×
02.10.2019
219.017.cddc

Результат интеллектуальной деятельности: ЛОПАТКА ГАЗОВОЙ ТУРБИНЫ ГТД-110М

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте лопаток, работающих в условиях воздействия газоабразивной эрозии. Лопатка газовой турбины ГТД-110М имеет нанесенный на ее поверхность методом высокоскоростного газопламенного напыления жаростойкий подслой толщиной 150-200 мкм и керамический термобарьерный слой. Керамический термобарьерный слой напыляют плазмотроном толщиной 100-120 мкм, затем лопатку подвергают двухстадийной обработке, вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревают до температуры 1050°С в течение 3-4 часов, выдерживают при той же температуре 2 часа и охлаждают до температуры 700°С со скоростью 40-50°С. После чего на воздухе нагревают до температуры 850°С в течение 2,5-3 часов, выдерживают при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Изобретение позволяет увеличить газоабразивную стойкость защитного покрытия лопатки газовой турбины.

Изобретение относится к машиностроению и может быть использована при изготовлении и ремонте лопаток, работающих в условиях воздействия газоабразивной эрозии.

Развитие современных газовых турбин предполагает увеличение мощности двигателя, уменьшение расхода топлива, увеличение общей надежности функционирования турбины и, как следствие, - увеличение ресурса. Пути решения вышеперечисленных задач лежат в плоскости увеличения рабочей температуры турбин, что в свою очередь требует применения новых конструкционных материалов со свойствами, позволяющими деталям, изготовленным из них, функционировать при увеличенных рабочих параметрах. Повышение эксплуатационных характеристик за счет использования имеющихся жаропрочных сплавов и покрытий практически исчерпало свои возможности, что требует инновационных подходов к совершенствованию и разработке нового поколения металлических и керамических материалов для деталей и покрытий различного функционального назначения, обладающих повышенной стойкостью к разрушению в условиях воздействия циклических термомеханических напряжений и агрессивных сред.

Оптимальным решением, позволяющим поднять рабочую температуру двигателя и увеличить его ресурс, является нанесение теплозащитных покрытий с чередующимися слоями различного композиционного состава и функционального назначения, формируемых на основе наноструктурированных материалов.

Поиск новых материалов керамического слоя теплозащитных покрытий (ТЗП) выявил ряд недостатков традиционного состава ZrO2-7Y2O3, среди, которых отмечается недостаточная фазовая стабильность и высокая скорость спекания при высоких температурах. При длительных выдержках в температурных условиях, соответствующих эксплуатационным, это приводит к росту теплопроводности покрытий от первоначальных значений (0,9-1,1 Вт/мК) до значений, характерных для плотного материала (1,9-2,2 Вт/мК). Теплозащитный эффект покрытия при этом падает всего до 20-ЗОК, не обеспечивая требуемых свойств. (Cao, X.Q. Application of rare earths in thermal barrier coating materials / X.Q. Cao // Journal of Material Science Technology, 2007, Vol. 2З No. 1. P. 15-35. Vassen, R. Overview on advanced thermal barrier coatings / R. Vassen, M, Jarligo, T. Steinke, D. Mack, D. Stoever // Surface and Coatings Technology, 2010. Vol. 205. P. 938-942.

В исследовательском центре NASA (США) разработаны покрытия с низкой теплопроводностью, которая слабо зависит от времени выдержки при высоких температурах благодаря легированию стандартного материала ZrO2-7Y2O3 оксидами редкоземельных металлов. Состав покрытия не раскрывается. Zhu, D. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings / Dongming Zhu, Robert A. Millor // Технический отчет NASA/TM- 2002-211481.2002. NASA. 15p.

Активно ведется разработка теплозащитных покрытий с низкой теплопроводностью для применения на деталях горячего тракта энергетических газотурбинных установок большой мощности в исследовательском центре Mitsubishi Heavy Industries. Новые покрытия доказали свою эффективность и будут применяться на турбинах. Состав покрытия не раскрывается. Ito, Е. Development of key technology for ultra-high-temperature gas turbines / E. Ito, К. Tsukagoshi, A. Muyama, J. Masada, T. Torigoe // Mitsubishi Heavy Industries Technical Review. 2010. Vol. 47 (1). P. 19.

Задача, на решение которой направлено настоящее изобретение, состоит в повышении ресурса термобарьерного покрытия на деталях горячего тракта «ГТД-110М».

Ближайшим к предлагаемому изобретению аналогом является лопатка газовой турбины (RU 2521924 С2, С22С 19/05, опубликовано 10.07.2014), содержащая нанесенное на поверхность лопатки методом высокоскоростного газопламенного напыления жаростойкого подслоя толщиной 150-200 мкм и затем керамического термобарьерного слоя.

