофильной сушилке. Изобретение позволяет получить высокопористый биосовместимый материал, включающий равномерно распределенные наноразмерные частицы фосфатов кальция, приближенный по структуре к естественной костной ткани человека и не содержащий ксеногенные компоненты. 1 ил., 3 пр.

Область техники, к которой относится изобретение

Изобретение относится к медицине, а именно к реконструктивно-пластической хирургии для пластической реконструкции поврежденных костно-хрящевых тканей. Уровень техники.

Известно, что в результате введения клеточного материала в организм без матрикса-носителя, почти все клетки гибнут из-за отсутствия условий для их пролиферации. По этой причине проблема создания имплантатов на основе матриксов-носителей является одной из ключевых в реализации технологий клеточной трансплантации. Главными требованиями к матриксам-носителям должны быть их высокая биосовместимость и способность стимулировать собственные регенерационные процессы поврежденного органа. Конструирование матриксов-носителей на основе объемных пористых материалов из биодеградируемых полимеров, характеризующихся биосовместимостью, а также возможностью регулировать время биорезорбции имплантата, является одним из новейших направлений в биотехнологии. Разработка полимерных носителей для внедряемых лекарственных препаратов и клеточных культур в виде трехмерных (губки, пространственные сетки) тонкоструктурированных полимерных матриксов составляет ключевую проблему для имплантационных хирургических материалов. Поскольку костная ткань является композиционным материалом, содержащим фосфаты кальция (ФК) и органические компоненты (коллаген, коллагеновые и неколлагеногме белки), такой состав позволяет нести механические нагрузки, которые являются критичными, например, для керамических костных имплантатов. Поэтому перспективным является использование композиционных материалов, содержащих как неорганические компоненты (ФК), так и органические компоненты. Помимо коллагена, желатина и хитозана, в качестве органического компонента может использоваться альгинат натрия. Альгинат натрия является природным полисахаридом, который получают из бурых водорослей, или ламинарии японской. Известно (Патент РФ №2326137 Малесса Р. Способ получения содержащих альгинат пористых формованных изделий), что альгинат натрия взаимодействует с хлоридами многовалентных металлов, образуя нерастворимые в воде гидрогели. Это свойство широко используется для сшивания пленок и объемных материалов из гидрогелей альгината. В изобретении описан способ получения объемных пористых материалов из альгината натрия. Однако, использование альгината натрия вкачестве матрикса для клеточных культур не вполне удовлетворяет требованиям, предъявляемым к материалу матрикса, т.к. пролиферация клеток на поверхности альгината затруднена, данный материал вызывает частичную гибель клеток. В связи с этим для биомедицинских применений используют смесевые материалы, например, смеси метилцеллюлозы и альгината (Fadeeva I. V. et al. Methylcellulose films partially crosslinked by iron compounds for medical applications //Materials Today Communications. - 2019. - T. 18. - C. 54-59).

Известен способ получения нетканых материалов на основе хитозана, содержащих поливинилпирролидон (ПВП), поливиниловый спирт или другими полимерами многоцелевого назначения, используемыми в медицине (Патент РФ №2031661 Средство для лечения ран и оказания первой медицинской помощи /Адамян А.А., Полевов В.Н., Климчук Н.Е. и др.). Недостатком данных материалов является присутствие в их составе хитозана, который до настоящего времени не разрешен к использованию в медицине внутри организма.

В качестве прототипа нами выбрана наиболее близкая к настоящему изобретению статья (Каралкин П. А. и др. Биосовместимость и остеопластические свойства минерал-полимерных композиционных материалов на основе альгината натрия, желатина и фосфатов кальция, предназначенных для трехмерной печати костнозамещающях конструкций //Гены и клетки. - 2016. - Т. 11. - №. 3.) В данной статье описан способ получения пористых трехмерных матриксов на основе желатина и альгината натрия, содержащих фосфаты кальция, с использованием трехмерной печати. Полученные результаты свидетельствуют о целесообразности и перспективности использования трехкомпонентных минерал-полимерных композиционных материалов на основе альгината, желатина и октакальциевого фосфата в качестве «чернил» для 3D-печати остеопластических конструкций. К недостаткам описанного способа получения относится использование в качестве одного из полимерных материалов желатина - полимера животного происхождения. Как известно, органические соединения животного происхождения могут содержать ксеногенные факторы, влияние которых на организм человека недостаточно изучено.

