×
04.11.2019
219.017.de5f

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ МАТЕРИАЛОВ ИЗ АЛЬГИНАТА НАТРИЯ И ПОЛИВИНИЛПИРРОЛИДОНА, СОДЕРЖАЩИХ ФОСФАТЫ КАЛЬЦИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в реконструктивно-пластической хирургии для пластической реконструкции поврежденных костных тканей. Для получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, для заполнения костных дефектов проводят синтез in situ фосфатов кальция в 2% водном растворе поливинилпирролидона при температуре реакционной смеси от 37 до 90°С. После завершения синтеза фосфатов кальция в реакционную смесь добавляют 2% водный раствор альгината натрия, перемешивают в течение 30 мин. Реакционную смесь вспенивают пропусканием через нее воздуха с использованием компрессора. Вспененную массу обрабатывают 5% водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают в морозильной камере при температуре от -10 до -18°С и высушивают в лиофильной сушилке. Изобретение позволяет получить высокопористый биосовместимый материал, включающий равномерно распределенные наноразмерные частицы фосфатов кальция, приближенный по структуре к естественной костной ткани человека и не содержащий ксеногенные компоненты. 1 ил., 3 пр.

Область техники, к которой относится изобретение

Изобретение относится к медицине, а именно к реконструктивно-пластической хирургии для пластической реконструкции поврежденных костно-хрящевых тканей. Уровень техники.

Известно, что в результате введения клеточного материала в организм без матрикса-носителя, почти все клетки гибнут из-за отсутствия условий для их пролиферации. По этой причине проблема создания имплантатов на основе матриксов-носителей является одной из ключевых в реализации технологий клеточной трансплантации. Главными требованиями к матриксам-носителям должны быть их высокая биосовместимость и способность стимулировать собственные регенерационные процессы поврежденного органа. Конструирование матриксов-носителей на основе объемных пористых материалов из биодеградируемых полимеров, характеризующихся биосовместимостью, а также возможностью регулировать время биорезорбции имплантата, является одним из новейших направлений в биотехнологии. Разработка полимерных носителей для внедряемых лекарственных препаратов и клеточных культур в виде трехмерных (губки, пространственные сетки) тонкоструктурированных полимерных матриксов составляет ключевую проблему для имплантационных хирургических материалов. Поскольку костная ткань является композиционным материалом, содержащим фосфаты кальция (ФК) и органические компоненты (коллаген, коллагеновые и неколлагеногме белки), такой состав позволяет нести механические нагрузки, которые являются критичными, например, для керамических костных имплантатов. Поэтому перспективным является использование композиционных материалов, содержащих как неорганические компоненты (ФК), так и органические компоненты. Помимо коллагена, желатина и хитозана, в качестве органического компонента может использоваться альгинат натрия. Альгинат натрия является природным полисахаридом, который получают из бурых водорослей, или ламинарии японской. Известно (Патент РФ №2326137 Малесса Р. Способ получения содержащих альгинат пористых формованных изделий), что альгинат натрия взаимодействует с хлоридами многовалентных металлов, образуя нерастворимые в воде гидрогели. Это свойство широко используется для сшивания пленок и объемных материалов из гидрогелей альгината. В изобретении описан способ получения объемных пористых материалов из альгината натрия. Однако, использование альгината натрия вкачестве матрикса для клеточных культур не вполне удовлетворяет требованиям, предъявляемым к материалу матрикса, т.к. пролиферация клеток на поверхности альгината затруднена, данный материал вызывает частичную гибель клеток. В связи с этим для биомедицинских применений используют смесевые материалы, например, смеси метилцеллюлозы и альгината (Fadeeva I. V. et al. Methylcellulose films partially crosslinked by iron compounds for medical applications //Materials Today Communications. - 2019. - T. 18. - C. 54-59).

Известен способ получения нетканых материалов на основе хитозана, содержащих поливинилпирролидон (ПВП), поливиниловый спирт или другими полимерами многоцелевого назначения, используемыми в медицине (Патент РФ №2031661 Средство для лечения ран и оказания первой медицинской помощи /Адамян А.А., Полевов В.Н., Климчук Н.Е. и др.). Недостатком данных материалов является присутствие в их составе хитозана, который до настоящего времени не разрешен к использованию в медицине внутри организма.

