×
02.10.2019
219.017.cd28

Результат интеллектуальной деятельности: Шнековый дозатор порошков тугоплавких металлов

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для подачи порошков тугоплавких металлов и может быть использовано в различных отраслях промышленности, где требуется прецизионная подача порошков. Задачей настоящего изобретения является разработка шнекового дозатора порошков тугоплавких металлов для применения в установках прецизионной сварки тонколистовых металлов и изготовления деталей сложной геометрической формы электрической дугой в атмосфере защитных газов. Шнековый дозатор порошков тугоплавких металлов состоит из загрузочного бункера конической формы, корпуса шнека, выполненного в виде полой трубы, и установленного в нем шнека, а прецизионная подача порошков в технологическую зону осуществляется через промежуточную камеру, расположенную под углом к корпусу шнека и снабженную спиральным транспортером. Спиральный транспортер передает вращение шнеку малого диаметра, выполняющему роль дозатора порошков. Скорости вращения шнеков и спирального транспортера осуществляются от разных приводов и синхронизированы. Внутренняя поверхность загрузочного бункера, корпуса шнека и спирального транспортера выполнены из закаленной конструкционной стали и подвергнуты электрохимической полировке. 2 ил.

Изобретение относится к устройствам для подачи порошков тугоплавких металлов и может быть использовано в различных отраслях промышленности, где требуется прецизионная подача порошков.

Применение геликоидальных оболочек в качестве транспортных устройств известно со времен Архимеда и широко применяется для перемещения порошкообразных и насыпных грузов. Достоинства и недостатки шнековых транспортных устройств подробно рассмотрены в работах разных авторов [А.О. Спиваковский, В.К. Дьячков // Транспортирующие машины - М. Машиностроение. - 1983]. В зависимости от сопутствующих перемещению груза технологических задач (например, перемешивание) винт шнековых транспортных устройств может быть сплошным, ленточным, лопастным или фасонной формы. Простота устройства, герметичность и небольшие габаритные размеры, сделали шнековые транспортные устройства незаменимыми в промышленном применении. Несмотря на ряд трудностей при расчетах и проектировании шнековой подачи порошков [В.А. Керженцев, Н.В. Перова //Научный вестник НГТУ. - 2015. - Т. 61 - №4 - С. 48-62], некоторые проблемы (эффективность загрузочного отверстия, уплотнение порошка при перемещении др.) удается избегать или минимизировать за счет оригинальных конструкторских решений. Особенно стоить отметить такие параметры как высокий удельный расход энергии, истирание и измельчение груза, повышенный износ винта и корпуса шнека, а в случае фасовки порошков недостатком устройства является низкая точность дозирования и проблемы с обеспечением стабильной работы, вследствие сложности конструкции дозатора. Таким образом, разработка и проектирование шнековых дозаторов порошков является актуальной задачей.

Известно устройство для подачи сыпучего материала из одного аппарата в другой при наличии перепада давления между аппаратами, состоящее из шнека с герметизирующей камерой [М.С. Петров, Э.И. Гольмшток, Р.М. Салихов и др.// Патент РФ №2392044 от 20.06.2010] - аналог. Для устранения изгибающего момента на конце консольного винта шнека, а также для перехода работы шнека от режима «на выработку» к режиму «со слоем»,авторы предложили последние два-три витка шнека выполнять либо двухзаходными, либо с постепенным уменьшением шага винта до 0,6-0,7 от исходного. Недостатком описанного устройства является то, что сыпучий продукт по своей природе не является вакуум-плотной средой, а его чрезмерное уплотнение для герметизации камеры приводит к заклиниваю шнека. Практическая реализация данного технического решения для дозирования порошков тугоплавких металлов привела к быстрому износу отдельных элементов устройства, вследствие забивания шнекового дозатора, комкованию порошка из-за формирования пробок и, в итоге, заклиниваю шнека. Устройство не пригодно для прецизионной подачи порошков тугоплавких металлов.

Известен дозатор шнековый для сыпучих материалов [Ю.А. Отдельное, А.В. Листопад// Патент РФ №132785 от 27.09.2013] - аналог. Авторы своим техническим решением стремились гармонично совместить в одном устройстве эффективность загрузочного отверстия, отсутствие уплотнения порошка при перемещении, производительность и энергоэффективность транспортирования сыпучих материалов. Точного дозирования порошка авторы добиваются уменьшением диаметра разгрузочного патрубка. Однако такое оригинальное решение как конусный шнек и наличие согласующих вырезов на винтовой лопасти, глубина и количество которых должна меняться в зависимости от природы транспортируемого материала (его сыпучести, дисперсности и др.) приводит к тому, что реализация на практике такого дозатора в качестве универсального устройства для промышленного применения попросту невозможна. Основной причиной отказа конусного шнека в работе является его заклинивание, так как невозможно рассчитать теоретически и согласовать на практике для каждого сыпучего материала скорость вращения шнека, количество и глубину вырезов с разными диаметрами шнека у загрузочного отверстия и разгрузочного патрубка. Для точного дозирования порошков тугоплавких металлов такое устройство не пригодно.

