×
12.10.2019
219.017.d54d

Результат интеллектуальной деятельности: СОЛНЕЧНЫЙ ОТРАЖАТЕЛЬ НА ОСНОВЕ ПОРОШКА BaSO, МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ AlO

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в космической технике, в оптическом приборостроении, в строительной индустрии. Пигмент для покрытий класса «солнечные оптические отражатели» приготовлен из порошка сульфата бария, который модифицирован наночастицами оксида алюминия в количестве 5 мас.%. Изобретение позволяет увеличить отражательную способность пигмента и уменьшить значение интегрального коэффициента поглощения a солнечного излучения с 0,062 до 0,035. 3 табл., 6 пр.

Изобретение относится к устройствам, обеспечивающим высокую отражательную способность в широком спектральном диапазоне. Такими устройствами могут быть интегрирующие сферы оптических приборов, радиаторы терморегулирования космических аппаратов, окрашенные поверхности бытового и промышленного назначения. В таких устройствах на конструктивные поверхности наносят покрытия, предназначенные для максимального отражения солнечного электромагнитного излучения или искусственных источников света и поддержания температуры объектов, на которые они нанесены. Изобретение может быть использовано в космической технике, в оптическом приборостроении а также в строительной индустрии.

Порошки сульфата бария относятся к пигментам, которые перспективны для приготовления терморегулирующих покрытий, так как обладает большой шириной запрещенной зоны, что обеспечивает малое значение интегрального коэффициента поглощения солнечного излучения (as). В сочетании с большой интегральной полусферической излучательной способностью в инфракрасной области спектра (ε) они обеспечивают малое значение отношения as/ε, что позволяет отнести их к перспективным пигментам для ТРП класса «оптические солнечные отражатели».

Уравнение теплового баланса КА определяется потоком поглощенной энергии электромагнитного излучения Солнца и потоком излученной энергии, поступающей через солнечные батареи и превращенной в электрический ток работающих приборов и устройств. Величина коэффициента as определяет площадь радиаторов терморегулирования КА согласно выражения:

где Qпогл, Qизл - поглощенный и излученный КА поток энергии, J - интенсивность излучения Солнца, Sпогл, Sизл - поглощающая и излучающая площади, ε и σ - излучательная способность и постоянная Стефана - Больцмана, Т - температура излучающей поверхности.

Коэффициент поглощения as рассчитывают по формуле:

где Rs - среднеарифметическое значение коэффициента диффузного отражения, рассчитанное по 24 точкам на длинах волн, соответствующих равноэнергетическим участкам спектра излучения Солнца; Iλ - спектральная интенсивность излучения солнца; (λ12) - спектральный диапазон излучения Солнца; n - число точек на шкале длин волн, в которых рассчитывали значения коэффициента диффузного отражения.

Для уменьшения поглощенной энергии Qпогл необходимо уменьшать коэффициент поглощения as, определяемый спектром диффузного отражения, т.е. необходимо увеличить коэффициент отражения по всему спектру или в отдельных его частях. Увеличение коэффициента отражения может быть достигнуто изменением гранулометрического состава порошка пигмента и уменьшением концентрации примесей - повышением чистоты.

Известны различные способы уменьшения интегрального коэффициента поглощения пигментов и ТРП, изготовленных на их основе.

Способ №1

Изобретение относится к химической промышленности и может быть использовано при изготовлении красок, т.е. таких же покрытий. Пигментный композит содержит основу из диоксида титана и слои оксидов циркония и алюминия [Патент РФ №2135536]. Полученную суспензию нагревают до 46-50°С. Частицы TiO2 диспергируют в воде, добавляют диспергатор (гексаметафосфат натрия)], добавляют раствор H2SO4 для поддержания рН от 7 до 9. Вводят раствор сульфата циркония. Осаждают 0,1-2,5% гидроксида циркония от массы TiO2 в пересчете на ZrO2. Добавляют водный раствор NaOH для поддержания рН от 7 до 9. Вводят водный раствор алюмината натрия. Осаждают 3,5-4% гидроксида алюминия от массы TiO2 в пересчете на Al2O3. Полученный продукт отфильтровывают, промывают водой и сушат при 110°С. Измельчают. Пигментный композит имеет улучшенные оптические свойства по сравнению с исходным пигментом диоксида титана, такие, как рассеяние, блеск, яркость и цвет. Недостатком данного способа является большое число операций: нанесение слоев диоксида циркония и алюминия на поверхность частиц пигмента, их прогрев, добавление серной кислоты для создания необходимого pH раствора, введение водного раствора алюмината натрия, осаждение гидроксида алюминия, фильтрование, промывка и сушка раствора.