В качестве прототипа нами выбрана наиболее близкая к настоящему изобретению статья (Каралкин П. А. и др. Биосовместимость и остеопластические свойства минерал-полимерных композиционных материалов на основе альгината натрия, желатина и фосфатов кальция, предназначенных для трехмерной печати костнозамещающях конструкций //Гены и клетки. - 2016. - Т. 11. - №. 3.) В данной статье описан способ получения пористых трехмерных матриксов на основе желатина и альгината натрия, содержащих фосфаты кальция, с использованием трехмерной печати. Полученные результаты свидетельствуют о целесообразности и перспективности использования трехкомпонентных минерал-полимерных композиционных материалов на основе альгината, желатина и октакальциевого фосфата в качестве «чернил» для 3D-печати остеопластических конструкций. К недостаткам описанного способа получения относится использование в качестве одного из полимерных материалов желатина - полимера животного происхождения. Как известно, органические соединения животного происхождения могут содержать ксеногенные факторы, влияние которых на организм человека недостаточно изучено.

Задачей настоящего изобретения является создание высокопористого биосовместимого материала, содержащего равномерно распределенные наноразмерные ФК, приближенного по структуре к естественной костной ткани человека, и не содержащего ксеногенных факторов.

Техническим результатом настоящего изобретения является создание биосовместимого пористого минерал-полимерного материала, состоящего из ПВП, альгината натрия (alg), в котором наноразмерные фосфаты кальция (ФК), равномерно распределены в объеме полимера.

Технический результат достигается тем, что по способу получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция (дикальцийфосфат дигидрат (ДКФД), аморфный фосфат кальция с соотношением Са/Р=1,5 (АФК), осажденный гидроксиапатит (ОГА), карбонатгидроксиапатит (КГА)), включающему синтез in situ фосфатов кальция в 2%-ном водном растворе ПВП, при температуре реакционной смеси от 37 до 90°С, согласно изобретению, через 30 мин после завершения синтеза фосфатов кальция в реакционную смесь добавляют 2%-ный водный раствор альгината натрия, так, чтобы массовое соотношение полимеров (ПВП: alg) находилось в пределах от 0,5 до 4, перемешивают в течение 30 мин, после чего реакционную смесь вспенивают пропусканием через нее воздуха с использованием компрессора в течение 10 мин, после чего вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают в морозильной камере при температуре от -10°С до -18°С и высушивают в лиофильной сушилке в течение 10-12 часов.

Сущность изобретения состоит в синтезе наноразмерных ФК in situ, в растворе, содержащем ПВП, последующем добавлении 2%-ного раствора alg, вспенивании реакционной массы с помощью сжатого воздуха из компрессора в течение 10 мин, обработкой вспененной массы 5%-ным водным раствором комплексного соединения салицилата железа и высушиванием в лиофильной сушилке в течение 10-12 часов. В результате осаждения ФК в растворе ПВП в ячейках полимерной сетки, образованной макромолекулами ПВП, формируются наноразмерные частицы ФК. Поскольку ФК в растворе ПВП осаждаются при непрерывном перемешивании, то в результате распределение ФК в растворе ПВП является равномерным. При добавлении в реакционную смесь 2%-ного водного раствора альгината натрия происходит образование геля за счет частичного сшивания альгината натрия фосфатами кальция. При пропускании воздуха через гель пузырьки воздуха формируют внутри геля систему взаимосвязанных пор. Далее вспененную массу фиксируют посредством обработки 5%-ным водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают при -10 -18°С и высушивают в лиофильной сушилке в течение 10-12 часов. В процессе сушки происходит сублимация кристаллов льда (переход из твердого состояния вгазообразное, минуя жидкое) из вспененного материала через систему взаимосвязанных пор. Структура материала при этом сохраняется. При погружении пористого минерал-полимерного материала в растворы, содержащие воду, происходит набухание материала, в результате проникновения молекул воды между молекулами полимеров, при этом структура материала сохраняется от нескольких часов до нескольких суток. Через 1-5 суток происходит полное растворение материала. Изменяя соотношение ПВП и alg, можно регулировать скорость растворения материала в водных растворах, что является ценным свойством для использования пористого материала при замещении дефектов твердых и мягких тканей человека.

Пример 1.