Недостатком ближайшего аналога является недостаточная адгезионная связь напыляемого материала и материала подложки. Помимо достаточной стойкости защитного слоя при агрессивных воздействиях отработавших газов при температурах порядка 1000°С, защитный слой должен также иметь достаточно хорошие механические свойства. В условиях газоабразивной эрозии покрытие не должно трескаться и отслаиваться.

Задача, на которую направлено предлагаемое изобретение, заключается в том, чтобы увеличить газоабразивную стойкость лопаток ГТД-110М.

Желаемым техническим результатом является увеличение газообразивной стойкости защитного покрытия лопатки газовой турбины без ухудшения аэродинамических характеристик лопатки.

Желаемый технический результат достигается тем, что керамический термобарьерный слой подвергнут двухстадийной обработке, вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагрет до температуры 1050°С в течение 3-4 часов, выдержан при той же температуре 2 часа и охлажден до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагрет до температуры 850°С в течение 2,5-3 часов, выдержан при той же температуре в течение 16 часов и охлажден в течение 4,7 часа до нормальной температуры и составляет 100-120 мкм.

В технологический цикл нанесения термобарьерных покрытий, как правило, входит многостадийная термообработка, которая повышает прочность покрытия.

Предлагаемая в настоящем изобретении двухстадийная обработка позволяет повысить прочность покрытия после нанесения. Для этого проводится диффузионный отжиг в вакууме при давлении 1×10-4 мм.рт.ст. нагревании до температуры 1050°С в течение 3-4 часов, выдержки при той же температуре 2 часа и охлаждении до температуры 700°С со скоростью 40-50°С. При диффузионном отжиге формируется диффузионная зона шириной до 30 мкм, что повышает прочность сцепления керамического термобарьерного слоя и металлического подслоя.

Заключительный окислительный отжиг проводится на воздухе нагреванием до температуры 850°С в течение 2,5-3 часов, выдержке при той же температуре в течение 16 часов и охлаждении в течение 4,7 часа до нормальной температуры. Окислительный отжиг позволяет привести структуру покрытия в равновесное состояние и повышает прочность покрытия.

Примером является лопатки рабочие 1-й и 2-й ступени газовой турбины ГТД-110М, выполненные из ЧС-88У-ВИ, с нанесенным термобарьерным покрытием подвергали двухстадийной обработке: вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревали до температуры 1050°С в течение 3-4 часов, выдерживали при той же температуре 2 часа и охлаждали до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагревали до температуры 850°С в течение 3 часов, выдерживали при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Газоабразивная стойкость термобарьерных покрытий увеличилась в 2-2,5 раза по сравнению с нетермообработанными.

Примером является лопатки рабочие 1-й и 2-й ступени газовой турбины ГТД-110М, выполненные из INC738, с нанесенным термобарьерным покрытием подвергали двухстадийной обработке: вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревали до температуры 1050°С в течение 3-4 часов, выдерживали при той же температуре 2 часа и охлаждали до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагревали до температуры 850°С в течение 3 часов, выдерживали при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Газоабразивная стойкость термобарьерных покрытий увеличилась в 1,5-2 раза по сравнению с нетермообработанными.

Примером является лопатки сопловые 1-й и 2-й ступени газовой турбины ГТД-110М, выполненные из ЧС-104-ВИ, с нанесенным термобарьерным покрытием подвергали двухстадийной обработке: вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревали до температуры 1050°С в течение 3-4 часов, выдерживали при той же температуре 2 часа и охлаждали до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагревали до температуры 850°С в течение 3 часов, выдерживали при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Газоабразивная стойкость термобарьерных покрытий увеличилась в 2-2,5 раза по сравнению с нетермообработанными.

Лопатка газовой турбины ГТД-110М с нанесенным на поверхность лопатки методом высокоскоростного газопламенного напыления жаростойкого подслоя толщиной 150-200 мкм и затем керамический термобарьерный слой, отличающийся тем, что керамический термобарьерный слой подвергнут двухстадийной обработке, вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагрет до температуры 1050°С в течение 3-4 часов, выдержан при той же температуре 2 часа и охлажден до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагрет до температуры 850°С в течение 2,5-3 часов, выдержан при той же температуре в течение 16 часов и охлажден в течение 4,7 часа до нормальной температуры и составляет 100-120 мкм.
Источник поступления информации: Роспатент

Showing 1-2 of 2 items.
20.01.2018
№218.016.1409

Способ доводки соплового аппарата турбины газотурбинного двигателя

Изобретение относится к двигателестроению, к области разработки газотурбинных двигателей, в частности к способам их доводки до окончательного конструктивного облика. Способ доводки соплового аппарата турбины газотурбинного двигателя включает установку в окружном направлении двухлопаточных...
Тип: Изобретение
Номер охранного документа: 0002634655
Дата охранного документа: 02.11.2017
02.10.2019
№219.017.cc0a

