×
02.10.2019
219.017.cb77

Результат интеллектуальной деятельности: Способ очистки растворов калия дигидрофосфата от примесей d-металлов и алюминия

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу очистки растворов калия дигидрофосфата от примесей d-металлов и алюминия. Способ осуществляется сокристаллизацией примесей путем их концентрирования в коллекторе макрокомпонента и включает следующие стадии: охлаждение насыщенного при 40-50°С раствора исходного калия дигидрофосфата со скоростью 1-5°С/мин и при перемешивании со скоростью 200-500 об/мин до установления температуры 5-20°С, последующее выдерживание раствора при перемешивании при этой же температуре и отделение кристаллов от очищенного раствора калия дигидрофосфата фильтрацией. Технический результат заключается в создании технологичного и экономичного процесса получения высокочистого калия дигидрофосфата, применяемого в качестве исходного сырья для скоростного выращивания крупногабаритных монокристаллов. 3 пр.

Изобретение относится к способам получения высокочистого калия дигидрофосфата, применяемого в качестве исходного сырья для скоростного выращивания крупногабаритных монокристаллов.

Как известно, к соединениям, используемым в качестве исходных для получения монокристаллов, предъявляются особые требования по чистоте, в частности по содержанию примесей d-металлов (железа, хрома, титана) и алюминия, так как примеси этих металлов являются в крайней степени негативно влияющими на скорость роста и свойства монокристаллов. [Alexandria H.V., Bebecaru С., Radulescu R.C., Stanculescu F., Logofatu В. Journal of Optoelectronic and Advanced Materials. Vol. 5. No. 3. 2003. pp. 589-597], [Rashkovich L., Kronsky N. Journal of Crystal Growth. Vol. 182. 1997. pp. 434-441.] Современные требования к чистоте сырья для скоростного роста монокристаллов по примесям Аl, Cr, Fe, Ti составляют ≤0,05ppm (5-10-6% масс). [Ершов В.П. Скоростной рост моносекториальных профилированных монокристаллов группы KDP. дисс. на соиск. уч. ст. к.ф. -м.н. 2007. ИПФ РАН. Н.Н. 146 с].

Для получения высокочистого дигидрофосфата калия предлагаются либо способы прямого синтеза чистого продукта, либо способы очистки уже синтезированного продукта.

Например, описан способ синтеза высокочистого дигидрофосфата калия, осуществляемый нейтрализацией ортофосфорной кислоты гидроксидом калия при постоянном контроле и поддерживании рН раствора полученного калия дигидрофосфата в диапазоне от 4,2 до 4,6, оптимально 4,4 (CN 103172040, С01В 25/30, 2013). Однако такой процесс нельзя отнести к промышленно осуществимым, поскольку практически не реально добиться предлагаемого контроля за поддержанием установленного рН при крупнотоннажном производстве. Также к недостаткам этого метода синтеза можно отнести и сильную зависимость качества получаемого продукта от чистоты исходного сырья. Поскольку в данном процессе в указанном диапазоне рН примеси d-металлов имеют коэффициент распределения >1, из чего следует, что примеси концентрируются в кристаллическом продукте. И поэтому, в случае использования недостаточно чистых исходных реактивов, конечный продукт будет загрязнен такими вредными для процессов выращивания монокристаллов примесями, как алюминий, железо, хром, титан, и пр. Кроме того, данный рассматриваемый способ не технологичен и не экономичен, поскольку при реакции нейтрализации выделяется большое количество тепла, и, следовательно, реализация такого процесса требует применения мощных охлаждающих устройств.

