×
08.09.2019
219.017.c8fc

Результат интеллектуальной деятельности: Способ модификации анионообменных мембран

Вид РИД

Изобретение

Аннотация: Изобретение относится к мембранной технологии, а именно к способам модификации анионообменных мембран с целью улучшения их характеристик и может быть использовано при производстве мембран для электродиализных аппаратов. Предлагается способ модификации анионообменных мембран, выполненных из полимера, содержащего аминогруппы различной степени алкилированности, погружением их в 5% водный раствор полимерного полиэлектролита, представляющего собой поликватерниум-22. Обработку ведут в течение 8 ч при температуре 50°С. Изобретение обеспечивает простой способ модификации анионообменных мембран, сокращение длительности процесса модификации и стабильные характеристики мембран в течение более длительного времени эксплуатации. 5 пр., 5 табл.

Изобретение относится к мембранной технологии, а именно к способам модификации анионообменных мембран с целью улучшения их характеристик и может быть использовано при производстве мембран для электродиализных аппаратов.

Известен способ получения анионообменных мембран с улучшенными массообменными характеристиками путем обработки мембраны, выполненной из полимера, содержащего вторичные и третичные аминогруппы, раствором муравьиной или уксусной кислоты с последующей обработкой ее раствором в органических растворителях сополимера акрилонитрила (АН) с диметилдиаллиламмоний хлоридом (ДМДААХ) до образования четвертичных аминогрупп [патент 2410147 РФ, МПК B01D 71/06 (2006.01), B01D 71/82 (2006.01), B01D 71/60 (2006.01), B01D 61/44 (2006.01), C08J 5/22 (2006.01) заявл. 22.10.2008; опубл. 27.01.2011].

Недостатками такого способа являются:

1. использование опасных для окружающей среды реагентов, например, акрилонитрила (ПДК 0,03 мг/м3), который является прекурсором для получения модификатора, и N,N-диметилацетамида (ПДК 0,006 мг/м3), который является растворителем сополимера ДМДААХ/АН;

2. наличие не прореагировавших с муравьиной кислотой нитрильных групп в модифицированных мембранах [Лопаткова Г.Ю. Влияние свойств поверхности ионообменных мембран на их электрохимическое поведение в сверхпредельных токовых режимах. Дисс. канд. хим. наук. Кубанский государственный университет: Краснодар. 2006];

3. многостадийность способа модификации мембран, включающего длительный процесс растворения в органическом растворителе сополимера ДМДААХ/АН, обработку мембраны муравьиной или уксусной кислотой, ее отмывку, сушку в вакуумном шкафу, обработку мембраны органическим раствором сополимера.

Известен способ модификации анионообменной мембраны путем ее погружения при комнатной температуре в водный раствор, содержащий персульфат калия или аммония 50-70 г/л и серную кислоту 50-70 г/л [патент 2303835 РФ, МПК Н01М 2/14 (2006.01), заявл. 26.09.2005, опубл. 27.07.2007]. Полученная мембрана используется в мембранном электролизере, предназначенном для извлечения хромат- и бихромат-ионов, из промывной воды ванны улавливания. Недостатком такого способа является использование сильного окислителя и сильнокислой среды, что снижает механическую прочность армирующей ткани из органического материала и, как следствие, уменьшается срок службы мембраны.

Известен способ получение модифицированной анионообменной мембраны [заявка PCT/RU 2017/000184, МПК B0W 67/00 (2006.01), B0W 71/32 (2006.01), BOW 69/02 (2006.01), BOW 61/44 (2006.01), WO 2017176163 A1, заявл. 07.04.2016, опубл. 12.10.2017] с улучшенными массообменными характеристиками, которые достигаются тем, что композиционную анионоонообменную мембрану получают путем покрытия тонким слоем гидрофобного фторполимера с изменяемой толщиной от 0 до 500 микрометров гомогенной анионообменной мембраны-подложки. Недостатками такого способа являются использование органических растворителей, таких как этилацетат и ацетон, которые являются легковоспламеняющимися жидкостями.

