×
07.09.2019
219.017.c8b9

Результат интеллектуальной деятельности: Латунь для сверхпластической формовки деталей с малой остаточной пористостью

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цветной металлургии, а именно к составам латуни, и предназначено для изготовления сверхпластичных листов из сплава системы Cu-Zn-Al. Лист из двухфазной латуни для сверхпластической формовки изделий с пониженной остаточной пористостью, не превышающей 1,5%, содержит, мас. %: цинк - 38-42, алюминий - 0,5-2,5, медь - остальное, при этом лист латуни имеет мелкозернистую перед началом сверхпластической деформации структуру и относительное удлинение не менее 500% при скорости сверхпластической деформации 1×10 с и температуре 550°С. Техническим результатом изобретения является повышение качества листов за счет увеличения относительного удлинения и существенного уменьшения пористости при высокотемпературной деформации. 4 пр.

Изобретение относится к области цветной металлургии, а именно к составам латуни и предназначено для изготовления сверхпластичных листов из сплава системы Cu-Zn-Al.

Основными факторами, определяющими реализацию эффекта сверхпластичности в латуни, является наличие мелкозернистой структуры в листе и минимизация остаточной пористости во время сверхпластической деформации. Оба фактора зависят как от состава сплава, так и от технологических параметров получения листов. На данный момент применение листов латуни для изготовления деталей методом сверхпластической формовки ограничено развитием пост-формовочной пористости, а, следовательно, снижением эксплуатационных характеристик изделий.

Способ термомеханической обработки латуни Л63, обеспечивающий получение материала с повышенной пластичностью, описан в патенте №1643629, опубликованном 23.04.1991. Изобретение может быть использовано в машиностроении при производстве полуфабрикатов и изделий сложной формы методом сверхпластической формовки. При скорости деформации 0,008-0,15 с-1 в материале происходит динамическая рекристаллизация, что приводит снижению напряжения и увеличению относительного удлинения во время деформации.

Предлагаемый способ можно использовать при штамповке и глубокой вытяжки для получения изделий сложной формы, однако технология обеспечивает максимальное удлинение 230%, что недостаточно для сверхпластической формовки сложных по форме деталей.

В патенте РФ №2393265 от 09.01.2008 описан способ получения полуфабрикатов из свинцовой альфа + бета латуни, отличающийся тем, что горячее прессование заготовок производят выше температуры перехода альфа + бета структуры в бета-фазу, но на 100°С ниже температуры солидуса. Рассматривается сплав ЛС59-1 (57…60% Cu).

Недостатком данного способа является неоднородность структуры по длине полуфабриката в результате чего, возникает нестабильность свойств, что снижает потребительские характеристики продукции.

Наиболее близким техническим решением к заявляемому способу является способ обработки двухфазной латуни авторского свидетельства №503938, зарегистрированного 29.10.1975. В способе описана обработка двухфазной латуни, содержащей 58-62% меди, остальное цинк, включающая закалку из однофазной области, деформацию с обжатием 80-90% с выдержкой при температуре закалки 8-12 часов, далее предлагается деформация до заданной толщины листа при температуре 350-450°С.

В результате обработки получается сверхпластичный лист, у которого возможно максимальное удлинение после деформации около 630%. Однако изделие из латуни, полученное при помощи сверхпластической формовки, в структуре имеет сильно развитую остаточную пористость (более 5%), что сильно снижает механические свойства изделия. Механические свойства предел текучести и прочности снижаются на 25-35%. Большая остаточная пористость - главный недостаток листа данного состава, полученного указанным способом.

Техническим результатом предлагаемого изобретения является получение латуни для получения деталей методом сверхпластической формовки с однородной микрозеренной структурой и малой остаточной пористостью.