Известен шнековый дозатор для сыпучих материалов [К.И. Колышкин, Б.С. Белицкий, Б.В. Евсеев и др. // Патент РФ №103096 от 27.03.2011] - прототип. В основе устройства лежит шнековый дозатор, дополнительно снабженный пневмо-импульсным устройством (ворошителем), закрепленным на крышке загрузочного бункера. В момент кратковременного выброса воздуха сыпучий продукт приобретает свойство «псевдотекучести» и свободно «затекает» в межвитковую полость шнека, заполняя пустоты между его лопастями. Далее дозируемый продукт попадает в выходной патрубок на запирающую тарелку, закрепленную на валу шнека и под действием центробежной силы через приемную воронку высыпается в упаковочную тару. Однако, при детальном рассмотрении этапов работы прототипа выявляется ряд существенных недостатков, перечисленных ниже. Контроль уровня продукта в загрузочном бункере осуществляется датчиком уровня материала, при этом уровень продукта поддерживается постоянным. Таким образом, для нормальной работы прототипа требуется дополнительное дозирующее устройство, обеспечивающее постоянный уровень продукта, причем по своим характеристикам по точности дозирования дополнительное дозирующее устройство не должно быть хуже прототипа, что существенно усложняет всю технологическую цепочку. Другим недостатком прототипа является то обстоятельство, что в перерывах между пневмоимпульсами межвитковое пространство шнека заполняется сыпучим продуктом не так равномерно, как в условиях «псевдотекучести». Кроме того, сгенерированная пневмоимпульсом ударная волна через выходной патрубок и запирающую тарелку бесконтрольно выдувает сыпучий продукт в упаковочную тару. Точность дозирования как в моменты пневмоимпульса, так и в перерывах между ними грубо нарушается. Прецизионное дозирование порошков тугоплавких металлов таким устройством невозможно.

Задачей настоящего изобретения является разработка шнекового дозатора порошков тугоплавких металлов для применения в установках прецизионной сварки тонколистовых металлов и изготовления деталей сложной геометрической формы электрической дугой в атмосфере защитных газов.

Технический результат достигается за счет того, что шнековый дозатор порошков тугоплавких металлов, состоит из загрузочного бункера конической формы, корпуса шнека, выполненного в виде полой трубы, и установленного в нем шнека, а прецизионная подача порошков в технологическую зону осуществляется через промежуточную камеру-ресивер, расположенную под углом к корпусу шнека и снабженную спиральным транспортером, осуществляющим подготовку порошков и передающим вращение шнеку малого диаметра, выполняющему роль дозатора порошков, причем скорости вращения шнеков и спирального транспортера осуществляются от разных приводов и синхронизированы, а рабочие поверхности шнекового дозатора, выполненные из закаленной конструкционной стали были подвергнуты электрохимической полировке.

На фиг. 1 представлен чертеж шнекового дозатора порошков тугоплавких металлов. Цифрами обозначены:(1) - шнек малого диаметра; (2) - спиральный транспортер; (3) - шнек; (4) - корпус шнека; (5) - загрузочный бункер; (6) - камера-ресивер; (7) - приемная воронка; (8) - крышка.

На фиг. 2 представлен шнек 3, спиральный транспортер 2 и шнек малого диаметра 1.

Устройство работает следующим образом: порошок тугоплавкого металла засыпают в загрузочный бункер (5), который закрывают крышкой (8); вращением шнека (3) порошок подается в камеру-ресивер (6), где с помощью спирального транспортера (2) порошок, подвергаясь дополнительному ворошению для устранения комкования и равномерного распределения, подается в шнек малого диаметра (1), который благодаря малому шагу винта и малому диаметру осуществляет контролируемую прецизионную подачу порошка через приемную воронку (7) в технологическую зону.

