×
09.10.2019
219.017.d3a2

Результат интеллектуальной деятельности: Способ получения формиата меди (II)

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению солей меди с использованием органических кислот, в частности к получению формиатов двухвалентной меди, которые могут быть использованы для синтеза купратов щелочноземельных металлов и высокотемпературных сверхпроводников, получения медных порошков для 3D-печати. Способ получения формиата меди(II) включает смешивание нитрата меди и муравьиной кислоты с последующей выдержкой и охлаждением, причем исходные реагенты берут в соотношении Cu(NO)⋅3HO : (HCOOH) = 1 ÷ 2,5 – 1 ÷ 3,0 при концентрации муравьиной кислоты в диапазоне 20–99,7% и смешивание осуществляют при комнатной температуре с выдержкой при этой температуре 10-15 мин или с последующим добавлением воды в количестве 10-12 масс.% от общей массы и нагреванием до 80 °С с выдержкой при этой температуре 15-20 мин и охлаждением снова до комнатной температуры, или при температуре 50 °С с последующим упариванием в течение 90-95 мин и охлаждением до комнатной температуры, или с последующим охлаждением до температуры 5-8 °С с выдержкой при этой температуре в течение 120-130 мин. Авторами предлагается аппаратурно- и технологически простой способ получения формиата меди(II), обеспечивающий получение определенных модификаций конечного продукта, а именно: моноклинная α-модификация безводного формиата меди, орторомбическая β-модификация безводного формиата меди, моноклинная модификация двухводного формиата меди и моноклинная модификация четырехводного формиата меди. 7 ил., 4 пр.

Изобретение относится к получению солей меди с использованием органических кислот, в частности к получению формиатов двухвалентной меди, которые могут быть использованы для синтеза купратов щелочноземельных металлов и высокотемпературных сверхпроводников, получения медных порошков для 3D-печати.

Известен способ получения формиата меди с использованием метилформиата в процессе жидкофазного гидролиза при температуре 60-85 °С в присутствии карбоната меди, в котором в воде растворяют пентагидрат сульфата меди, затем при перемешивании добавляют раствор, полученный растворением карбоната натрия в воде. Эту смесь нагревают при 80 °С в течение 60 минут для протекания реакции, а затем охлаждают. Полученную реакционную смесь подвергают вакуумной фильтрации до образования медно-карбонатного кека с содержанием воды 50%. Кек промывают различными моющими жидкостями, и многократно фильтруют. Затем в кек добавляют воду и метилформиата. Смесь нагревают до 80 °С при перемешивании и выдерживают при этой температуре в течение 60 мин при давлении 8 кг/см2. Полученную реакционную смесь концентрируют при 80 °С при пониженном давлении до тех пор, пока количество осажденного формиата меди не достигнет 90%. Кристаллы отделяют, промывают 30-80 °С горячей водой и затем сушат при пониженном давлении, тем самым получая кристаллы безводного формиата меди (Патент EP 0431589; МПК C07C 53/06, C07C 51/41; 1991г.).

Недостатками известного способа являются многостадийность процесса, использование токсичного метилформиата, необходимость утилизации метанола, который образуется при термогидролизе метилформиата.

Известен способ получения формиата меди с использованием реакции муравьиной кислоты с медью в присутствии сильного окислителя, в качестве которого используют пероксид водорода, озон, атомарный кислород, синглетный кислород. Известный способ заключается в следующем: емкость с муравьиной кислотой и металлическим порошком меди чистотой 99,99% помещают в ванну с водой при температуре 0 °С. При тщательном перемешивании добавляют, например, пероксид водорода. Перемешивание продолжают в течение 1 часа, затем удаляют из ванны и продолжают перемешивание в течение 8 часов. Далее фильтруют при пониженном давлении с использованием тефлоновой мембраны, фильтрат нагревают до температуры 70 °С и удаляют растворитель, используя роторный испаритель. Сушат полученный порошок в вакуумной печи при температуре 55 °С в течение 8 часов (Патент JP5045015; МПК C07C 51/41, H05K 3/12, H01B 13/00, B22F 9/30, C07C 53/06; 2012 г.).

К недостаткам известного способа относятся длительность процесса, большой расход муравьиной кислоты, нарушение экологического равновесия за счет неконтролируемого влияния сильных окислителей.