Латунь, содержащая следующие компоненты (мас. %):

Цинк-38-42,

Алюминий - 0,5-2,5,

Медь - остальное

была получена по технологии включающей литье, гомогенизационный отжиг, горячую и холодную прокатку. В результате последующего нагрева перед сверхпластической деформацией формируется однородная микрозеренная структура состоящая из двух фаз α и β (средний размер зерна обеих фаз менее 5 мкм). В процессе сверхпластической деформации указанного сплава параметры зерен α-фазы незначительно меняются, а зерна β-фазы претерпевают динамическую рекристаллизацию, в результате чего, их средний размер уменьшается до 200 нм. После сверхпластической деформации объемная доля пор не превышает 1,5%, что позволяет получить высококачественные изделия с высоким уровнем эксплуатационных свойств. После обработки сплав имеет предел текучести 200±30 МПа, предел прочности 500±30 МПа, которые не снижаются после деформации.

Концентрация цинка должна обеспечивать при высокотемпературном отжиге двухфазную структуру, а содержание алюминия должно позволять замедлять процесс диффузии и образовывать на воздухе оксидную пленку на поверхности. Выход за верхний и нижний предел концентрационного интервала по цинку не дает возможность получения мелкозернистой двухфазной структуры в температурной области сверхпластической деформации. Выход за нижнюю границу концентрационного интервала по алюминию не обеспечивает возможность образования оксидной пленки на поверхности, тогда как выход за верхний предел негативно сказывается на показателях сверхпластичности сплава.

Оптимальную скорость деформации определяли по результатам серии испытаний со скачковым изменением скорости деформации. Листы проявляют наилучшую сверхпластичность при температуре 550°С и скорости деформации 10-3 с-1, в данных условиях относительное удлинение до разрушения составляет не менее 500% и остаточная пористость не превышает 1,5%.

Использование в предлагаемых пределах состава листов из латуни обеспечивает получение изделий с помощью сверхпластической формовки с высокими механическими свойствами и малой остаточной пористостью.

Сверхпластичный лист при оптимальных условиях деформации имеет относительное удлинение более 450% и остаточную пористость не более 1,5%, тогда как в прототипе и примере 4 остаточная пористость достигла около 5% при схожих значениях удлинений.

Пример 1

Получен сплав следующего состава Cu-40,5%Zn - 0,5%Аl.

Для приготовления сплава использовалась медь марки М00, цинк Ц1 и алюминий марки А7. Плавку вели в графито-шамотных тиглях с последовательным введением в расплавленную медь компонентов. Температура расплава - 1100°С. Для более полной гомогенизации расплава его выдерживали перед разливкой в течение 15 мин. Разливку проводили в водоохлаждаемую изложницу со скоростями охлаждения не менее 3 К/с. Далее следовал гомогенизационный отжиг слитков, после гомогенизации слитки обрабатывали для удаления поверхностных дефектов и отрезали усадочную раковину. Горячую прокатку проводили при 750±10°С, затем следовала холодная прокатка с промежуточным отжигом. Конечная толщина листа 1,2 мм.

Данный режим обеспечил получение структуры с размером зерна менее 6 мкм, что позволяет осуществлять сверхпластическую формовку листов. Максимальное удлинение до разрыва, которое можно получить при одноосных испытаниях с постоянной скоростью деформации 1⋅10-3 с-1 при температуре 550°С, составило 470%. Остаточная пористость не превысила 1,5%.

Пример 2

Сплав состава Cu-37,8%Zn-1%Al. Получен лист по технологии, описанной в примере 1. Отличие в процентном содержании алюминия.

Наилучшие свойства сплав показывает, как и в примере 1, при температуре сверхпластической деформации 550°С (с точностью поддержания температуры 5°С) при той же скорости деформации. Данный сплав обеспечил максимальное удлинение до разрушения 500% при поддержании постоянной скорости деформации 1⋅10-3 с-1 в процессе деформации и до 1000% при начальной скорости деформации 1⋅10-3 с-1, а остаточная пористость при этом не превысила 1%.