Наиболее близким к предлагаемому является способ модификации анионообменных мембран, который заключается в том, что образцы коммерческих мембран (МА-40, МА-41, МА-41П1 и АМХ (6×6 см2)), прошедших предподготовку, выполненных из полимера, содержащего аминогруппы различной степени алкилированности, обрабатывают путем погружения при 25°С в

5% водный раствор модификатора. Предподготовку образцов мембран осуществляют путем обработки их поверхности четыреххлористым углеродом, и далее последовательным погружением в этиловый спирт, в насыщенный раствор хлорида натрия, в раствор хлорида натрия с концентрацией 100 г/дм3, затем в раствор хлорида натрия с концентрацией 30 г/дм3 каждый раз на 24 часа.

В качестве модификатора используют сополимер N,N-диметил-N,N-диаллиламмония хлорида (ДМДААХ) и акриловой (АК) или малеиновой кислоты (МК), который получают в трехгорлой колбе, снабженной магнитным мешальником, капилляром для ввода инертного газа, обратным холодильником и капельной воронкой путем ввода в нее водного раствора N,N-диметил-N,N-диаллиламмония хлорида и акриловой или малеиновой кислоты, термостатируя реакционную массу при 50°С в токе аргона в течение 1 ч. Затем в колбу вводят водный раствор персульфата аммония и термостатируют ее при той же температуре до достижения постоянной вязкости. Полученную реакционную массу разбавляют дистиллированной водой в 5 раз и очищают от не прореагировавших мономеров и низкомолекулярных сополимеров методом диализа с использованием целлофановой мембраны до постоянных значений в ней концентрации карбоксильных групп [Княгиничева Е.В. Электрохимические характеристики анионообменных мембран, модифицированных сополимерами диметилдиаллиламмоний хлорида с акриловой или малеиновой кислотой. - диссертационный совет Д 212.101.10, ФГБОУ ВПО Кубанский государственный университет, Краснодар, 23.12.2015]. После выдержки предподготовленных образцов коммерческих мембран в растворе полученного модификатора в течение 45 ч при температуре 25°С и последующей сушке при 50°С получают мембраны с характеристиками, превосходящими исходные. Так значение предельного тока на модифицированных мембранах увеличивается на 30-70% по сравнению с исходными образцами, а скорость генерации

Н+, ОН- ионов снижается, что говорит об увеличения сверхпредельного массопереноса на анионообменных мембранах, обусловленного приростом потока ионов соли через них.

К недостаткам данного способа можно отнести:

- необходимость синтеза полимерного модификатора;

- многостадийность процесса модификации, а, следовательно, длительность всего процесса модификации;

- ухудшение характеристик модифицированных мембран: достигнута стабильность модификатора только в течение 40 часов эксплуатации мембран в интенсивных токовых режимах, о чем свидетельствует отсутствие в среднечастотной области спектра импеданса арки Геришера, указывающей на генерацию Н+, ОН- ионов.

Техническим результатом является создание более простого способа модификации анионообменных мембран, обеспечивающего их стабильные характеристики в течение более длительного времени эксплуатации.

Технический результат достигается путем модификации анионообменных мембран, выполненных из полимера, содержащего аминогруппы различной степени алкилированности, прошедших предподготовку путем обработки их поверхности четыреххлористым углеродом, с последующим последовательным погружением в этиловый спирт, в насыщенный раствор хлорида натрия, в раствор хлорида натрия с концентрацией 100 г/дм3, затем в раствор хлорида натрия с концентрацией 30 г/дм3 каждый раз на 24 часа, и погруженных в 5% водный раствор полимерного полиэлектролита, поликватерниум-22, представляющего собой коммерчески доступный сополимер, на 8 ч при температуре 50°С.

Отличительные признаки предлагаемого способа модификации анионообменных мембран:

- в качестве полимерного полиэлектролита выбран сополимер поликватерниум-22, 5% водный раствор которого является модификатором;

- время обработки модификатором сократилось до 8 часов;

- температура модификатора 50°С.

Пример 1. Для модификации использовали серийно выпускаемую анионообменную мембрану МА-40 (ОАО Щекиноазот, Россия), которая содержит аминогруппы различной степени алкилированности. Модификацию образцов мембраны осуществляли путем их погружения в термостатируемый водный раствор поликватерниум-22 различной концентрации в диапазоне от 2,5 до 7% на 8 часов.