Готовят 200 мл 2%-ного раствора ПВП растворением 4 г ПВП с молекулярной массой 12000 кДа в 196 мл дистиллированной воды. В реактор, снабженный лопастной верхнеприводной мешалкой, помещают полученный раствор ПВП, добавляют 1 мл раствора гидрофосфата аммония концентрации 0,1 моль/л, затем капельно, при постоянном перемешивании добавляют 10 мл раствора нитрата кальция концентрации 0,01 моль/л, перемешивают при температуре 25°С в течение 30 мин, после чего добавляют 50 мл 2%-ного водного раствора альгината натрия (массовое соотношение ПВП:алг=4:1) и продолжают перемешивание в течение 20 мин. В образовавшийся гель погружают трубку, соединенную с компрессором, и пропускают в гель воздух в течение 10 мин. Вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (+3) с салициловой кислотой, замораживают в морозильной камере при -10°С в течение 8-10 часов, после чего помещают в лиофильную сушилку и высушивают в течение 10-12 часов.

Полученный материал характеризуется пористостью 70-80%, устойчивостью в водных растворах в течение 2 суток. Определенный методом ПЭМ фазовый состав ФК соответствует ДКФД. На рис. 1 приведено СЭМ изображениематериала, на котором видны частицы ДКФД размером которых не более 100 нм, равномерно распределенные в объеме полимера.

Пример 2.

Готовят 100 мл 2%-ного раствора ПВП растворением 2 г ПВП с молекулярной массой 12000 кДа в 98 мл дистиллированной воды. В реактор, снабженный лопастной верхнеприводной мешалкой, помещают полученный раствор ПВП, добавляют 6 мл раствора гидрофосфата аммония концентрации 0,1 моль/л, затем капельно, при постоянном перемешивании добавляют 10 мл раствора хлорида кальция концентрации 0,01 моль/л, перемешивают при температуре 90°С в течение 30 мин, после чего добавляют 100 мл 2%-ного водного раствора альгината натрия (массовое соотношение ПВП:алг=1) и продолжают перемешивание в течение 20 мин. В образовавшийся гель погружают трубку, соединенную с компрессором, и пропускают в гель воздух в течение 5 мин. Вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (+3) с салициловой кислотой, замораживают в морозильной камере при -18°С в течение 8-10 часов, после чего помещают в лиофильную сушилку и высушивают в течение 10-12 часов.

Полученный материал характеризуется пористостью 80-85%, устойчивостью в водных растворах в течение 1 суток. Определенный методом ПЭМ фазовый состав ФК соответствует апатиту.

Пример 3.

Готовят 100 мл 2%-ного раствора ПВП растворением 2 г ПВП с молекулярной массой 12000 кДа в 98 мл дистиллированной воды. В реактор, снабженный лопастной верхнеприводной мешалкой, помещают полученный раствор ПВП, добавляют 2 мл раствора гидрофосфата аммония концентрации 0,1 моль/л, затем капельно, при постоянном перемешивании добавляют 3 мл раствора хлорида кальция концентрации 0,1 моль/л, перемешивают при температуре 25°С в течение 30 мин, после чего добавляют 10 мл 2%-ного водного раствора альгината натрия (массовое соотношение ПВП:алг=10:1) и продолжают перемешивание в течение 20 мин. В образовавшийся гель погружают трубку, соединенную с компрессором и пропускают в гель воздух в течение 5 мин. Вспененную массу обрабатывают 5%-ным водным раствором обрабатывают 5%-ным водным раствором комплексного соединения железа (+3) с салициловой кислотой, замораживают в морозильной камере при -18°С в течение 8-10 часов, после чего помещают в лиофильную сушилку и высушивают в течение 10-12 часов.

Полученный материал характеризуется пористостью 70-80%, в водных растворах материал растворяется в течение 60 мин. Определенный методом ПЭМ фазовый состав ФК соответствует аморфному фосфату кальция (АФК). Размер частиц АФК - 40-50 нм.

Способ получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, включающий синтез in situ фосфатов кальция в 2%-ном водном растворе поливинилпирролидона при температуре реакционной смеси от 37 до 90°С, перемешивание смеси, пропускание через смесь воздуха для вспенивания массы, обработку вспененной массы раствором салицилата железа, формование и высушивание смеси в лиофильной сушилке, отличающийся тем, что через 30 мин после завершения синтеза фосфатов кальция в реакционную смесь добавляют 2%-ный водный раствор альгината натрия так, чтобы массовое соотношение полимеров (ПВП:alg) находилось в пределах от 0,5 до 4, перемешивают в течение 30 мин, после чего реакционную смесь вспенивают пропусканием через нее воздуха с использованием компрессора в течение 10 мин, после чего вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают в морозильной камере при температуре от -10 до -18°С и высушивают в лиофильной сушилке до полного удаления влаги.
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ МАТЕРИАЛОВ ИЗ АЛЬГИНАТА НАТРИЯ И ПОЛИВИНИЛПИРРОЛИДОНА, СОДЕРЖАЩИХ ФОСФАТЫ КАЛЬЦИЯ
Источник поступления информации: Роспатент