Известен способ получения формиата меди(II), включающий стадии синтеза карбоната меди, обработки синтезированного карбоната меди концентрированной муравьиной кислотой. Для синтеза формиата меди использовали 1М раствор кристаллогидрата сульфата меди CuSO4∙5H2O и 1М раствор карбоната натрия Na2CO3. Приготовленные растворы объемом 50 мл смешивали для получения карбоната меди. Осадок карбоната меди переносили в колбу для промывания с применением декантации: заливали дистиллированной водой и взбалтывали его при помощи стеклянной палочки. После отстаивания жидкость осторожно сливали, но так, чтобы осадок оставался в колбе. К оставшемуся в колбе осадку снова приливали промывную воду и повторяли сливание жидкости. Полноту отмывки на содержание сульфат-ионов SO42– проверяли раствором хлорида бария. К карбонату меди порционно добавляли концентрированную муравьиную кислоту при тщательном перемешивании. В результате реакции образуется формиат меди синего цвета (Е.Н. Евстифеев, А.А. Новикова, Получение наночастиц меди термическим разложением комплекса формиата меди с триэтиламином // Международный журнал прикладных и фундаментальных исследований. 2017. № 9. С. 135-139).

Недостатки известного способа: во-первых, сложность процесса синтеза карбоната меди с использованием сульфата меди состава CuSO4∙5H2O в качестве источника меди, требующий контроля содержания Na+ и сульфат-ионов SO42- в растворах, во-вторых, невозможность получения формиата меди определенной модификации.

Известен способ получения формиата меди(II) осаждением продуктов реакции муравьиной кислоты с гидроксокарбонатом меди. К водному раствору 1,25 М карбоната натрия медленно добавляли водный раствор 1,25 М пентагидрата сульфата меди с постоянным перемешиванием. Твердый продукт, гидроксокарбонат меди, промывали деионизированной водой, фильтровали и сушили в вакуумной печи при 45 °C в течение 6 часов. Затем синтезированный гидроксокарбонат меди добавляли к 30%-ному водному раствору муравьиной кислоты при перемешивании. После прекращения выделения диоксида углерода полученный раствор выдерживали в холодильнике в течение 2 часов. Синий осадок формиата меди отделяли, промывали дважды этанолом и сушили в вакуумной печи при температуре 65 °C в течение 48 часов (J. Hwang, S. Kim, K.R. Ayag, H. Kim, Copper Electrode Material using Copper Formate-Bicarbonate Complex for Printed Electronics // Bull. Korean Chem. Soc. 2014. V. 35. No. 1. P. 147-150).

Недостатки известного способа: во-первых, сложность и длительность процесса, обусловленная синтезом гидроксокарбоната меди, требующим контроля содержания Na+ и сульфат-ионов SO42- в растворах, выдержкой раствора в холодильнике, многочасовой сушкой продукта в вакуумной печи; во-вторых, большой расход муравьиной кислоты за счет использования ее избыточного количества; в–третьих, невозможность получения формиата меди определенной модификации.

Известен способ получения формиата меди(II) растворением основного карбоната меди CuCO3∙Cu(OH)2 в 40%-ном водном растворе муравьиной кислоты. Полученную смесь нагревали при 80 °С и выдерживали при этой температуре в течение 30 мин при перемешивании. Затем воду удаляли выпариванием раствора при 80 °С при пониженном давлении для концентрирования и высушивания продукта реакции (V. Rosenband, A. Gany, Preparation of nickel and copper submicrometer particles by pyrolysis of their formates // J. Mater. Proc. Technol. 2004. V. 153–154. P. 1058–1061).

Недостатки известного способа: во-первых, сложность за счет операций выпаривания осадка и просушивания продукта при пониженном давлении, во-вторых, невозможность получения формиата меди определенной модификации.

Наиболее близким к предлагаемому способу является способ получения формиата меди Cu(HCOO)2∙2H2O, в котором смесь Cu(NO3)2·3H2O, муравьиной кислоты и дистиллированной воды доводят до рН≈6, используя 1 моль∙л-1 NaOH, и затем переносят в герметичный контейнер из нержавеющей стали с тефлоновым покрытием. Контейнер нагревают от комнатной температуры до 100 °C со скоростью 0.5 °C мин-1 и выдерживают в течение 60 часов; затем его охлаждают до 80 °C со скоростью 0.1 °C мин-1 и выдерживают в течение 40 часов. Наконец, контейнер охлаждают до комнатной температуры со скоростью 0.1 °C мин-1. Блочные голубые кристаллы Cu(HCOO)2∙2H2O отделяют фильтрованием, промывают дистиллированной водой и сушат в вакууме (J. Guo, J. Zhang, T. Zhang, R. Wu, W. Yu, Thermal Decomposition Mechanisms of a Three-dimensional Framework Coordination Polymer Cu(HCOO)2(H2O)2 // Acta Phys.-Chim. Sin. 2006. V. 22. P. 1206-1211).