Задачей настоящего изобретения является создание высокопористого биосовместимого материала, содержащего равномерно распределенные наноразмерные ФК, приближенного по структуре к естественной костной ткани человека, и не содержащего ксеногенных факторов.

Техническим результатом настоящего изобретения является создание биосовместимого пористого минерал-полимерного материала, состоящего из ПВП, альгината натрия (alg), в котором наноразмерные фосфаты кальция (ФК), равномерно распределены в объеме полимера.

Технический результат достигается тем, что по способу получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция (дикальцийфосфат дигидрат (ДКФД), аморфный фосфат кальция с соотношением Са/Р=1,5 (АФК), осажденный гидроксиапатит (ОГА), карбонатгидроксиапатит (КГА)), включающему синтез in situ фосфатов кальция в 2%-ном водном растворе ПВП, при температуре реакционной смеси от 37 до 90°С, согласно изобретению, через 30 мин после завершения синтеза фосфатов кальция в реакционную смесь добавляют 2%-ный водный раствор альгината натрия, так, чтобы массовое соотношение полимеров (ПВП: alg) находилось в пределах от 0,5 до 4, перемешивают в течение 30 мин, после чего реакционную смесь вспенивают пропусканием через нее воздуха с использованием компрессора в течение 10 мин, после чего вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают в морозильной камере при температуре от -10°С до -18°С и высушивают в лиофильной сушилке в течение 10-12 часов.

Сущность изобретения состоит в синтезе наноразмерных ФК in situ, в растворе, содержащем ПВП, последующем добавлении 2%-ного раствора alg, вспенивании реакционной массы с помощью сжатого воздуха из компрессора в течение 10 мин, обработкой вспененной массы 5%-ным водным раствором комплексного соединения салицилата железа и высушиванием в лиофильной сушилке в течение 10-12 часов. В результате осаждения ФК в растворе ПВП в ячейках полимерной сетки, образованной макромолекулами ПВП, формируются наноразмерные частицы ФК. Поскольку ФК в растворе ПВП осаждаются при непрерывном перемешивании, то в результате распределение ФК в растворе ПВП является равномерным. При добавлении в реакционную смесь 2%-ного водного раствора альгината натрия происходит образование геля за счет частичного сшивания альгината натрия фосфатами кальция. При пропускании воздуха через гель пузырьки воздуха формируют внутри геля систему взаимосвязанных пор. Далее вспененную массу фиксируют посредством обработки 5%-ным водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают при -10 -18°С и высушивают в лиофильной сушилке в течение 10-12 часов. В процессе сушки происходит сублимация кристаллов льда (переход из твердого состояния вгазообразное, минуя жидкое) из вспененного материала через систему взаимосвязанных пор. Структура материала при этом сохраняется. При погружении пористого минерал-полимерного материала в растворы, содержащие воду, происходит набухание материала, в результате проникновения молекул воды между молекулами полимеров, при этом структура материала сохраняется от нескольких часов до нескольких суток. Через 1-5 суток происходит полное растворение материала. Изменяя соотношение ПВП и alg, можно регулировать скорость растворения материала в водных растворах, что является ценным свойством для использования пористого материала при замещении дефектов твердых и мягких тканей человека.

Пример 1.

Готовят 200 мл 2%-ного раствора ПВП растворением 4 г ПВП с молекулярной массой 12000 кДа в 196 мл дистиллированной воды. В реактор, снабженный лопастной верхнеприводной мешалкой, помещают полученный раствор ПВП, добавляют 1 мл раствора гидрофосфата аммония концентрации 0,1 моль/л, затем капельно, при постоянном перемешивании добавляют 10 мл раствора нитрата кальция концентрации 0,01 моль/л, перемешивают при температуре 25°С в течение 30 мин, после чего добавляют 50 мл 2%-ного водного раствора альгината натрия (массовое соотношение ПВП:алг=4:1) и продолжают перемешивание в течение 20 мин. В образовавшийся гель погружают трубку, соединенную с компрессором, и пропускают в гель воздух в течение 10 мин. Вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (+3) с салициловой кислотой, замораживают в морозильной камере при -10°С в течение 8-10 часов, после чего помещают в лиофильную сушилку и высушивают в течение 10-12 часов.