Способ №2

Изобретение относится к пигментному рутильному диоксиду титана, к способу его получения и может быть использовано в производстве красок, пластмасс и слоистых пластинок на бумажной основе. Сущность изобретения заключается в пигменте, состоящем из частиц диоксида титана с осажденными на них оксидом церия в количестве 0,01-1 масс. % и плотным аморфным диоксидом кремния в количестве 1-8 масс. % от количества диоксида титана [Патент РФ №2099372]. Пигмент может быть дополнительно покрыт гидроксидом алюминия в количестве 2-4 мас. % от количества диоксида титана. Далее добавляют водорастворимый силикат в количестве 1-6 мас. % и минеральную кислоту для осаждения, по крайней мере, при рН 8 плотного аморфного диоксида кремния, при этом шлам непрерывно перемешивают и поддерживают температуру 60-100°С на протяжении всего процесса осаждения. Дополнительно к шламу добавляют водный раствор алюмината натрия и серную кислоту для осаждения гидроксида алюминия. Пигмент по изобретению обладает улучшенной прочностью, улучшенной устойчивостью к фотохимическому разложению.

Недостатком способа №2 является многоступенчатость химических реакций и большое число реагентов, необходимых для их осуществления, а также отсутствие данных по качеству наносимых слоев на поверхность зерен порошков диоксида титана, что не позволяет определить целесообразность нанесения последующих слоев, после нанесения предыдущих. Например, после нанесения слоя CeO2 оптические свойства полученной композиции не определялись и не была доказана необходимость нанесение еще слоя SiO2, а после нанесения слоя ZrO2 оптические свойства и фото- и радиационная стойкость полученной композиции не определялись и не была доказана необходимость нанесение еще слоя Al2O3.

Отражательную способность и радиационную стойкость порошков - пигментов можно увеличить путем удаления с их поверхности физически и химически сорбированных газов и осаждения вместо них молекул кислорода. Для удаления сорбированных газов достаточно прогрева порошков при температуре, обеспечивающей преодоление сил притяжения молекул и разрыв химических связей. Температура десорбции физически сорбированных газов для различных комбинаций молекула газа - тип порошка различная и составляет насколько сотен градусов. Для химически сорбированных газов она выше и колеблется от 400оС до 800°С для различных комбинаций молекула газа - тип порошка [Волькенштейн Ф.Ф. Физикохимия поверхности полупроводников. М: Наука, 1973, 340 с.]. Для осаждения на поверхности и насыщения поверхностных слоев порошков молекулами кислорода достаточно осуществить такой прогрев на воздухе при атмосферном давлении.

Способ №3

Разработана композиция [Reflective Coating Composition. Application: 2008150546/15, 19.12.2008. Effective date for property rights: 19.12.2008. Inventor(s): Zhabrev V.A., Kuznetsova L.A., Efimenko L.P. et. al. Proprietor(s): Uchrezhdenie Rossijskoj akademii nauk Institut khimiisilikatov imeni I.V. Grebenshchikova (IKhS RAN)] для получения светостойкого отражающего покрытия, включающая в качестве наполнителя механическую смесь оксидов металла ZrO2 (30-55 мас. %) и MgO (25-35 мас. %) с размером частиц 80-120 нм, в качестве связующего - жидкое стекло (20-25 мас. %). Недостатком данной композиции является то, что пигмент полностью на 100% состоит из наночастиц, стоимость которых во много раз превышает стоимость этих же соединений с частицами микронных размеров. Нанопорошки используются не эффективно с точки зрения повышения светостойкости, поскольку для этих целей достаточно несколько процентов наночастиц от массы пигмента, который они обволакивают, создавая слои, выступающие в качестве центров релаксации первичных дефектов, образованных облучением.

Способ №4

Известен способ получения пигмента на основе микро - и нанопорошков оксида алюминий [Пигмент на основе микро- и нанопорошков оксида алюминия. Патент РФ №2533723 от 20.09.2014]. Изобретение относится к составам пигментов для белых красок и покрытий, в том числе для терморегулирующих покрытий, используемых в области пассивных методов терморегулирования объектов, а именно для терморегулирующих покрытий космических аппаратов. Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой и других отраслях промышленности для термостатирования устройств или технологических объектов.