Многие материалы, в том числе порошки тугоплавких металлов, склонны к сводообразованию, с последующим затвердеванием на стенках бункера, корпуса шнека и других рабочих поверхностях дозатора. Для предотвращения этого необходимо, чтобы материал нигде не накапливался и находился в постоянном движении. Для облегчения подачи порошка к шнеку и для малого сопротивления движению порошка рабочие поверхности дозатора были выполнены из закаленной конструкционной стали с последующей электрохимической полировкой поверхности. Твердость молибдена равна 125 НВ; твердость вольфрама - 350 НВ; твердость закаленной стали 40Х - 552 НВ [В.И. Анурьев / Справочник конструктора-машиностроителя // М. - Машиностроение. - 2006.]. Из приведенных данных следует, что рабочие поверхности дозатора не подвержены абразивному износу порошком тугоплавкого металла и не оказывают сопротивления движению порошка. Стоит отметить, что отсутствие ворошителя в загрузочном бункере значительно упрощает конструкцию дозатора.

Шнековый дозатор порошков тугоплавких металлов, содержащий загрузочный бункер конической формы, корпус шнека, выполненный в виде полой трубы, и установленный в нем шнек, отличающийся тем, что он снабжен промежуточной камерой, расположенной под углом к корпусу упомянутого шнека и снабженной спиральным транспортером, передающим вращение шнеку малого диаметра, выполняющему функцию дозатора для прецизионной подачи порошков в технологическую зону, при этом первый шнек и спиральный транспортер связаны с разными приводами с возможностью синхронизации их скоростей вращения, а рабочие поверхности шнекового дозатора выполнены из электрохимически отполированной закаленной конструкционной стали.
Источник поступления информации: Роспатент

Showing 71-80 of 91 items.
09.06.2020
№220.018.25bc

Структура с резистивным переключением

Изобретение предназначено для применения в электронике для нейроморфных вычислений и хранения информации. Структура с резистивным переключением включает два металлических алюминиевых контакта, нанесенных на поверхность тонкой пленки аморфной сурьмы. Изобретение обеспечивает получение структуры...
Тип: Изобретение
Номер охранного документа: 0002723073
Дата охранного документа: 08.06.2020
03.07.2020
№220.018.2dda

Способ получения timnal

Изобретение относится к области металлургии, в частности к получению объемных слитков спин-поляризованного бесщелевого полупроводника TiMnAl, который может быть использован в спинтронике. Способ получения TiMnAl из элементарных титана, марганца и алюминия включает помещение навесок марганца и...
Тип: Изобретение
Номер охранного документа: 0002725229
Дата охранного документа: 30.06.2020
06.07.2020
№220.018.2fb7

Трансформатор импульсов электроэнергии однополярного тока

Изобретение относится к электротехнике и может быть использовано в электрометаллургии для гальванической развязки в источниках питания высокочастотной дуги, используемой для плавления металлических порошков, электроэрозионной обработки поверхности и изготовления деталей сложной формы....
Тип: Изобретение
Номер охранного документа: 0002725610
Дата охранного документа: 03.07.2020
09.07.2020
№220.018.3097

Устройство для выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона

Изобретение относится к области роста кристаллов, в частности, к выращиванию смешанных монокристаллов K(Со,Ni)(SO)x6HO (KCNSH) из водных растворов и может быть использовано в оптическом приборостроении для изготовления солнечно-слепых фильтров. Устройство для выращивания смешанных кристаллов...
Тип: Изобретение
Номер охранного документа: 0002725924
Дата охранного документа: 07.07.2020
20.04.2023
№223.018.4c95

Способ легирования кристаллов селенида цинка хромом

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов селенида цинка хромом включает смешивание порошков селенида цинка и легирующей добавки и последующее выращивание кристалла из расплава под давлением аргона, при этом хром вводится в исходную загрузку в виде...
Тип: Изобретение
Номер охранного документа: 0002751059
Дата охранного документа: 07.07.2021
20.04.2023
№223.018.4c96

Высокотемпературный слоисто-волокнистый композит, армированный оксидными волокнами, и способ его получения

Изобретение относится к высокотемпературным конструкционным композитным материалам с металлической матрицей и способам их получения. Высокотемпературный слоисто-волокнистый композит, с матрицей на основе Nb, твердого раствора Nb(Al), а также интерметаллидов NbAl и NbAl содержит слои Мо,...
Тип: Изобретение
Номер охранного документа: 0002751062
Дата охранного документа: 07.07.2021
20.04.2023
№223.018.4cda