Полученный материал характеризуется пористостью 70-80%, устойчивостью в водных растворах в течение 2 суток. Определенный методом ПЭМ фазовый состав ФК соответствует ДКФД. На рис. 1 приведено СЭМ изображениематериала, на котором видны частицы ДКФД размером которых не более 100 нм, равномерно распределенные в объеме полимера.

Пример 2.

Готовят 100 мл 2%-ного раствора ПВП растворением 2 г ПВП с молекулярной массой 12000 кДа в 98 мл дистиллированной воды. В реактор, снабженный лопастной верхнеприводной мешалкой, помещают полученный раствор ПВП, добавляют 6 мл раствора гидрофосфата аммония концентрации 0,1 моль/л, затем капельно, при постоянном перемешивании добавляют 10 мл раствора хлорида кальция концентрации 0,01 моль/л, перемешивают при температуре 90°С в течение 30 мин, после чего добавляют 100 мл 2%-ного водного раствора альгината натрия (массовое соотношение ПВП:алг=1) и продолжают перемешивание в течение 20 мин. В образовавшийся гель погружают трубку, соединенную с компрессором, и пропускают в гель воздух в течение 5 мин. Вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (+3) с салициловой кислотой, замораживают в морозильной камере при -18°С в течение 8-10 часов, после чего помещают в лиофильную сушилку и высушивают в течение 10-12 часов.

Полученный материал характеризуется пористостью 80-85%, устойчивостью в водных растворах в течение 1 суток. Определенный методом ПЭМ фазовый состав ФК соответствует апатиту.

Пример 3.

Готовят 100 мл 2%-ного раствора ПВП растворением 2 г ПВП с молекулярной массой 12000 кДа в 98 мл дистиллированной воды. В реактор, снабженный лопастной верхнеприводной мешалкой, помещают полученный раствор ПВП, добавляют 2 мл раствора гидрофосфата аммония концентрации 0,1 моль/л, затем капельно, при постоянном перемешивании добавляют 3 мл раствора хлорида кальция концентрации 0,1 моль/л, перемешивают при температуре 25°С в течение 30 мин, после чего добавляют 10 мл 2%-ного водного раствора альгината натрия (массовое соотношение ПВП:алг=10:1) и продолжают перемешивание в течение 20 мин. В образовавшийся гель погружают трубку, соединенную с компрессором и пропускают в гель воздух в течение 5 мин. Вспененную массу обрабатывают 5%-ным водным раствором обрабатывают 5%-ным водным раствором комплексного соединения железа (+3) с салициловой кислотой, замораживают в морозильной камере при -18°С в течение 8-10 часов, после чего помещают в лиофильную сушилку и высушивают в течение 10-12 часов.

Полученный материал характеризуется пористостью 70-80%, в водных растворах материал растворяется в течение 60 мин. Определенный методом ПЭМ фазовый состав ФК соответствует аморфному фосфату кальция (АФК). Размер частиц АФК - 40-50 нм.

Способ получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, включающий синтез in situ фосфатов кальция в 2%-ном водном растворе поливинилпирролидона при температуре реакционной смеси от 37 до 90°С, перемешивание смеси, пропускание через смесь воздуха для вспенивания массы, обработку вспененной массы раствором салицилата железа, формование и высушивание смеси в лиофильной сушилке, отличающийся тем, что через 30 мин после завершения синтеза фосфатов кальция в реакционную смесь добавляют 2%-ный водный раствор альгината натрия так, чтобы массовое соотношение полимеров (ПВП:alg) находилось в пределах от 0,5 до 4, перемешивают в течение 30 мин, после чего реакционную смесь вспенивают пропусканием через нее воздуха с использованием компрессора в течение 10 мин, после чего вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают в морозильной камере при температуре от -10 до -18°С и высушивают в лиофильной сушилке до полного удаления влаги.
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ МАТЕРИАЛОВ ИЗ АЛЬГИНАТА НАТРИЯ И ПОЛИВИНИЛПИРРОЛИДОНА, СОДЕРЖАЩИХ ФОСФАТЫ КАЛЬЦИЯ
Источник поступления информации: Роспатент