Оксид алюминия относится к пигментам, которые особенно перспективны для приготовления терморегулирующих покрытий, так как имеет большую ширину запрещенной зоны (Eg>6 эВ), поэтому не поглощает значительную часть ультрафиолетового излучения и обладает низким коэффициентом поглощения солнечного излучения as и большой излучательной способностью в инфракрасной области спектра ε.

Пигмент получают путем перемешивания смеси, содержащей 4,0 мас. % нанопорошка Al2O3 и 96,0 масс. % микропорошка оксида алюминия в магнитной мешалке с добавлением дистиллированной воды, выпаривания полученного раствора в сушильном шкафу при 150°С в течение 6 часов, перетирания в агатовой ступке и прогревания при температуре 800°С в течение 2 часов, повторного перетирания в агатовой ступке.

Способ №5

Известен способ выбора модификатора для пигмента ZrO2 на основании измерений диэлектрической проницаемости соединений, в качестве которых могут выступать порошки Al2O3, SrO, MgO, SiO2, SrNO3 [Способ выбора модификатора для пигментов светоотражающих покрытий. Патент РФ №2160295 от 10.12.2000 по заявке №98114045 от 10.07.1998]. Этот способ позволяет обоснованно выбрать тип модификатора.

Способ №6

Известен способ получения модифицированного пигмента путем нанесения на поверхность зерен и гранул ZrO2 методом мономолекулярного наслаивания монослоя SiO2 в реакции разложения SiCl4 [Известия АН СССР Неорганические материалы, 1990, т. 26, №9, с. 1889-1892]. Недостатком данного способа являются технологические сложности его осуществления, так получение частиц SiO2 осуществляется в две стадии: разложение тетрахлорида кремния по реакции (2); дегидратация полученного диоксида кремния путем прогрева при температуре 670°С по реакции:

Кроме того, при наращивании нескольких слоев нарушается сплошность пленки во время дегидратации, что отражается на оптических свойствах пигмента и его стойкости к облучению.

Способ №7

Известен способ получения пигмента для светоотражающих покрытий, содержащий смесь частиц оксида алюминия микронных размеров с наночастицами оксида алюминия [Пигмент на основе микро - и нанопорошков оксида алюминия. Заявка на изобретение №2013101407 от 10.01.2013]. Интегральный коэффициент поглощения образцов уменьшается с увеличением концентрации наночастиц Al2O3 от нуля до 3 мас. %, а в диапазоне концентрации 7-30 мас. % увеличивается.

Полученное уменьшение значения коэффициента поглощения при С=(0,5÷3 мас. %) определяются тем, что добавка наночастиц к микропорошку приводит к увеличению коэффициента диффузного отражения смеси из-за увеличения коэффициента рассеяния на более мелких наночастицах по сравнению с микрочастицами [Розенберг Г.В. Успехи физических наук, 1969, т. 91, №4, с. 569-585]. При дальнейшем увеличении концентрации наночастицы не осаждаются на поверхности зерен и гранул из-за ее заполнения, поэтому катионы алюминия диффундируют в решетку диоксида циркония и создают центры поглощения, что приводит к увеличению интегрального коэффициента поглощения as0.

Способ №8

Разработан способ повышения радиационной стойкости порошков диоксида циркония, модифицированных собственными наночастицами ZrO2 [Пигмент на основе микро- и нанопорошков диоксида циркония. Патент РФ №2532434 от 08.09.2014]. Способ заключается в приготовлении смеси микропорошка диоксида циркония и нанопорошка диоксида циркония, содержащей 5-7 масс. % нанопорошка ZrO2 и 93-95 масс. % микропорошка ZrO2, которую перемешивают в магнитной мешалке с добавлением дистиллированной воды, полученный раствор выпаривают в сушильном шкафу при 150°С в течение 6 часов, перетирают в агатовой ступке и прогревают при температуре 800°С в течение 2 час. После прогрева полученную смесь повторно перетирают в агатовой ступке, добавляют поливиниловый спирт, наносят на металлические подложки для исследования радиационной стойкости.

Результаты расчетов интегрального коэффициента поглощения по экспериментально полученным спектрам диффузного отражения не модифицированного и модифицированного порошков показывают что концентрации наночастиц 5-7 масс. % является оптимальной. Интегральный коэффициент поглощения образцов уменьшается с увеличением концентрации наночастиц ZrO2 от нуля до 5-7 мас. %, а в диапазоне концентрации 10-20 мас. % увеличивается.