Недостатки известного способа: во-первых, возможность загрязнения продукта натрием, во-вторых, использование сложного оборудования и скоростного режима, в-третьих, длительность процедуры синтеза (более 100 ч), в-четвертых, невозможность получения формиата меди определенной модификации.

Таким образом, перед авторами стояла задача разработать аппаратурно- и технологически простой способ получения формиата меди(II), обеспечивающий получение определенных модификаций конечного продукта.

Поставленная задача решена в предлагаемом способе получения формиата меди(II), включающем смешивание нитрата меди и муравьиной кислоты с последующей выдержкой и охлаждением, в котором исходные реагенты берут в соотношении Cu(NO3)2∙3H2O : (HCOOH) = 1 ÷ 2,5 - 1÷ 3,0 при концентрации муравьиной кислоты в диапазоне 20 – 99,7% и смешивание осуществляют при комнатной температуре с выдержкой при этой температуре 10-15 мин или с последующим добавлением воды в количестве 10-12 масс% от общей массы и нагреванием до 80 °С с выдержкой при этой температуре 15-20 мин и охлаждением снова до комнатной температуры, или при температуре 50°С с последующим упариванием в течение 90-95 мин и охлаждением до комнатной температуры, или с последующим охлаждением до температуры 5-8 °С с выдержкой при этой температуре в течение 120-130 мин.

В настоящее время из патентной и научно-технической литературы не известен способ получения формиата меди(II) путем смешивания нитрата меди и муравьиной кислоты в предлагаемых условиях.

Исследования, проведенные авторами, позволили разработать способ получения формиата меди(II), обеспечивающий технологическую простоту наряду с несложным аппаратурным оформлением. Структура синтезируемого формиата меди зависит от концентрации и количества муравьиной кислоты, а также температуры проведения взаимодействия реагентов. Проведение процесса при комнатной температуре или при нагревании до невысоких температур обусловлено спонтанным экзотермическим взаимодействием нитрата меди состава Cu(NO3)2∙3H2O с муравьиной кислотой при их смешивании. Технологическая простота способа обеспечивается, в частности использованием нитрата меди в качестве источника меди(II), который хорошо растворяется в муравьиной кислоте независимо от ее концентрации.

Предлагаемый способ может быть осуществлен следующим образом: исходные реагенты нитрат меди состава Cu(NO3)2∙3H2O и муравьиную кислоту (HCOOH) смешивают в соотношении, равном 1:2.5-1:3.0, c соблюдением следующих условий:

а) порошок нитрата меди состава Cu(NO3)2∙3H2O растворяют в 85-99.7% муравьиной кислоте (HCOOH) при комнатной температуре и выдерживают до образования светло-голубых кристаллов в течение 10-15 мин;

б) порошок нитрата меди состава Cu(NO3)2∙3H2O растворяют в 85-99.7% муравьиной кислоте (HCOOH) при комнатной температуре, добавляют дистиллированной воды в количестве 10-15 масс% от общей массы и нагревают до 80 °С с выдержкой при этой температуре в течение 15-20 мин до образования кристаллов синего цвета;

г) порошок нитрата меди состава Cu(NO3)2∙3H2O растворяют в 20-30% муравьиной кислоте при температуре 50 °C, раствор упаривают в течение 90-95 мин до образования зеленовато-голубых кристаллов и охлаждают до комнатной температуры;

д) порошок нитрата меди состава Cu(NO3)2∙3H2O растворяют в 20-30% муравьиной кислоте при температуре 50 °C, раствор охлаждают до 5 - 8 °C и выдерживают в холодильнике при этой температуре до выделения крупных голубых кристаллов в течение 120-130 мин.

По данным РФА и ТГА согласно варианту (а) получают моноклинную модификацию безводного формиата меди (фиг. 1,2), согласно варианту (б ) – орторомбическую модификацию безводного формиата меди (фиг. 3,4), согласно варианту (в) – моноклинную модификацию двухводного формиата меди (фиг. 5,6) и согласно варианту (г) – четырехводный формиат меди (фиг. 7).