Способ очистки калия дигидрофосфата применяется в другом изобретении [CN 106167253, С01В 25/308, С01Р 2006/80, 2016], в котором очистка калия дигидрофосфата осуществляется перекристаллизацией и предшествующей ей стадией микрофильтрации горячего (90-100°С) насыщенного раствора калия дигидрофосфата. Особенностью данного способа является тот факт, что перекристаллизация проводится в присутствии хелатного агента, что отрицательно сказывается на чистоте получаемого соединения, поскольку хелатный агент, являясь органическим соединением, сам становится источником органических примесей. Это, в свою очередь, ухудшает качество сырья, используемого для выращивания лазерных кристаллов, и что, в дальнейшем приводит к снижению лазерной прочности получаемых кристаллов. Недостаток применения хелатного агента в рассматриваемом способе заключается и в том, что не все металлы, присутствующие в очищаемом соединении, образуют прочные хелатные комплексы, что снижает эффективность очистки. Известно, что хелатные агенты образуют прочные комплексы с железом, хромом, цинком, медью, что позволяет избежать сокристаллизации их примесей в процессе. Однако, существуют металлы, которые ввиду своего электронного строения, как правило, не образовывают прочные комплексы с хелатными агентами. Например, к таким металлам относятся алюминий, титан. Еще один потенциальный источник загрязнений получаемого данным способом продукта - это материал фильтра, применяемого на стадии микрофильтрации, являющийся источником загрязнений примесями ионного типа.

Наиболее близким к предлагаемому способу по технической сущности является описанный ранее способ получения высокочистого калия дигидрофосфата, включающий стадию очистки пересыщенного раствора калия дигидрофосфата, согласно которому, из полученного пересыщенного раствора калия дигидрофосфата кристаллизуют от 4 до 7% макрокомпонента, и тем самым, получают очищенный раствор (Демирская О.В., Кисломед А.Н., Велихов Ю.Н. Высокочистые вещества. №1. 1989. С. 14-16). Однако в продукте, получаемом данным способом, говорится только об очистке от примесей алюминия и железа и не упоминается об очистке от других d-металлов (хрома и титана). Кроме того, данный способ недостаточно эффективен, поскольку в конечном очищенном продукте концентрация алюминия <2 ррm, а железа 0,5 ррm, что значительно больше допустимых концентраций примесей в сырье для выращивания монокристаллов. Как было указано выше, предельно допустимая концентрация железа, алюминия, хрома и титана составляет 0,05 ррm для каждого из перечисленных металлов.

С целью получения продукта - калия дигидрофосфата, удовлетворяющего требованиям по чистоте, предъявляемым к сырью для выращивания монокристаллов, а также создания технологичного и экономичного процесса предлагается Способ очистки растворов калия дигидрофосфата от примесей d-металлов и алюминия осуществляемый сокристаллизацией примесей путем их концентрирования в коллекторе макрокомпонента при охлаждении насыщенного при 40-50°С раствора исходного калия дигидрофосфата со скоростью 1-5°С/мин и при перемешивании его со скоростью 200-500 об/мин до установления температуры 5-20°С, после чего раствор выдерживают при перемешивании при этой же температуре и отделяют кристаллы от очищенного раствора калия дигидрофосфата фильтрацией.

Предлагаемый способ, как и способ, принятый за прототип, осуществляется сокристаллизацией примесей с частью макрокомпонента - калия дигидрофосфата. При осуществлении такого процесса очистки в предлагаемом способе происходит образование мелких кристаллов калия дигидрофосфата, которые захватывают примеси d-металлов и алюминия за счет их развитой поверхности. Такой эффект объясняется тем, что одна из граней кристаллов калия дигидрофосфата имеет отрицательный заряд и за счет электростатических сил она притягивает из раствора положительно заряженные ионы металлов и их комплексы, которые впоследствии внедряются в структуру, тем самым сокристаллизуются. Предлагаемым способом, в отличие от прототипа, удается провести очистку сразу от нескольких примесей d-металлов - железа, хрома, титана, а также от алюминия, за счет того, что примеси этих металлов являются сокристаллизующимися.

В отличие от способа-прототипа процесс сокристаллизации в предлагаемом способе протекает при использовании раствора калия дигидрофосфата, насыщенного в определенном температурном интервале 40-50°С.Существенными признаками процесса являются скоростные и температурные режимы охлаждения насыщенного раствора, а именно поддержание скорости охлаждения раствора на уровне 1-5°С/мин и скорости перемешивания раствора при охлаждении, равной 200-500 об/мин. При суммарном поддержании данных режимов, подобранных экспериментально, достигается необходимая степень очистки, подтвержденная ниже приведенными примерами. При этом снижение скорости перемешивания ниже 200 об/мин неэффективно в виду того, что при этом происходит образование более крупных кристаллов коллектора, следовательно, имеющих меньшую удельную поверхность, а увеличение скорости перемешивания выше 500 об/мин не вносить существенного вклада в эффективность очистки. Также как и уменьшение скорости охлаждения ниже 1°С/мин приводит к образованию более крупных кристаллов коллектора, а увеличение скорости охлаждения выше 5°С/мин не приводит к существенному улучшению процесса очистки.