Эффективность модифицирования, определяемая отношением коэффициента поглощения as не модифицированного порошка (0.147) к его наименьшему значению после модифицирования (0,133 при С=5 масс. %), составляет 1,1. Недостатком этого способа является низкая эффективность модифицирования для уменьшения интегрального коэффициента поглощения as. Данный способ выбран в качестве прототипа

В предлагаемом изобретении с целью увеличения отражательной способности и уменьшения интегрального коэффициента поглощения солнечного излучения осуществлено модифицирование пигмента BaSO4 наночастицами Al2O3 различной концентрации и произведен выбор оптимального значения концентрации по величине интегрального коэффициента поглощения солнечного излучения.

Пример 1

К порошку BaSO4 добавляют дистиллированную воду, перемешивают в магнитной мешалке в течение 10-12 час, выпаривают в сушильном шкафу при температуре 150°С, перетирают в фарфоровой чашке, охлаждают до комнатной температуры, прогревают 2 час при Т=800°С, перетирают в фарфоровой чашке, запрессовывают ручным прессом в металлические подложки при малом давлении, равном 1 МПа.

Пример 2

К порошку BaSO4 добавляют наночастицы Al2O3 в количестве 1 масс. % и дистиллированную воду. Приготовленную смесь перемешивают в магнитной мешалке в течение 10-12 час, выпаривают в сушильном шкафу при температуре 150°С, перетирают в фарфоровой чашке, охлаждают до комнатной температуры, прогревают 2 час при Т=800°С, перетирают в фарфоровой чашке, запрессовывают ручным прессом в металлические подложки при малом давлении, равном 1 МПа.

Пример 3

К порошку BaSO4 добавляют наночастицы Al2O3 в количестве 3 масс. % и дистиллированную воду. Приготовленную смесь перемешивают в магнитной мешалке в течение 10-12 час, выпаривают в сушильном шкафу при температуре 150°С, перетирают в фарфоровой чашке, охлаждают до комнатной температуры, прогревают 2 час при Т=800°С, перетирают в фарфоровой чашке, запрессовывают ручным прессом в металлические подложки при малом давлении, равном 1 МПа.

Пример 4

К порошку BaSO4 добавляют наночастицы Al2O3 в количестве 5 масс. % и дистиллированную воду. Приготовленную смесь перемешивают в магнитной мешалке в течение 10-12 час, выпаривают в сушильном шкафу при температуре 150°С, перетирают в фарфоровой чашке, охлаждают до комнатной температуры, прогревают 2 час при Т=800°С, перетирают в фарфоровой чашке, запрессовывают ручным прессом в металлические подложки при малом давлении, равном 1 МПа.

Пример 5

К порошку BaSO4 добавляют наночастицы Al2O3 в количестве 7 масс. % и дистиллированную воду. Приготовленную смесь перемешивают в магнитной мешалке в течение 10-12 час, выпаривают в сушильном шкафу при температуре 150°С, перетирают в фарфоровой чашке, охлаждают до комнатной температуры, прогревают 2 час при Т=800°С, перетирают в фарфоровой чашке, запрессовывают ручным прессом в металлические подложки при малом давлении, равном 1 МПа.

Пример 6

К порошку BaSO4 добавляют наночастицы Al2O3 в количестве 10 масс. % и дистиллированную воду. Приготовленную смесь перемешивают в магнитной мешалке в течение 10-12 час, выпаривают в сушильном шкафу при температуре 150°С, перетирают в фарфоровой чашке, охлаждают до комнатной температуры, прогревают 2 час при Т=800°С, перетирают в фарфоровой чашке, запрессовывают ручным прессом в металлические подложки при малом давлении, равном 1 МПа.

Регистрируют спектрофотометром промышленного изготовления спектры диффузного отражения в диапазоне 0,2-2,5 мкм полученных в примерах 1-6 образцов. По полученным спектрам рассчитывают интегральный коэффициент поглощения as с использованием выражения (2).

Результаты расчетов зависимости коэффициента поглощения as от концентрации наночастиц Al2O3 в порошке BaSO4 приведены в таблице 3.

Из таблицы следует, что значения as модифицированных порошков - пигментов BaSO4 при различной концентрации наночастиц Al2O3 существенно отличаются.