Предлагаемый способ иллюстрируется следующими примерами:

Пример 1. Получение моноклинной α-модификации безводного формиата меди состава Cu(HCOO)2. Порошок нитрата меди состава Cu(NO3)2∙3H2O в количестве 5 г. растворяют в 3.0 мл 99.7% муравьиной кислоты HCOOH при комнатной температуре (соотношение Cu(NO3)2∙3H2O : НСООН = 1 : 3) и выдерживают при перемешивании в течение 10 мин. Получают кристаллы светло-голубого цвета, дифрактограмма которых (фиг. 1) соответствует образованию моноклинной α-модификации формиата меди состава Cu(HCOO)2 с параметрами решетки: a = 8.1998, b = 7.9337, c = 3.6266 Å, β = 122.17°, V = 198.59 Å3. Голубые кристаллы α-Cu(HCOO)2 образуются в виде вытянутых пластинок с показателями преломления: Ng = 1.722, Nm = 1.681, Np = 1.630. Образование безводного формиата меди состава Cu(HCOO)2 подтверждают кривые ТГ и ДТА (фиг. 2).

Пример 2. Получение орторомбической β-модификации безводного формиата меди состава Cu(HCOO)2. Порошок нитрата меди состава Cu(NO3)2∙3H2O в количестве 5 г. растворяют в 3.0 мл 99.7% муравьиной кислоты HCOOH при комнатной температуре (соотношение Cu(NO3)2∙3H2O : НСООН = 1 : 3) и выдерживают при перемешивании в течение 10 мин. Затем добавляют 0,4 мл дистиллированной воды, что составляет 10 масс% от общей массы, и нагревают до температуры 80 °C и выдерживают при этой температуре до темно-синей окраски кристаллов в течение 15 мин. Продукт просушивают в течении 60 мин и охлаждают до комнатной температуры. Согласно данным РФА (фиг. 3) образуется орторомбическая β-модификация безводного формиата меди с параметрами решетки: a = 14.2031, b = 8.9441, c = 6.2305 Å, V = 198.59 Å3. Темно-синие кристаллы орторомбической модификации формиата меди образуются в виде хорошо сформированных ромбических призм с показателями преломления: Ng = 1.689, Nm = 1.643, Np = 1.597. Образование безводного формиата меди состава Cu(HCOO)2 подтверждают кривые ТГ и ДТА (фиг. 4).

Пример 3. Получение моноклинной модификации двухводного формиата меди состава Cu(HCOO)2∙2H2O. Порошок нитрата меди состава Cu(NO3)2∙3H2O в количестве 5 г растворяют в 24,5 мл 20% муравьиной кислоты HCOOH при температуре 50 °C(соотношение Cu(NO3)2∙3H2O : НСООН = 1 : 2.5) и выдерживают в течение 10 мин. Раствор упаривают до сухого остатка в течение 90 мин. Согласно данным РФА (фиг. 5) образуется моноклинная модификация формиата меди состава Cu(HCOO)2∙2H2O с параметрами решетки: a = 8.5190, b = 7.1346, c = 9.4394 Å, β = 96.91°, V = 569.56 Å3. Светло-голубые кристаллы формиата меди состава Cu(HCOO)2∙2H2O имеют форму шестиугольных пластинок с показателями преломления: Ng = 1.591, Nm = 1.540, Np = 1.518. Образование кристаллогидрата состава Cu(HCOO)2∙2H2O подтверждают кривые ТГ и ДТА (фиг. 6).

Пример 4. Получение моноклинной модификации формиата четырехводного меди состава Cu(HCOO)2∙4H2O. Порошок нитрата меди состава Cu(NO3)2∙3H2O в количестве 5 г растворяют в 32,5 мл 30% муравьиной кислоты HCOOH при температуре 50 °C(соотношение Cu(NO3)2∙3H2O : НСООН = 1 : 2.5). Раствор охлаждают в холодильнике до температуры 5 - 8 °C и выдерживают при этой температуре в течение 120 мин до выделения крупных голубых кристаллов Cu(HCOO)2∙4H2O (фиг. 7) с параметрами решетки a = 8.1480, b = 8.1318, c = 6.3053 Å, β = 100.79°, V = 410.51 Å3.