Проведение процесса при экспериментально подобранных режимах процесса сокристаллизации позволяет осуществить эффективный процесс очистки и получать высокочистый раствор калия дигидрофосфата (KDP), лимитированный по содержанию примесей d-металлов (Cr, Fe, Ti) и алюминия (≤0,05 ррm).

Эффективность процесса подтверждается измерениями, выполненными методами атомно-эмиссионной спектрометрии индуктивно-связанной плазмой. Малые концентрации примесей железа и хрома определяли по методике [Досовицкий А.Е., Комендо И.Ю., Михлин А.Л., Ретивов В.М., Булатицкий К.К., Родченков В.И. Заводская лаборатория. Диагностика материалов. 2017. Т. 83. №5. С. 13-17]: исходный раствор калия дигидрофосфата, соответствующий квалификации х.ч., до очистки содержал примеси (ppm): Аl - 0,2, Сr - 0,3, Fe - 0,4, Ti - 1,5, а после очистки полученный раствор стал содержать эти примеси в количестве <0,05 ppm.

Предлагаемый способ технологичен, поскольку не требует изменения и четкого контроля рН раствора, не требует сильного нагрева раствора калия дигидрофосфата, содержит малое количество технологических операций, в процессе не вводятся дополнительные реактивы, загрязняющие очищаемый раствор сторонними примесями, и удорожающими процесс очистки.

Ниже приводятся примеры, иллюстрирующие предлагаемое изобретение.

Пример 1:

Получают раствор калия дигидрофосфата квалификации х.ч., насыщенный в интервале 40-50°С, содержащий (ppm): Аl - 0,2, Сr - 0,3, Fe - 0,4, Ti - 1,5. После полного растворения кристаллической фазы, раствор охлаждают со скоростью 5°С/мин при перемешивании со скоростью 500 об/мин до установления температуры 5-20°С, раствор выдерживают при этой температуре при постоянном перемешивании. Далее кристаллы коллектора макрокомпонента отделяют от очищенного раствора. Концентрация примесей в очищенном растворе составляет (ppm): Аl - <0,05, Сr - 0,02, Fe - 0,02, Ti - <0,05.

Пример 2:

Получают раствор калия дигидрофосфата квалификации х.ч. насыщенный в интервале 40-50°С с концентрациями примесей аналогичными примеру 1. Пример осуществляют при скорости охлаждения 2,5°С/мин и при скорости перемешивания 350 об/мин, и далее процесс проводят аналогично примеру 1. Концентрация примесей в очищенном растворе составляет (ppm): Аl - <0,05, Сr - 0,04, Fe - 0,04, Ti - 0,05.

Пример 3:

Получают раствор калия дигидрофосфата квалификации х.ч. насыщенный в интервале 40-50°С с концентрациями примесей аналогичными примеру 1. Пример осуществляют при скорости охлаждения 1°С/мин и при скорости перемешивания 200 об/мин, далее процесс проводят аналогично примеру 1. Концентрация примесей в очищенном растворе составляет (ppm): Аl - 0,05, Сr - 0,05, Fe - 0,05, Ti - 0,05.

Способ очистки растворов калия дигидрофосфата от примесей d-металлов и алюминия, осуществляемый сокристаллизацией примесей путем их концентрирования в коллекторе макрокомпонента, отличающийся тем, что насыщенный при 40-50°С раствор исходного калия дигидрофосфата охлаждают со скоростью 1-5°С/мин и при перемешивании со скоростью 200-500 об/мин до температуры 5-20°С, после чего выдерживают при перемешивании при этой же температуре и отделяют кристаллы от очищенного раствора калия дигидрофосфата фильтрацией.
Источник поступления информации: Роспатент