В таблице 1 представлены значения разности рН на выходе и входе канала обессоливания (ΔрН), образованного катионообменной мембраной МК-40 и серийно выпускаемой анионообменной мембраной МА-40 или катионообменной мембраной МК-40 и модифицированной анионообменной мембраной МА-40, в зависимости от процентного содержания поликватерниум-22 в водном растворе, который является модификатором, и температуры модификатора. Значения получены в процессе электродиализного обессоливания 0,02 моль/дм3 раствора хлорида натрия.

Разница рН на выходе и входе канала обессоливания электродиализатора, образованного анионообменной и катионообменной мембраной является индикатором интенсивности генерации Н+, ОН-ионов [Никоненко, В.В. Дисбаланс потоков ионов соли и ионов продуктов диссоциации воды через ионообменные мембраны при электродиализе / В.В. Никоненко, Н.Д. Письменская, К.А. Юраш, В.И. Заболоцкий // Электрохимия. - 1999. - Т. 35, №1. - С. 56-62.]: чем выше значение ΔрН, тем ниже способность анионообменной мембраны генерировать Н+, ОН-ионы и тем выше выход по току по ионам соли в сверхпредельных токовых режимах электродиализа.

Из сведений, приведенных в таблице 1, следует, что модификация образцов анионообменной мембраны МА-40 водным раствором поликватерниум-22 концентрацией в диапазоне от 2,5 до 7% приводит к подавлению генерации Н+, ОН-ионов. Разница в значениях ΔрН серийно выпускаемой и модифицированных образцов мембраны становится особенно заметной при повышении скачка потенциала на канале обессоливания (Δϕ) с 2 до 4 вольт (сильно сверхпредельный токовый режим).

Увеличение процентного содержания поликватерниум-22 в модификаторе выше 5% и температуры модификатора выше 50°С является нецелесообразным, так как не приводит к существенному снижению генерации Н+, ОН-ионов.

Пример 2. Для модификации использовали серийно выпускаемую анионообменную мембрану МА-41 (ОАО Щекиноазот, Россия), которая содержит аминогруппы различной степени алкилированности. Модификацию образцов мембраны осуществляли путем их погружения в термостатируемый водный раствор поликватерниум-22 различной концентрации в диапазоне от 2,5 до 7% на 8 часов.

В таблице 2 представлены значения разности рН на выходе и входе канала обессоливания (ΔрН), образованного катионообменной мембраной МК-40 и серийно выпускаемой анионообменной мембраной МА-41 или катионообменной мембраной МК-40 и модифицированной анионообменной мембраной МА-41, в зависимости от процентного содержания поликватерниум-22 в водном растворе, который является модификатором, и температуры модификатора. Значения получены в процессе электродиализного обессоливания 0,02 моль/дм3 раствора хлорида натрия.

Из сведений, приведенных в таблице 2, следует, что модификация образцов анионообменной мембраны МА-41 водным раствором поликватерниум-22 концентрацией в диапазоне от 2,5 до 7% приводит к подавлению генерации Н+, ОН-ионов. Менее существенная разница в значениях ΔрН образца серийной и модифицированных образцов мембраны МА-41 обусловлена меньшим количеством вторичных и третичных групп на поверхности мембраны МА-41 по сравнению с мембраной МА-40 [Kozmai А. Е. et al. A simple model for the response of an anion-exchange membrane to variation in concentration and pH of bathing solution // Journal of Membrane Science. - 2018. - T. 567. - C. 127-138; Pismenskaya N. D. et al. Can the electrochemical performance of heterogeneous ion-exchange membranes be better than that of homogeneous membranes? // Jour-nal of Membrane Science. - 2018. - T. 566. - C. 54-68.].

Разница в значениях ΔрН образца серийно выпускаемой и модифицированных образцов мембраны МА-41 становится особенно заметной при повышении скачка потенциала на канале обессоливания (Δр) с 2 до 4 вольт (сильно сверхпредельный токовый режим).