Showing 31-40 of 108 items.
10.06.2016
№216.015.4478

Высокопрочная коррозионно-стойкая свариваемая сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных коррозионно-стойких сталей, используемых для изготовления высоконагруженных деталей и конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,01-0,04,...
Тип: Изобретение
Номер охранного документа: 0002586193
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.476e

Композиционный материал на основе фторгидроксиапатита и частично стабилизированного диоксида циркония для замещения костных дефектов

Изобретение относится к медицине, в частности биокерамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Техническим результатом изобретения является увеличение прочности материалов в системе 40-60 масс. %...
Тип: Изобретение
Номер охранного документа: 0002585954
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7879

Способ получения пористой керамики из фосфатов кальция для лечения дефектов костной ткани

Изобретение относится к области керамических материалов для медицины, которые могут быть использованы для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения пористой керамики яичные белки с сахарозой в соотношении 1:1...
Тип: Изобретение
Номер охранного документа: 0002599524
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.9caf

Литейный сплав на основе интерметаллида ni3al и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей газотурбинных двигателей авиационной промышленности, например сопловых и рабочих...
Тип: Изобретение
Номер охранного документа: 0002610577
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9cd4

Способ получения пористой алюмооксидной керамики

Изобретение относится к технологии пористых керамических материалов и может быть использовано для изготовления изделий, эксплуатируемых в качестве высокотемпературной теплоизоляции (или теплозащиты), термостойкого огнеприпаса, носителей катализаторов, фильтров для очистки жидких и газовых сред....
Тип: Изобретение
Номер охранного документа: 0002610482
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a236

Способ получения структуры высокотемпературный сверхпроводник - диэлектрик - высокотемпературный сверхпроводник

Использование: для создания структур высокотемпературный сверхпроводник – диэлектрик – высокотемпературный сверхпроводник. Сущность изобретения заключается в том, что на слой высокотемпературного сверхпроводника 123-типа направляют поток атомных частиц, в качестве высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002606940
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a359

Способ получения порошкового магнитотвёрдого сплава 30х20к2м2в системы железо-хром-кобальт

Изобретение относится к получению порошковых магнитотвердых сплавов. Способ получения порошкового магнитотвердого сплава 30Х20К2М2В системы железо-хром-кобальт включает приготовление шихты из порошков железа, хрома, кобальта, молибдена и вольфрама, формование полученной шихты, спекание,...
Тип: Изобретение
Номер охранного документа: 0002607074
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a4f2

Способ получения катионзамещенного трикальцийфосфата

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания...
Тип: Изобретение
Номер охранного документа: 0002607743
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a8e2

Резорбируемый пористый кальцийфосфатный цемент

Изобретение относится к фармацевтической промышленности, а именно к резорбируемому пористому кальцийфосфатному цементу для заполнения костных челюстно-лицевых и стоматологических дефектов. Кальцийфосфатный цемент состоит из смеси порошков фосфатов кальция, а именно из железо- или...
Тип: Изобретение
Номер охранного документа: 0002611345
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b20d

Брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида

Изобретение относится к медицине. Описан брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида для восстановления костных тканей, имеющий прочность не менее 40 МПа, содержащий порошок α-трикальцийфосфата, гранулы карбонатгидроксиапатита и затворяющую жидкость,...
Тип: Изобретение
Номер охранного документа: 0002613182
Дата охранного документа: 15.03.2017
Showing 31-40 of 58 items.
26.08.2017
№217.015.dc60

Герметик на основе низкомолекулярного силоксанового каучука

Изобретение относится к герметизирующим композициям умеренно растекающихся герметиков с нейтральной системой вулканизации и может быть использовано в автомобильной, нефтеперерабатывающей, строительной отрасли и в коммунальном хозяйстве. Герметик состоит из, мас.ч.: низкомолекулярного...
Тип: Изобретение
Номер охранного документа: 0002624295
Дата охранного документа: 03.07.2017
19.01.2018
№218.016.0bbe