Жаровая труба газовой турбины гтд-110м

Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте жаровых труб, работающих в условиях воздействия газообразивной эрозии. Жаровая труба газовой турбины ГТД-110М с нанесенным на внутреннюю поверхность жаровой трубы методом плазменного напыления...
Тип: Изобретение
Номер охранного документа: 0002701025
Дата охранного документа: 24.09.2019
Showing 11-20 of 37 items.
10.04.2015
№216.013.3839

Способ нанесения многослойного теплозащитного покрытия

Изобретение относится к области энергомашиностроения, в частности к материалам для парогазовых установок на базе газотурбинных установок большой мощности и может быть использовано для защиты лопаток и других деталей газотурбинного двигателя от воздействия высоких температур, эрозионного износа...
Тип: Изобретение
Номер охранного документа: 0002545881
Дата охранного документа: 10.04.2015
10.10.2015
№216.013.8120

Жаропрочный сплав на основе никеля для изготовления и ремонта лопаток газотурбинных установок

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-920°C, а также для ремонта...
Тип: Изобретение
Номер охранного документа: 0002564653
Дата охранного документа: 10.10.2015
10.03.2016
№216.014.bf25

Способ контроля качества термической обработки теплозащитных покрытий

Изобретение относится к технологии напыления теплозащитных керамических покрытий, а более точно касается определения времени теплового воздействия, необходимого для релаксации остаточных напряжений в покрытии, а также энергии, требующейся для релаксации. Сущность: два образца с теплозащитным...
Тип: Изобретение
Номер охранного документа: 0002576543
Дата охранного документа: 10.03.2016
20.06.2016
№217.015.0443

Способ детонационного нанесения покрытия из оксида алюминия

Изобретение относится к области газотермического напыления покрытий, а именно к технологии подготовки поверхности изделия перед нанесением детонационного покрытия. Способ детонационного нанесения покрытия из оксида алюминия на поверхность медного изделия включает воздействие на обрабатываемую...
Тип: Изобретение
Номер охранного документа: 0002587370
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.04a2

Способ защиты контейнера для транспортирования и/или хранения отработавшего ядерного топлива (варианты)

Группа изобретений относится к контейнерам для длительного хранения и транспортировки отработавшего ядерного топлива. Способ защиты контейнера для транспортировки и/или хранения отработавшего ядерного топлива включает нанесение антикоррозионного покрытия на внутреннюю поверхность стакана....
Тип: Изобретение
Номер охранного документа: 0002587682
Дата охранного документа: 20.06.2016
25.08.2017
№217.015.aa58

Способ нанесения и лазерной обработки теплозащитного покрытия (варианты)

Изобретение относится к области газотермического напыления покрытий, в частности к способам напыления жаростойких и теплозащитных покрытий. Наносят основной металлический жаростойкий подслой. Наносят верхний керамический теплозащитный слой с последующей лазерной обработкой. Лазерную обработку...
Тип: Изобретение
Номер охранного документа: 0002611738
Дата охранного документа: 28.02.2017
19.01.2018
№218.016.0827

Аморфный сплав на основе кобальта

Изобретение относится к области металлургии, а именно к составам для защиты лопаток паровых турбин от ударно-капельной эрозии. Сплав на основе кобальта для наплавки на лопатки паровой турбины содержит: B 1,5-5, C 0,5-1, Cr 15-18, Fe 10-12, Ni 5-10, Mo 2-4, Si 2-4, Mn 5-8, Cu 2-5, W 10-12, Co -...
Тип: Изобретение
Номер охранного документа: 0002631563
Дата охранного документа: 25.09.2017
20.01.2018
№218.016.1594

Порошковый материал для газотермического напыления покрытий

Изобретение относится к области порошковой металлургии, в частности к порошковым материалам для газотермического напыления покрытий, и может быть использовано для защиты деталей горячего тракта авиационных газотурбинных двигателей (ГТД), наземных газотурбинных установок (ГТУ) и ракетных...
Тип: Изобретение
Номер охранного документа: 0002634864
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.18ef

Состав коррозионно-стойкого покрытия для защиты технологического нефтехимического оборудования

Изобретение относится к химическому, нефтехимическому, нефтеперерабатывающему машиностроению, а именно к составам для защиты основного и вспомогательного оборудования указанных производств от воздействия агрессивных коррозионно-активных сред. Коррозионно-стойкое покрытие для защиты внутренней...
Тип: Изобретение
Номер охранного документа: 0002636210
Дата охранного документа: 21.11.2017
20.01.2018
№218.016.198e

Способ защиты технологического оборудования нефтехимического производства

Изобретение относится к области химического, нефтехимического, нефтеперерабатывающего машиностроения и может быть использовано для защиты основного и вспомогательного оборудования указанных производств от воздействия агрессивных коррозионно-активных сред. Способ формирования на поверхности...
Тип: Изобретение
Номер охранного документа: 0002636211
Дата охранного документа: 21.11.2017
+ добавить свой РИД