Пример 3

Сплав состава Cu-33,3%Zn-2,2%Al. Получен сплав также как и в примере 1. Отличие в процентном содержании алюминия.

Наилучшие свойства сплав показывает, как и в примере 1, при температуре сверхпластической деформации 550°С и 1⋅10-3 с-1 скорости деформации. Данный сплав обеспечил максимальное удлинение до разрушения 470% при поддержании постоянной скорости деформации, а остаточная пористость при этом - 1,2%.

Пример 4

Сплав состава Cu-40,8%Zn. Получен сплав также как и в примере 1. Отличие в отсутствии добавки алюминия (состав аналогичен прототипу).

Наилучшие свойства сплав показывает, как и в примере 1, при температуре сверхпластической деформации 550°С и скорости деформации 1⋅10-3 с-1. Данный сплав обеспечил максимальное удлинение до разрушения 620% (300% при поддержании постоянной скорости деформации в процессе деформации), а остаточная пористость при этом более 5%.

Источник поступления информации: Роспатент

Showing 231-240 of 322 items.
26.10.2018
№218.016.9689

Способ подготовки микропроводов со стеклянной оболочкой для электрического соединения

Изобретение относится к области гальванотехники и может быть использовано в микроэлектронике для изготовления качественных электрических контактов на микропроводах диаметром до 40 мкм со стеклянной оболочкой до 15 мкм, в том числе переменного сечения, использующихся для изготовления ГМИ,...
Тип: Изобретение
Номер охранного документа: 0002670631
Дата охранного документа: 24.10.2018
01.11.2018
№218.016.9826

Адгезионная коллоидная взвесь

Изобретение относится к медицинской технике и технологии, а именно к коллоидной взвеси для адгезионной прослойки при пломбировании зубов, которая содержит метакрилаты, ацетон в качестве растворителя, а также равнораспределенные наночастицы металлов антибактериального действия, при этом в...
Тип: Изобретение
Номер охранного документа: 0002671193
Дата охранного документа: 30.10.2018
17.11.2018
№218.016.9e5f

Коррозионностойкий литейный алюминиевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих в коррозионной среде при температурах до 300-350°С. Литейный сплав на основе алюминия...
Тип: Изобретение
Номер охранного документа: 0002672653
Дата охранного документа: 16.11.2018
16.01.2019
№219.016.b00a

Способ получения трехмерных изделий сложной формы из высоковязких полимеров

Изобретение относится к области аддитивных технологий для получения трехмерных изделий сложной формы и предназначено для быстрого прототипирования или получения малых серий изделий в общем и транспортном машиностроении, авиационной технике или индивидуализированных медицинских изделий....
Тип: Изобретение
Номер охранного документа: 0002677143
Дата охранного документа: 15.01.2019
19.01.2019
№219.016.b20e

Способ получения интерметаллических покрытий с использованием механохимического синтеза и последующей лазерной обработки

Изобретение относится к способу создания интерметаллических покрытий на основе соединений NiAl и Ni3Al. Осуществляют механоактивационную обработку в шаровой мельнице в течение 30-60 минут совместно с металлическим изделием, на которое наносится покрытие. Затем проводят лазерную обработку...
Тип: Изобретение
Номер охранного документа: 0002677575
Дата охранного документа: 17.01.2019
19.01.2019
№219.016.b20f

Способ вскрытия эвдиалитового концентрата

Изобретение относится к металлургии редких металлов. Способ переработки эвдиалитового концентрата включает предварительную механоактивацию концентрата и последующую гидрометаллургическую обработку. Предварительную обработку проводят до суммарного количества усвоенной эвдиалитом энергии в виде...
Тип: Изобретение
Номер охранного документа: 0002677571
Дата охранного документа: 17.01.2019
25.01.2019
№219.016.b3d9

Способ обработки магниевого сплава системы mg-y-nd-zr методом равноканального углового прессования