Showing 81-90 of 108 items.
29.11.2019
№219.017.e7ff

Сферический порошок псевдосплава на основе вольфрама и способ его получения

Изобретение относится к сферическому порошку псевдосплава на основе вольфрама. Ведут гранулирование порошка наноразмерного композита, состоящего из металлических частиц с размерами менее 100 нм и полученного водородным восстановлением в термической плазме смеси порошков оксидов вольфрама с...
Тип: Изобретение
Номер охранного документа: 0002707455
Дата охранного документа: 26.11.2019
27.12.2019
№219.017.f28e

Керамический материал с низкой температурой спекания на основе системы диоксида циркония - оксида алюминия - оксида кремния

Изобретение относится к области получения высокоплотной керамики на основе ZrO-AlO-SiO. Разработанные материалы могут быть использованы для получения огнеупорных изделий, высокотемпературных деталей машин и печного оборудования. Керамический материал имеет следующий химический состав, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002710341
Дата охранного документа: 25.12.2019
31.12.2020
№219.017.f4a9

Керамический композиционный материал

Изобретение относится к керамическому материаловедению, получению композиционного материала с матрицей диоксида циркония, стабилизированного в тетрагональной форме, и оксида алюминия. Материал может быть использован для изготовления изделий конструкционного и медицинского назначения, в...
Тип: Изобретение
Номер охранного документа: 0002710648
Дата охранного документа: 30.12.2019
15.02.2020
№220.018.02b4

Способ получения окрашенного однофазного пирофосфата кальция

Изобретение может быть использовано в производстве материалов для восстановления дефектов костной ткани, зубных пломб. Способ получения окрашенного однофазного пирофосфата кальция включает смешение лактата кальция с двузамещенным фосфатом аммония при их мольном соотношении, равном 1. Смешение...
Тип: Изобретение
Номер охранного документа: 0002714188
Дата охранного документа: 12.02.2020
15.02.2020
№220.018.02d1

Способ определения площади контакта оправки и заготовки при винтовой прошивке

Изобретение относится к области обработки металлов давлением. Способ заключается в том, что заготовку прошивают на глубину, равную 0,5÷0,75 от ее исходной длины, процесс прошивки останавливают, заготовку снимают с оправки. Далее определяют размеры заготовки и оправки. На основе измерений в...
Тип: Изобретение
Номер охранного документа: 0002714225
Дата охранного документа: 13.02.2020
17.02.2020
№220.018.0325

Керметный порошок для плазменного напыления

Изобретение относится к материалу керметного порошка для плазменного напыления и может использоваться для формирования износостойких покрытий. Керметный порошок содержит 20-80 массовых процентов карбида титана, упрочняющие фазы CrC, WC, TiN в количестве 20-45% относительно карбида TiC и...
Тип: Изобретение
Номер охранного документа: 0002714269
Дата охранного документа: 13.02.2020
15.04.2020
№220.018.1473

Способ изготовления керамики на основе карбида кремния, армированного волокнами карбида кремния

Изобретение относится к способу получения керамического композита из карбида кремния, упрочненного волокном из карбида кремния, который может быть использован для работы в кислых и агрессивных средах, в условиях высоких температур и длительного механического воздействия. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002718682
Дата охранного документа: 13.04.2020
07.06.2020
№220.018.24b3

Способ раскатки трубных заготовок

Изобретение относится к области обработки металлов давлением и может быть использовано для получения бесшовных труб раскаткой полых трубных заготовок в стане винтовой прокатки. Полую трубную заготовку - гильзу подвергают раскатке в четырехвалковом стане винтовой прокатки, все валки которого...
Тип: Изобретение
Номер охранного документа: 0002722952
Дата охранного документа: 05.06.2020
18.06.2020
№220.018.2779

Способ получения биомедицинского материала "никелид титана-полилактид" с возможностью контролируемой доставки лекарственных средств

Изобретение относится к технологии получения композиционного биомедицинского материала никелид титана-полилактид с возможностью контролируемой доставки лекарственных средств. Предложенный способ получения биомедицинского материала никелид титана-полилактид включает получение раствора...
Тип: Изобретение
Номер охранного документа: 0002723588
Дата охранного документа: 16.06.2020
21.07.2020
№220.018.3528

Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью

Изобретение относится к области медицины, а именно к рентгеноэндоваскулярной дилатации. Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью, включает автоматизированное плетение импланта на оправку модифицированным намоточным станком по...
Тип: Изобретение
Номер охранного документа: 0002727031
Дата охранного документа: 17.07.2020
Showing 51-58 of 58 items.
06.12.2019
№219.017.ea17

4-(2,4-диметоксифенил)-2-(2-гидроксифенил)-5,6-дигидро-4н-бензо[h]хромен-3-карбоновая кислота, обладающая цитотоксической активностью

Настоящее изобретение относится к 4-(2,4-диметоксифенил)-2-(2-гидроксифенил)-5,6-дигидро-4Н-бензо[h]хромен-3-карбоновой кислоте указанной формулы, обладающей цитотоксической активностью. 1 табл., 3 ил., 1 пр.
Тип: Изобретение
Номер охранного документа: 0002707972
Дата охранного документа: 03.12.2019
27.12.2019
№219.017.f28e

Керамический материал с низкой температурой спекания на основе системы диоксида циркония - оксида алюминия - оксида кремния

Изобретение относится к области получения высокоплотной керамики на основе ZrO-AlO-SiO. Разработанные материалы могут быть использованы для получения огнеупорных изделий, высокотемпературных деталей машин и печного оборудования. Керамический материал имеет следующий химический состав, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002710341
Дата охранного документа: 25.12.2019
15.02.2020
№220.018.02b4

Способ получения окрашенного однофазного пирофосфата кальция

Изобретение может быть использовано в производстве материалов для восстановления дефектов костной ткани, зубных пломб. Способ получения окрашенного однофазного пирофосфата кальция включает смешение лактата кальция с двузамещенным фосфатом аммония при их мольном соотношении, равном 1. Смешение...
Тип: Изобретение
Номер охранного документа: 0002714188
Дата охранного документа: 12.02.2020
23.02.2020
№220.018.04b6

Средство, обладающее цитотоксической активностью

Изобретение относится к области органической химии и фармации. Предложено применение 2-(4-карбоксибензилиден)-3,4-дигидронафтален-1(2Н)-она в качестве средства, обладающего цитотоксической активностью. Технический результат: соединение подавляло метаболическую активность клеточных линий почки...
Тип: Изобретение
Номер охранного документа: 0002714932
Дата охранного документа: 21.02.2020
12.05.2023
№223.018.5437

Керамический материал системы диоксида циркония-оксида алюминия-оксида кремния с пониженной температурой спекания

Изобретение относится к области получения высокопрочной керамики на основе диоксида циркония–оксида алюминия–оксида кремния для получения изделий медицинского назначения. Керамический материал получен из шихты, включающей, мас.%: тетрагональный диоксид циркония (содержание оксида иттрия 3...
Тип: Изобретение
Номер охранного документа: 0002795518
Дата охранного документа: 04.05.2023
23.05.2023
№223.018.6e66

Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации для аддитивного производства

Изобретение относится к области получения изделий из высокоплотной керамики на основе диоксида циркония сложной формы при помощи аддитивного производства методом цифровой обработки светом (Digital Light Processing, DLP). Разработанные материалы могут быть использованы для получения зубных...
Тип: Изобретение
Номер охранного документа: 0002795866
Дата охранного документа: 12.05.2023
01.06.2023
№223.018.7486

Способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани

Изобретение относится к медицине, в частности биокерамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Технический результат изобретения - получение керамических образцов на основе β-трикальцийфосфата с общей...
Тип: Изобретение
Номер охранного документа: 0002729761
Дата охранного документа: 12.08.2020
19.06.2023
№223.018.824f

Способ получения мезопористых порошков гидроксиапатита методом химического соосаждения

Изобретение относится к методу получения мезопористых порошков гидроксиапатита, применяемых в катализе. Описан способ получения мезопористых порошков гидроксиапатита методом химического соосаждения, включающий приготовление растворов нитрата кальция и фосфата аммония, перемешивание раствора...
Тип: Изобретение
Номер охранного документа: 0002797213
Дата охранного документа: 31.05.2023
+ добавить свой РИД