Увеличение процентного содержания поликватерниум-22 в модификаторе выше 5% и температуры модификатора выше 50°С является нецелесообразным, так как не приводит к существенному снижению генерации Н+, ОН-ионов.

Пример 3. Для проверки влияния времени контакта модификатора и мембраны образцы модифицировали путем их погружения в термостатируемый при 50°С 5%-ный водный раствор поликватерниум-22. Время контакта модификатора и мембраны варьировали от 4 до 24 часов.

В таблице 3 представлены значения разности рН на выходе и входе канала обессоливания (ΔрН), образованного катионообменной мембраной МК-40 и образцами анионообменной мембраны МА-41, модификация которых осуществлялась в течение разного времени. Значения получены в процессе электродиализного обессоливания 0,02 моль/дм3 раствора хлорида натрия.

Из сведений, представленных в таблице 3, следует, что для достижения максимального результата в подавлении генерации Н+, ОН- ионов время контакта мембраны с модификатором должно составлять не менее 8 часов. Увеличение времени контакта мембраны с модификатором является нецелесообразным, так как не приводит к существенному снижению генерации Н+, ОН-ионов.

Пример 4. Для модификации использовали серийно выпускаемую анионообменную мембрану МА-41П (ОАО Щекиноазот, Россия), которая содержит аминогруппы различной степени алкилированности. Модификацию образцов мембраны осуществляли путем их погружения в термостатируемый при 50°С 5%-ный водный раствор поликватерниум-22 на 8 часов.

В таблице 4 представлены значения удельной электропроводности исходной и модифицированной мембран МА-41П в 0,5 моль/дм3 растворе гидроксида натрия, а также значения разности рН на выходе и входе канала обессоливания (ΔрН), образованного катионообменной мембраной МК-40 и серийно выпускаемой анионообменной мембраной МА-41П или катионообменной мембраной МК-40 и модифицированной анионообменной мембраной МА-41П, при электродиализном обессоливании 0,02 моль/дм3 раствора хлорида натрия; скачок потенциала на канале обессоливания равен 3 В.

Удельная электропроводность является одной из основных транспортных характеристик мембран. Она определяет энергозатраты на процесс электродиализа: чем выше удельная электропроводность, тем лучше транспортные характеристики мембран, тем ниже энергозатраты при электродиализной переработке растворов [Strathmann, Н. Ion Exchange Membrane Separation Processes / H. Strathmann. - Amsterdam: Elsevier, 2004. - 360 p.].

Из сведений, представленных в таблице 4, следует, что после модификации анионообменной мембраны МА-41П 5%-ным водным раствором поликватерниум-22 ее удельная электропроводность в щелочном растворе значительно увеличивается. Это значит, что модифицированная мембрана может устойчиво работать при повышенных значениях рН растворов, перерабатываемых методом электродиализа, тем самым проявляя более стабильные характеристики мембран при нескольких циклах использования.

Разница рН на выходе и входе канала обессоливания, образованного катионообменной мембраной МК-40 и модифицированной анионообменной мембраной МА-41П, становится положительной, в то время как в канале обессоливания, образованном катионообменной мембраной МК-40 и серийно выпускаемой анионообменной мембраной МА-41П, она отрицательная. Следовательно, модификация анионообменной мембраны МА-41П 5%-ным водным раствором поликватерниум-22 приводит к подавлению генерации Н+, ОН-ионов.

Пример 5. Для модификации использовали серийно выпускаемую анионообменную мембрану Neosepta АМХ (Astom corp., Япония), которая содержит аминогруппы различной степени алкилированности. Модификацию образцов мембраны осуществляли путем их погружения в термостатируемый при 50°С 5%-ный водный раствор поликватерниум-22 на 8 часов.

В таблице 5 представлены значения разности рН на выходе и входе канала обессоливания электродиализатора (Δϕ=3 В), образованного катионообменной мембраной МК-40 и серийно выпускаемой анионообменной мембраной Neosepta АМХ или катионообменной мембраной МК-40 и модифицированной анионообменной мембраной Neosepta АМХ, а также эффективные числа переноса по ионам гидроксила и выходы по току, измеренные в процессе электродиализного обессоливания 0,02 моль/дм3 раствора хлорида натрия.