Наименьшим значением обладают порошок №4, модифицированный наночастицами Al2O3 с концентрацией 5 масс. %. Уменьшение значения коэффициента поглощения as порошка №4 по сравнению с не модифицированным порошком №1 составляет 1,77 раз.

Таким образом, предлагаемый в качестве пигмента терморегулирующих покрытий порошок BaSO4, модифицированный наночастицами Al2O3 при концентрации 5 масс. % обладает существенно меньшей величиной интегрального коэффициента поглощения по сравнению с не модифицированным порошком.

Пигмент для покрытий класса «солнечные оптические отражатели», приготовленный из порошка сульфата бария, отличающийся тем, что с целью уменьшения интегрального коэффициента поглощения a порошок модифицирован наночастицами оксида алюминия в количестве 5 мас.%, чтобы значение интегрального коэффициента поглощения уменьшилось от 0,062 до 0,035.
Источник поступления информации: Роспатент

Showing 51-58 of 58 items.
25.06.2020
№220.018.2b02

Способ формирования субмикронного т-образного затвора

Изобретение относится к технологии микроэлектроники, а именно к технологии получения СВЧ монолитных интегральных схем на основе полупроводниковых соединений типа AIIIBV, в частности к созданию гетероструктурных СВЧ-транзисторов с высокой подвижностью электронов. Способ формирования затвора...
Тип: Изобретение
Номер охранного документа: 0002724354
Дата охранного документа: 23.06.2020
01.07.2020
№220.018.2d87

Меандровая микрополосковая линия задержки из двух витков, защищающая от сверхкоротких импульсов

Изобретение относится к электротехнике и может быть использовано для защиты радиоэлектронной аппаратуры от сверхкоротких импульсов. Техническим результатом является увеличенное ослабление СКИ, за счет его разложения на последовательность из девяти импульсов меньшей амплитуды: сначала на три...
Тип: Изобретение
Номер охранного документа: 0002724972
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d8c

Меандровая линия задержки с лицевой связью из двух витков, защищающая от сверхкоротких импульсов

Изобретение относится к электротехнике и может быть использовано для защиты радиоэлектронной аппаратуры от сверхкоротких импульсов, меньше чем длительность воздействующего импульса. Техническим результатом является увеличенное ослабление СКИ за счет его разложения на последовательность из...
Тип: Изобретение
Номер охранного документа: 0002724970
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d93

Усовершенствованная меандровая линия задержки с лицевой связью, защищающая от сверхкоротких импульсов

Изобретение относится к электротехнике и может быть использовано для защиты радиоэлектронной аппаратуры от сверхкоротких импульсов. Техническим результатом является увеличенное ослабление СКИ, за счет его разложения на последовательность из четырех импульсов меньшей амплитуды: перекрестную...
Тип: Изобретение
Номер охранного документа: 0002724983
Дата охранного документа: 29.06.2020
31.07.2020
№220.018.3917

Модифицированная микрополосковая линия с улучшенной защитой от сверхкоротких импульсов

Изобретение относится к радиоэлектронике и может быть использовано для защиты радиоэлектронной аппаратуры от сверхкоротких импульсов. Предлагается устройство, состоящее из проводящей пластины, на которой параллельно ей расположена подложка, на которой параллельно ей располагается проводник...
Тип: Изобретение
Номер охранного документа: 0002728327
Дата охранного документа: 29.07.2020
31.07.2020
№220.018.393d

Аппаратно-программный комплекс для синтеза и испытаний оптимальной сети высоковольтного электропитания

Изобретение относится к электротехнике. Сущность изобретения заключается в использования представления сети высоковольтного электропитания (СВЭ) при ее проектировании в виде последовательно соединенных отрезков линий передачи и моделирования распространения по ним помеховых сигналов из...
Тип: Изобретение
Номер охранного документа: 0002728325
Дата охранного документа: 29.07.2020
31.07.2020
№220.018.39ab

Навигационный радиооптический групповой отражатель кругового действия в горизонтальной плоскости

Изобретение относится к навигации и может использоваться на внутренних водных путях в составе плавучих буев для обозначения судового хода одновременно в радиолокационном и оптическом диапазонах волн. Навигационный радиооптический групповой отражатель кругового действия в горизонтальной...
Тип: Изобретение
Номер охранного документа: 0002728326
Дата охранного документа: 29.07.2020
17.06.2023
№223.018.8016