Таким образом, авторами предлагается аппаратурно- и технологически простой способ получения формиата меди(II), обеспечивающий получение определенных модификаций конечного продукта, а именно: моноклинная α-модификация безводного формиата меди, орторомбическая β-модификация безводного формиата меди, моноклинная модификация двухводного формиата меди и моноклинная модификация четырехводного формиата меди.

Способ получения формиата меди(II), включающий смешивание нитрата меди и муравьиной кислоты с последующей выдержкой и охлаждением, отличающийся тем, что исходные реагенты берут в соотношении Cu(NO)⋅3HO : (HCOOH) = 1 ÷ 2,5 – 1 ÷ 3,0 при концентрации муравьиной кислоты в диапазоне 20–99,7% и смешивание осуществляют при комнатной температуре с выдержкой при этой температуре 10-15 мин или с последующим добавлением воды в количестве 10-12 масс.% от общей массы и нагреванием до 80 °С с выдержкой при этой температуре 15-20 мин и охлаждением снова до комнатной температуры, или при температуре 50 °С с последующим упариванием в течение 90-95 мин и охлаждением до комнатной температуры, или с последующим охлаждением до температуры 5-8 °С с выдержкой при этой температуре в течение 120-130 мин.
Способ получения формиата меди (II)
Способ получения формиата меди (II)
Способ получения формиата меди (II)
Способ получения формиата меди (II)
Источник поступления информации: Роспатент

Showing 11-20 of 99 items.
20.02.2015
№216.013.2a33

Ионоселективный материал для определения ионов аммония и способ его получения

Изобретение может быть использовано в аналитической химии. Гидратированную оксидную ванадиевую бронзу аммония состава (NH)VO·0,5HO используют в качестве ионоселективного материала для селективного определения концентрации ионов аммония в растворах. Для получения гидратированной оксидной...
Тип: Изобретение
Номер охранного документа: 0002542260
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.45fd

Способ получения наноигл оксидной ванадиевой бронзы натрия

Изобретение может быть использовано в производстве катодного материала химических источников тока, а также термисторов, резисторов, устройств для записи и хранения информации. Способ получения наноигл оксидной ванадиевой бронзы натрия состава α'-NaVO включает получение реакционной смеси,...
Тип: Изобретение
Номер охранного документа: 0002549421
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4994

Способ извлечения радионуклидов и микроэлементов

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств. Заявленный способ включает контактирование с сорбентом на основе цианоферрата переходного металла, при этом...
Тип: Изобретение
Номер охранного документа: 0002550343
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.5525

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из шелочно-алюминатных растворов глиноземного производства процесса Байера. Способ включает подготовку исходной смеси смешением маточного и оборотного растворов в соотношении, равном 1: (0,8÷0,9), при постоянном перемешивании и...
Тип: Изобретение
Номер охранного документа: 0002553318
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5738

Способ получения тонких пленок сульфида свинца

Изобретение относится к области получения тонких пленок сульфида свинца нанокристаллической структуры, активных в ближнем ИК-диапазоне. Предложен способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата...
Тип: Изобретение
Номер охранного документа: 0002553858
Дата охранного документа: 20.06.2015
20.08.2015
№216.013.6e94

Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения

Изобретение относится к катализатору парциального окисления метана, который представляет собой никель-алюминиевую шпинель. Данная шпинель имеет общую химическую формулу (Ni(МO))·γ-АlO, где М - Сr, Мn или Fe, 0,01≤x≤0,99, 0,01≤y≤1. Изобретение также относится к способу получения такого...
Тип: Изобретение
Номер охранного документа: 0002559878
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7492

Способ извлечения оксида алюминия из красного шлама

Изобретение относится к металлургии, а именно к переработке красного шлама - отхода глиноземного производства переработки бокситов щелочным способом Байера. Способ извлечения оксида алюминия из красного шлама включет автоклавное выщелачивании красного шлама при температуре 230-260°С и давлении...
Тип: Изобретение
Номер охранного документа: 0002561417
Дата охранного документа: 27.08.2015
10.11.2015
№216.013.8b87

Способ получения коллоидного раствора наночастиц сульфида свинца

Изобретение относится к способам получения коллоидных растворов, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Предлагается способ получения коллоидного раствора наночастиц сульфида свинца, включающий смешивание исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002567326
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9496