Известно, что мембрана Neosepta АМХ в основном содержит четвертичные аммониевые группы [Choi, J.-H. Structural changes of ion-exchange membrane surfaces under high electric field and its effect on membrane properties / J.-H. Choi, S.-H. Moon // J. Colloid Interface Sci. - 2003. - Vol. 265. - №1. - P. 93-100.]. Количество вторичных и третичных аминогрупп в ней невелико. Из сведений, представленных в таблице 5, следует, что даже при небольшом содержании вторичных и третичных аминогрупп в серийно выпускаемой мембране модифицирование ее образцов приводит к заметному снижению генерации Н+, ОН-ионов и улучшению массообменных характеристик.

Предлагаемый способ по сравнению с прототипом исключает многостадийный процесс синтеза модификатора, так как нами найден модификатор, обладающий свойствами, позволяющими модифицированным мембранам приобретать свойства, превосходящие свойства мембран, полученных по способу прототипу. Кроме того, длительность процесса модификации сократилась более чем в 5 раз.

Модифицированная мембрана, полученная предлагаемым способом, может устойчиво работать при повышенных значениях рН растворов, перерабатываемых методом электродиализа, тем самым проявляя более стабильные характеристики при нескольких циклах использования.

Таким образом, поставленный технический результат достигается. Предлагаемый способ является новым, обладает изобретательским уровнем, промышленно применим, т.е. удовлетворяет критериям, предъявляемым к изобретениям.

Способ модификации анионообменных мембран, выполненных из полимера, содержащего аминогруппы различной степени алкилированности, включающий предподготовку мембран путем обработки их поверхности четыреххлористым углеродом и последовательным погружением в этиловый спирт, в насыщенный раствор хлорида натрия, в раствор хлорида натрия с концентрацией 100 г/дм, затем в раствор хлорида натрия с концентрацией 30 г/дм каждый раз на 24 часа, и погружение их в 5% водный раствор полиэлектролита полимерной природы, отличающийся тем, что в качестве полимерного полиэлектролита используют водный раствор поликватерниум-22, в который погружают предподготовленные мембраны на 8 часов при температуре 50°С.
Источник поступления информации: Роспатент

Showing 21-30 of 57 items.
19.07.2018
№218.016.7223

Способ получения (1-адамантил)фуранов

Настоящее изобретение относится к способу получения адамантилированных фуранов, которые являются полупродуктами для тонкого органического синтеза. Способ заключается в адамантилировании фуранов 1-адамантанолом в среде нитрометана в присутствии кислоты Льюиса, в качестве которой использовались...
Тип: Изобретение
Номер охранного документа: 0002661482
Дата охранного документа: 17.07.2018
26.10.2018
№218.016.964b

Ик-спектрометрический способ определения неуглеводородной смазочно-охлаждающей жидкости в сжатом воздухе

Изобретение относится к области аналитической химии и касается ИК-спектрометрического способа определения неуглеводородной смазочно-охлаждающей жидкости в сжатом воздухе. Способ включает в себя нахождение перед заправкой компрессора аналитической зависимости между концентрацией неуглеводородной...
Тип: Изобретение
Номер охранного документа: 0002670726
Дата охранного документа: 24.10.2018
28.10.2018
№218.016.979c

Способ получения нафтеновых кислот

Изобретение относится к способу получения нафтеновых кислот путем обработки водного раствора смеси натриевых солей нафтеновых кислот (мылонафта) с контролем рН среды. Способ характеризуется тем, что раствор мылонафта подают в электродиализатор-синтезатор, содержащий биполярные и катионообменные...
Тип: Изобретение
Номер охранного документа: 0002670966
Дата охранного документа: 26.10.2018
02.12.2018
№218.016.a314

Способ калибровки двухканального супергетеродинного приемника в измерителе комплексных коэффициентов передачи и отражения свч-устройств с преобразованием частоты

Изобретение относится к радиоизмерительной технике и может быть использовано при калибровке измерителей комплексных коэффициентов передачи СВЧ-устройств с преобразованием частоты. Техническим результатом является повышение точности измерений, упрощение процесса измерений, уменьшение числа...
Тип: Изобретение
Номер охранного документа: 0002673781
Дата охранного документа: 29.11.2018
14.12.2018
№218.016.a729

Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов

Способ изготовления водородного электрода для кислородно-водородного топливного элемента относится к области электрохимии, а именно к изготовлению конструкционных элементов водородных насосов и топливных элементов, конкретно к изготовлению водородных электродов. Он включает закрепление на...
Тип: Изобретение
Номер охранного документа: 0002674748
Дата охранного документа: 13.12.2018
17.03.2019
№219.016.e2c6

Устройство для измерения комплексных коэффициентов передачи и отражения свч-устройств с преобразованием частоты

Изобретение относится к радиоизмерительной технике и может быть использовано при измерении комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты (СВЧ-смесителей). Предлагается устройство для измерения комплексных коэффициентов передачи и отражения СВЧ-устройств...
Тип: Изобретение
Номер охранного документа: 0002682079
Дата охранного документа: 14.03.2019
27.04.2019
№219.017.3d0c

Способ восстановления латунных кожухотрубных теплообменников

Изобретение относится к теплоэнергетике и может быть использовано для очистки теплоэнергетического оборудования, где в качестве теплоносителя используется вода, в том числе полностью забитых и не пригодных к эксплуатации кожухотрубных теплообменников от отложений, представленных на 80-90%...
Тип: Изобретение
Номер охранного документа: 0002686251
Дата охранного документа: 24.04.2019
10.05.2019
№219.017.5176

Измерительный комплекс для поиска и диагностики подземных коммуникаций

Изобретение относится к электроизмерительной технике и может быть использовано для оценки фактического положения и состояния подземных коммуникаций. Технический результат: повышение надежности и достоверности диагностики подземных коммуникаций. Сущность: измерительный комплекс состоит из...
Тип: Изобретение
Номер охранного документа: 0002687236
Дата охранного документа: 08.05.2019
18.05.2019
№219.017.537f

Устройство для измерения и способ определения комплексных коэффициентов передачи свч-смесителей

Изобретения относятся к радиоизмерительной технике и могут быть использованы при измерении комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты (СВЧ-смесителей). Технический результат заключается в увеличении точности определения комплексных коэффициентов...
Тип: Изобретение
Номер охранного документа: 0002687850
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5cac

Устройство для измерения комплексных коэффициентов передачи и отражения свч-устройств с преобразованием частоты

Изобретение относится к радиоизмерительной технике и может быть использовано при измерении комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты. Сущность заявленного решения заключается в том, что в устройство для измерения комплексных коэффициентов передачи и...
Тип: Изобретение
Номер охранного документа: 0002687980
Дата охранного документа: 17.05.2019
Showing 1-3 of 3 items.
27.04.2013
№216.012.3976

Способ получения композиционной катионообменной мембраны

Изобретение относится к мембранной технике и технологии, а именно получению катионообменных мембран, используемых для обессоливания растворов электролитов методом электродиализа. Способ получения композиционной катионообменной мембраны включает изготовление пленки полимера с углеродными...
Тип: Изобретение
Номер охранного документа: 0002480271
Дата охранного документа: 27.04.2013
10.08.2013
№216.012.5c1b

Способ получения гетерогенной катионообменной мембраны (варианты)

Изобретение относится к мембранной технике и технологии, а именно к получению мембран, используемых для обессоливания растворов электролитов методом электродиализа. По первому варианту на одну из поверхностей исходной гетерогенной катионообменной мембраны-подложки наносят 1-25%-ный раствор...
Тип: Изобретение
Номер охранного документа: 0002489200
Дата охранного документа: 10.08.2013
10.01.2019
№219.016.ae4c

Модифицированная анионообменная мембрана и способ ее изготовления

Изобретение относится к мембранной технике, в частности к анионообменным мембранам и способам изготовления ионообменных мембран с улучшенными массообменными характеристиками. Описана модифицированная анионообменная мембрана, состоящая из гомогенного анионопроводящего слоя и нанесенного на него...
Тип: Изобретение
Номер охранного документа: 0002676621
Дата охранного документа: 09.01.2019
+ добавить свой РИД