Способ легирования кристаллов сульфида цинка железом или хромом

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов сульфида цинка железом или хромом включает смешивание порошков сульфида цинка и порошка моносульфида легирующего металла с последующим выращиванием кристалла из расплава вертикальной зонной плавкой. Способ...
Тип: Изобретение
Номер охранного документа: 0002755023
Дата охранного документа: 09.09.2021
20.04.2023
№223.018.4d09

Устройство для измерения малых токов инжектированных зарядов в конденсированных средах

Устройство для измерения малых токов инжектированных зарядов в конденсированных средах предназначено для измерения малых токов ~ 10 А и регистрации их изменения во времени, а также записи результатов измерения на электронный носитель. Устройство содержит преобразователь ток-напряжение,...
Тип: Изобретение
Номер охранного документа: 0002754201
Дата охранного документа: 30.08.2021
20.04.2023
№223.018.4d26

Устройство для получения наночастиц из газов и паров жидкостей при сверхнизких температурах

Изобретение относится к области нанотехнологии, а именно предлагаемое устройство позволяет получать частицы малых размеров (наночастицы) из материалов, которые существуют при комнатных температурах в виде газов или паров. Устройство для получения наночастиц из материалов, существующих при...
Тип: Изобретение
Номер охранного документа: 0002756051
Дата охранного документа: 24.09.2021
21.04.2023
№223.018.4fc4

Способ синтеза шпинели ganbse

Изобретение может быть использовано при создании мемристивных структур на основе шпинелей семейства «изоляторов Мотта». Способ синтеза шпинели GaNbSe из элементарных веществ включает твердофазную химическую реакцию в вакуумированной и герметично запаянной кварцевой ампуле. Твердофазную...
Тип: Изобретение
Номер охранного документа: 0002745973
Дата охранного документа: 05.04.2021
Showing 31-36 of 36 items.
14.05.2023
№223.018.56cc

Осевой неразгруженный компенсатор

Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов халькогенидов в условиях микрогравитации – важном направлении в космическом материаловедении. Осевой компенсатор пружинно-поршневого типа содержит неразгруженный компенсирующий элемент,...
Тип: Изобретение
Номер охранного документа: 0002732334
Дата охранного документа: 15.09.2020
15.05.2023
№223.018.5c68

Опора тигля для выращивания кристаллов

Изобретение относится к оборудованию для выращивания кристаллов прямоугольной формы из расплава. Опора тигля выполнена в виде прямоугольного в поперечном сечении корпуса 1 с посадкой для установки тигля на опору 6 и посадкой для установки опоры на шток 5, и имеющего сквозные пазы 4,...
Тип: Изобретение
Номер охранного документа: 0002759623
Дата охранного документа: 16.11.2021
16.05.2023
№223.018.5dc6

Способ выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона

Изобретение относится к области выращивания смешанных монокристаллов сульфата кобальта-никеля-калия K(Co,Ni)(SO)⋅6HO (KCNSH) из водных растворов и может быть использовано в оптическом приборостроении для изготовления солнечно-слепых фильтров. Способ выращивания смешанных кристаллов сульфата...
Тип: Изобретение
Номер охранного документа: 0002758652
Дата охранного документа: 01.11.2021
16.05.2023
№223.018.5dc7

Способ выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона

Изобретение относится к области выращивания смешанных монокристаллов сульфата кобальта-никеля-калия K(Co,Ni)(SO)⋅6HO (KCNSH) из водных растворов и может быть использовано в оптическом приборостроении для изготовления солнечно-слепых фильтров. Способ выращивания смешанных кристаллов сульфата...
Тип: Изобретение
Номер охранного документа: 0002758652
Дата охранного документа: 01.11.2021
16.05.2023
№223.018.5ecf

Электродуговой способ получения слитков timnal

Изобретение относится к области металлургии, в частности к получению сплава Гейслера в виде слитков, пригодных для изучения свойств спин-поляризованного бесщелевого полупроводника TiMnAl. Способ получения слитков сплава TiMnAl из смеси алюминия, марганца и титана включает подготовку смеси...
Тип: Изобретение
Номер охранного документа: 0002754540
Дата охранного документа: 03.09.2021
16.05.2023
№223.018.6357

Электродуговой способ получения прецизионного сплава timnal

Изобретение относится к области металлургии прецизионных сплавов и может быть использовано для получения сплава Гейслера. Осуществляют сплавление смеси порошков алюминия, марганца и титана в гарнисаже плазмой дугового разряда напряжением от 65 до 70 В и током от 8 до 10 А в атмосфере гелия...
Тип: Изобретение
Номер охранного документа: 0002776576
Дата охранного документа: 22.07.2022
+ добавить свой РИД