Showing 1-8 of 8 items.
29.05.2018
№218.016.58f6

Пиридинилметиленамино-бензо-18-крауны-6 и их медные комплексы

Изобретение относится к новым пиридинилметиленамино-бензо-18-краунам-6 общей структурной формулы (I), их медным комплексам на их основе общей структурной формулы (II), где R - (N-пиридин-4-илметиленамино) или R - (N-пиридин-3-илметиленамино). Пиридинилметиленамино-бензо-18-крауны-6 получают...
Тип: Изобретение
Номер охранного документа: 0002655166
Дата охранного документа: 24.05.2018
21.07.2018
№218.016.737f

Медные комплексы пиридинилметиленамино-бензо-15-крауны-5 и способ их получения

Изобретение относится к медным комплексам пиридинилметиленамино-бензо-15-краун-5, общей структурной формулы: где R - пиридинил-4-ил, пиридинил-3-ил. Также предложен способ их получения. Предлагаемые медные комплексы могут применяться в медицине, в частности при лечении онкологических...
Тип: Изобретение
Номер охранного документа: 0002661871
Дата охранного документа: 20.07.2018
02.09.2019
№219.017.c63b

Способ модификации диоксида циркония

Изобретение относится к модификации диоксида циркония как химически чистого, так и стабилизированного оксидами редкоземельных элементов, в результате которой получается продукт, который может применяться для изготовления фотоотверждаемых композиций на основе акрилатных мономеров,...
Тип: Изобретение
Номер охранного документа: 0002698828
Дата охранного документа: 30.08.2019
03.09.2019
№219.017.c6b9

Способ получения диангидрида 3,3-бис-(3,4-дикарбоксифенил)фталида

Изобретение относится к способу получения диангидридов ароматических тетракарбоновых кислот, а именно диангидрида 3,3-бис-(3,4-дикарбоксифенил)фталида, который осуществляется окислением 3,3-бис-(3,4-диметилфенил)фталида 20-25%-ным водным раствором азотной кислоты при использовании 12-18 моль...
Тип: Изобретение
Номер охранного документа: 0002698914
Дата охранного документа: 02.09.2019
05.06.2020
№220.018.243d

Способ получения n-((гидроксиамино)-оксоалкил)-2-(хиназолин-4-иламино)-бензамидов

Изобретение относится к способу получения производных N-((гидроксиамино)-оксоалкил)-2-(хиназолин-4-иламино)-бензамидов указанной ниже общей формулы, которые могут найти применение в лечении злокачественных новообразований. В общей формуле R и R независимо друг от друга представляют собой H, Cl,...
Тип: Изобретение
Номер охранного документа: 0002722694
Дата охранного документа: 03.06.2020
17.06.2020
№220.018.2702

4-[метил 4-(аминометил)циклогексанкарбоксилат]хиназолин и способ его получения

Изобретение относится к способу получения 4-[метил 4-(аминометил)циклогексанкарбоксилат]хиназолина, который осуществляется реакцией взаимодействия эквимолярных количеств 4-хлорхиназолина с гидрохлоридом метил 4-(аминометил)циклогексанкарбоксилата, проводимой при комнатной температуре и...
Тип: Изобретение
Номер охранного документа: 0002723481
Дата охранного документа: 11.06.2020
17.06.2020
№220.018.2767

Композиция на основе стабилизированного диоксида циркония для 3d печати методом стереолитографии (варианты)

Предлагаемое изобретение относится к области аддитивного производства, а именно стереолитографии, и непосредственно касается составов на основе стабилизированного диоксида циркония для 3D печати. Предлагаемая композиция содержит стабилизированный диоксид циркония, акрилатную органическую основу...
Тип: Изобретение
Номер охранного документа: 0002723427
Дата охранного документа: 11.06.2020
06.07.2020
№220.018.2fe3

Способ получения 5-, 6-аминофлуоресцеинов

Изобретение относится к области органической химии и медицины, а именно к способу получения 5- и 6-аминофлуоресцеинов реакцией 4-нитрофталевой кислоты с резорцином, взятых в мольном соотношении 1:2, протекающей в среде ортофосфорной кислоты, взятой в соотношении к массе 4-нитрофталевой кислоты...
Тип: Изобретение
Номер охранного документа: 0002725666
Дата охранного документа: 03.07.2020
Showing 1-10 of 18 items.
10.01.2014
№216.012.94ac