Сырьевая смесь для сульфатированного цемента

Изобретение относится к области строительных материалов и может быть использовано в производстве портландцементов. Технический результат заключается в повышении прочности на сжатие, ускорении сроков схватывания. Сырьевая смесь для сульфатированного цемента состоит из двуводного гипса,...
Тип: Изобретение
Номер охранного документа: 0002569657
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
Showing 11-20 of 27 items.
20.06.2018
№218.016.6538

Способ получения наноструктурированного углерода

Изобретение относится к химической технологии и может быть использовано при изготовлении сорбентов, катализаторов и носителей для катализаторов, сенсоров, газовых накопителей, конструкционных, футеровочных, оптических материалов и электродов для высокоёмких источников тока и энергетических...
Тип: Изобретение
Номер охранного документа: 0002658036
Дата охранного документа: 19.06.2018
25.06.2018
№218.016.66b0

Способ разделения скандия и сопутствующих металлов

Изобретение относится к технологии неорганических веществ, а именно к гидрометаллургии скандия. Способ разделения скандия и сопутствующих металлов заключается в обработке скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими...
Тип: Изобретение
Номер охранного документа: 0002658399
Дата охранного документа: 21.06.2018
05.07.2018
№218.016.6c2a

Способ определения оптических констант пленок химически активных металлов или их сплавов

Изобретение относится к способам оптико-физических измерений. Способ определения оптических констант пленок химически активных металлов или их сплавов включает измерения эллипсометрических параметров и пленки соответствующего металла или его сплава, предварительно нанесенной путем вакуумного...
Тип: Изобретение
Номер охранного документа: 0002659873
Дата охранного документа: 04.07.2018
25.10.2018
№218.016.9605

Способ получения формиата железа (ii)

Изобретение относится к получению солей железа из органических кислот, в частности к соли двухвалентного железа из муравьиной кислоты. Предлагается способ получения формиата железа (II), включающий нагревание соединения железа и муравьиной кислоты в присутствии металлической стружки, где...
Тип: Изобретение
Номер охранного документа: 0002670440
Дата охранного документа: 23.10.2018
26.12.2018
№218.016.ab38

Способ получения фотокаталитически активной пленки

Изобретение относится к области получения фотокаталитически активных полупроводниковых пленок. Предложен способ получения фотокаталитически активной пленки, включающий осаждение ионов Cu в виде оксида меди или гидроксида меди из раствора неорганической соли меди на подложку. Осаждение ведут из...
Тип: Изобретение
Номер охранного документа: 0002675808
Дата охранного документа: 25.12.2018
08.02.2019
№219.016.b84c

Способ модифицирования порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам модифицирования порошков алюминия. Порошок алюминия пропитывают модификатором, представляющим собой гель, полученный растворением формиата железа состава Fe(HCOO)·2HO в смеси дистиллированной воды и глицерина,...
Тип: Изобретение
Номер охранного документа: 0002679156
Дата охранного документа: 06.02.2019
04.04.2019
№219.016.fb11

Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок. Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, при котором...
Тип: Изобретение
Номер охранного документа: 0002683879
Дата охранного документа: 02.04.2019
18.05.2019
№219.017.56f5

Способ получения кислородопроводящей керамики на основе галлата лантана

Способ получения кислородпроводящей керамики на основе галлата лантана относится к химическому синтезу веществ, в частности к самораспространяющемуся высокотемпературному синтезу с использованием этиленгликоля, и может быть использован при изготовлении твердых электролитов на основе галлата...
Тип: Изобретение
Номер охранного документа: 0002387052
Дата охранного документа: 20.04.2010
29.05.2019
№219.017.6683

Технологическая крышка

Крышка предназначена для защиты солнечных батарей при наземной эксплуатации космических аппаратов различного назначения. Устройство (технологическая крышка), закрепленное на солнечной батарее космического аппарата содержит кожух с элементами крепления к каркасу солнечной батареи. Кожух...
Тип: Изобретение
Номер охранного документа: 0002375270
Дата охранного документа: 10.12.2009
08.06.2019
№219.017.75db

Способ получения нанопорошков сложного германата лантана и щелочного металла

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров. В азотной кислоте растворяют карбонат щелочного металла, взятый в 50-100 %-ном избытке по сравнению со стехиометрическим, и оксид лантана. Концентрация оксида лантана в полученном растворе...
Тип: Изобретение
Номер охранного документа: 0002690916
Дата охранного документа: 06.06.2019
+ добавить свой РИД