Автоматизированный испытательный комплекс для наземной экспериментальной отработки систем электроснабжения космических аппаратов

Автоматизированный испытательный комплекс для наземной экспериментальной отработки систем электроснабжения космических аппаратов относится к преобразовательной технике и может быть использован при наземных испытаниях систем электроснабжения космических аппаратов, получающих электроэнергию от...
Тип: Изобретение
Номер охранного документа: 0002760729
Дата охранного документа: 29.11.2021
Showing 11-19 of 19 items.
09.06.2018
№218.016.5e8a

Термостабилизирующее радиационностойкое покрытие batizro

Изобретение относится к получению терморегулирующих покрытий и может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов. Терморегулирующее покрытие класса «солнечные...
Тип: Изобретение
Номер охранного документа: 0002656660
Дата охранного документа: 06.06.2018
16.01.2019
№219.016.b050

Пигмент на основе порошка baso, модифицированного наночастицами sio

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой отраслях промышленности для термостатирования устройств или технологических объектов. Пигмент для терморегулирующих покрытий класса «солнечные оптические отражатели»...
Тип: Изобретение
Номер охранного документа: 0002677173
Дата охранного документа: 15.01.2019
26.01.2019
№219.016.b45b

Пигмент для терморегулирующих покрытий космических аппаратов на основе порошка baso, модифицированного наночастицами zro

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов. Пигмент для терморегулирующих покрытий класса «солнечные оптические отражатели» приготовлен из...
Тип: Изобретение
Номер охранного документа: 0002678272
Дата охранного документа: 24.01.2019
30.03.2019
№219.016.f9ff

Беспилотный летательный аппарат с тремя узлами крепления

Изобретение относится к области ракетной техники и, в частности, к области устройств беспилотных летательных аппаратов - БПЛА, крепящихся на носителях различного типа, в том числе к семейству управляемых БПЛА, крепящихся к пусковым установкам нестационарных носителей с помощью трех узлов...
Тип: Изобретение
Номер охранного документа: 0002683350
Дата охранного документа: 29.03.2019
24.05.2019
№219.017.5f77

Способ отборочных испытаний на радиационную стойкость пигментов baso4

Изобретение относится к пигментам для терморегулирующих покрытий класса «солнечные оптические отражатели». Описывается способ отборочных испытаний на радиационную стойкость пигментов - порошков сульфата бария для терморегулирующих покрытий класса «солнечные оптические отражатели». Способ...
Тип: Изобретение
Номер охранного документа: 0002688766
Дата охранного документа: 22.05.2019
14.06.2019
№219.017.8309

Пигмент для терморегулирующих покрытий космических аппаратов

Изобретение относится к терморегулирующим покрытиям, в том числе к терморегулирующим покрытиям космических аппаратов, и может быть использовано в космической технике, а также в строительной индустрии и в широких отраслях промышленности для термостатирования устройств или технологических...
Тип: Изобретение
Номер охранного документа: 0002691328
Дата охранного документа: 11.06.2019
02.10.2019
№219.017.cf84

Способ получения пигмента для термостабилизирующих покрытий

Изобретение относится к светоотражающим пигментам для применения в составе покрытий класса «солнечные отражатели», которые могут быть использованы для пассивной тепловой защиты космических аппаратов. Пигмент получают путем синтеза в автоклаве при температуре 220°С, давлении 22-23 атм в течение...
Тип: Изобретение
Номер охранного документа: 0002700607
Дата охранного документа: 18.09.2019
13.03.2020
№220.018.0b75

Пигмент для терморегулирующих покрытий космических аппаратов на основе порошка baso, модифицированного наночастицами sio

Изобретение относится к терморегулирующим покрытиям и может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности. Пигмент для терморегулирующих покрытий содержит порошок сульфата бария BaSО, модифициранный наночастицами диоксида...
Тип: Изобретение
Номер охранного документа: 0002716436
Дата охранного документа: 11.03.2020
14.05.2020
№220.018.1cb7

Система дистанционного взаимодействия между лечащим врачом и пользователем

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении эффективности системы. Система содержит: модуль обращения пользователем, соединенный с модулем коммуникации, модуль электронной медицинской карты пользователя, соединенный с модулем обработки...
Тип: Изобретение
Номер охранного документа: 0002720733
Дата охранного документа: 13.05.2020
+ добавить свой РИД