Способ получения алюмоиттриевого граната, легированного редкоземельными элементами

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, содержащих редкоземельные элементы, которые могут быть применены для изготовления светодиодных источников освещения. Способ осуществляют методом осаждения введением исходных соединений алюминия,...
Тип: Изобретение
Номер охранного документа: 0002503754
Дата охранного документа: 10.01.2014
27.09.2015
№216.013.7eb8

Способ стабилизации редкоземельных ионов в трехвалентном состоянии в силикатных стеклах и композитах

Изобретение относится к технологии получения люминесцентных стекол на основе силикатных, боросиликатных, боратных стекол и стеклокомпозитов, активированных редкоземельными ионами, в частности ионами Ce, Pr и Eu, для их использования в преобразователях энергии возбуждения в световое излучение...
Тип: Изобретение
Номер охранного документа: 0002564037
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7eb9

Сцинтилляционное вещество

Изобретение относится к технологии получения сцинтилляционных неорганических материалов для измерения ионизирующего изучения на основе силикатных стекол и стеклокомпозитов, активированных ионами церия, в частности к материалам для регистрации нейтронов. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002564038
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7fb6

Способ получения сцинтиляционного стекла

Изобретение может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений, в частности нейтронов. Сцинтилляционное стекло получают из композиции SiO, LiCO, MgO, AlO, AlF, CeO, а для подавления окисления ионов церия в стекло вводят добавку...
Тип: Изобретение
Номер охранного документа: 0002564291
Дата охранного документа: 27.09.2015
13.01.2017
№217.015.8407

Способ получения высокочистого водного раствора нитрата церия (iv) (варианты)

Изобретение относится к технологии получения чистых соединений редкоземельных элементов, а именно нитрата церия (IV), применяемых при производстве катализаторов, присадок к дизельному топливу, люминофоров, а также в оптическом стекловарении. Изобретение включает два варианта осуществления...
Тип: Изобретение
Номер охранного документа: 0002601763
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.9c5e

Способ получения наночастиц магнетита (варианты)

Изобретение может быть использовано в медицине, фотонике, электронике. Получение наночастиц магнетита FeO осуществляют методом высокотемпературного восстановительного гидролиза соединений железа (III) среде этиленгликоля в присутствии осадителя и стабилизатора. В качестве осадителя используют...
Тип: Изобретение
Номер охранного документа: 0002610506
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.b2f2

Способ получения легированного алюмоиттриевого граната

Изобретение относится к технологии получения соединений, относящихся к группе сложных оксидов со структурой граната, легированных щелочными и щелочноземельными элементами и элементами 3d группы, которые могут быть применены для изготовления различных люминесцентных материалов в оптоэлектронике,...
Тип: Изобретение
Номер охранного документа: 0002613994
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b2f3

Способ получения легированного алюмоиттриевого граната

Изобретение относится к технологии получения соединений, относящихся к группе сложных оксидов со структурой граната, легированных щелочными и щелочноземельными элементами и элементами 3d группы, которые могут быть применены для изготовления различных люминесцентных материалов в оптоэлектронике,...
Тип: Изобретение
Номер охранного документа: 0002613994
Дата охранного документа: 22.03.2017
04.04.2018
№218.016.36ad

Монокристалл со структурой граната для сцинтилляционных датчиков и способ его получения

Изобретение относится к сцинтилляционным неорганическим оксидным монокристаллам со структурой граната, предназначенным для датчиков ионизирующего излучения в задачах медицинской диагностики, экологического мониторинга, неразрушающего контроля и разведке полезных ископаемых, экспериментальной...
Тип: Изобретение
Номер охранного документа: 0002646407
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36e2

Способ получения высокочистого раствора нитрата церия (iii)

Изобретение может быть использовано при производстве катализаторов, присадок к дизельному топливу, люминофоров, а также в оптическом стекловарении. Для осуществления способа проводят обработку высокочистого диоксида церия при 70-80С концентрированной азотной кислотой, содержащей 1,5-5 мас.%...
Тип: Изобретение
Номер охранного документа: 0002646416
Дата охранного документа: 05.03.2018
+ добавить свой РИД