Гидрогель для получения композиционных материалов с антибактериальной активностью для замещения костно-хрящевых дефектов методом 3d печати

Изобретение относится к области медицины. Описан гидрогель, содержащий масс. %: альгинат натрия - 40-90; кальцийфосфатные наполнители - 10-60, полученный гидрогель охлаждают до t +37°C и при непрерывном перемешивании на оборотах от 500 до 1000 об/мин добавляют порошок ванкомицина в...
Тип: Изобретение
Номер охранного документа: 0002632431
Дата охранного документа: 04.10.2017
04.04.2018
№218.016.3159

Гепатопротекторная инъекционная фармацевтическая композиция на основе силимарина и наночастиц селена

Изобретение относится к химико-фармацевтической промышленности и представляет собой гепатопротекторную инъекционную фармацевтическую композицию на основе силимарина и наночастиц селена, включающую силимарин, дистиллированную воду, отличающуюся тем, что дополнительно содержит наночастицы селена,...
Тип: Изобретение
Номер охранного документа: 0002645092
Дата охранного документа: 15.02.2018
09.06.2018
№218.016.5f3d

Способ получения биоразлагаемой пленки на основе хитозана и крахмала для медицины

Изобретение относится к способу получения биоразлагаемой пленки, содержащей крахмал и хитозан, для использования в фармацевтике, медицине, ветеринарии, пищевой или косметической промышленности. Способ получения биоразлагаемой пленки на основе хитозана и крахмала для медицины включает...
Тип: Изобретение
Номер охранного документа: 0002656502
Дата охранного документа: 05.06.2018
16.06.2018
№218.016.62ea

Способ получения биоцемента на основе карбоната кальция для заполнения костных дефектов

Изобретение относится к области медицины, а именно к керамическим и цементным материалам, и раскрывает способ получения биоцемента на основе карбоната кальция для заполнения костных дефектов. Способ характеризуется тем, что цементный раствор получают в результате последовательного добавления в...
Тип: Изобретение
Номер охранного документа: 0002657568
Дата охранного документа: 14.06.2018
05.09.2018
№218.016.8316

Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония. Технический результат изобретения - увеличение прочности материалов, спекающихся до плотного состояния при низкой температуре 1300-1350°С. Керамический материал содержит добавку ниобат...
Тип: Изобретение
Номер охранного документа: 0002665734
Дата охранного документа: 04.09.2018
20.12.2018
№218.016.a92e

Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония и может быть использовано в качестве износостойких изделий, режущего инструмента, керамических подшипников, а также имплантатов для замещения костных дефектов. Керамический материал...
Тип: Изобретение
Номер охранного документа: 0002675391
Дата охранного документа: 19.12.2018
08.02.2019
№219.016.b835

Кальцийфосфатный цемент для заполнения костных дефектов

Изобретение относится к области медицины, а именно к кальцийфосфатному цементу для заполнения костных дефектов. Кальцийфосфатный цемент для заполнения костных дефектов, состоящий из порошка, содержащего трикальцийфосфат, гидроксиапатит и цементной жидкости, содержащей фосфат магния, фосфорную...
Тип: Изобретение
Номер охранного документа: 0002679140
Дата охранного документа: 06.02.2019
20.02.2019
№219.016.c1e7

Ультразвуковой способ измерения расхода жидких и/или газообразных сред и устройство для его осуществления

В процессе измерения с помощью обратимых электроакустических преобразователей (2, 3), расположенных на противоположных образующих измерительного участка трубопровода и смещенных относительно друг друга вдоль его оси на расстояние от 2 до 10 D, где D - диаметр измерительного участка, излучают...
Тип: Изобретение
Номер охранного документа: 0002422777
Дата охранного документа: 27.06.2011
29.03.2019
№219.016.f4cc

Пористый композиционный хитозан-желатиновый матрикс для заполнения костных дефектов

Изобретение относится к области медицины и касается композиционных материалов для пластической реконструкции поврежденных костных тканей. Высокопористые эластичные хитозан-желатиновые матриксы с пористостью более 90% состоит из хитозана и содержит желатин до 60 мас.% и лаурилсульфат натрия до...
Тип: Изобретение
Номер охранного документа: 0002421229
Дата охранного документа: 20.06.2011
+ добавить свой РИД