Изобретение относится к области металлургии, в частности к термомеханической обработке сплавов на основе магния, и может быть использовано в авиастроении, ракетной технике, в конструкциях автомобилей, хорошая биосовместимость позволяет использовать магниевые сплавы в медицине. Способ...
Тип: Изобретение
Номер охранного документа: 0002678111
Дата охранного документа: 23.01.2019
15.02.2019
№219.016.bac8

Способ получения порошка гафната диспрозия для поглощающих элементов ядерного реактора

Изобретение относится к ядерной технике, в частности к поглощающим нейтроны материалам (гафнат диспрозия - DyНfО), и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка гафната диспрозия путем механической активации смеси компонентов - диоксида...
Тип: Изобретение
Номер охранного документа: 0002679822
Дата охранного документа: 13.02.2019
03.03.2019
№219.016.d278

Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля

Изобретение относится к области порошковой металлургии. Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля включает стадию предварительного выделения заданной фракции путем классификации исходного порошкообразного материала зернистостью 5-150...
Тип: Изобретение
Номер охранного документа: 0002681022
Дата охранного документа: 01.03.2019
15.03.2019
№219.016.dfe2

Способ получения высокотемпературного термоэлектрического материала на основе кобальтита кальция

Изобретение относится к получению высокотемпературного термоэлектрического материала на основе кобальтита кальция и может быть использовано при производстве устройств термоэлектрического генерирования электроэнергии. Способ включает получение водного раствора из нитратов кобальта и кальция,...
Тип: Изобретение
Номер охранного документа: 0002681860
Дата охранного документа: 13.03.2019
Showing 1-7 of 7 items.
27.08.2013
№216.012.6480

Сверхпластичный сплав на основе алюминия

Изобретение относится к области металлургии, а именно к разработке новых сплавов и технологий получения из них листовых полуфабрикатов методами термической обработки и обработки давлением. Сплав содержит, в мас.%: 3,5-4,5 цинка, 3,5-4,5 магния, 0,6-1,0 меди, 2,0-3,0 никеля, 0,25-0,3 циркония,...
Тип: Изобретение
Номер охранного документа: 0002491365
Дата охранного документа: 27.08.2013
25.08.2017
№217.015.c4f6

Способ получения прекурсора для изготовления плакированного пеноалюминия

Изобретение относится к области порошковой металлургии, преимущественно к получению пористых изделий на основе пеноалюминия, и предназначено для изготовления деталей автомобилей, шумопоглащающих экранов, теплостойких демпфирующих материалов. Способ получения прекурсора для изготовления...
Тип: Изобретение
Номер охранного документа: 0002618299
Дата охранного документа: 03.05.2017
29.12.2017
№217.015.f377

Способ получения сверхпластичного плакированного материала на основе алюминия

Изобретение может быть использовано для изготовления сверхпластичных слоистых листов из алюминиевого сплава с повышенной коррозионной стойкостью. Проводят химическую обработку последовательно 40%-ным раствором NaOH в воде, 5%-ным раствором HNO в воде и тетрахлорметаном контактных поверхностей...
Тип: Изобретение
Номер охранного документа: 0002637842
Дата охранного документа: 07.12.2017
19.01.2018
№218.016.091d

Сверхпластичный сплав на основе системы al-mg-si

Изобретение относится к металлургии, в частности к алюминиевым сплавам Al-Mg-Si, которые могут быть использованы для изготовления полуфабрикатов и изделий в различных отраслях промышленности методом сверхпластической формовки. Листы из разработанного сплава перед сверхпластической формовкой...
Тип: Изобретение
Номер охранного документа: 0002631786
Дата охранного документа: 26.09.2017
18.05.2019
№219.017.5a16

Способ изготовления листов из сплава системы алюминий-магний-марганец

Изобретение предназначено для оптимизации технологии получения листов из сплава Al-Mg-Mn, предназначенных для сверхпластической формовки. Возможность усложнения геометрической формы изделий за счет увеличения относительного удлинения при высокотемпературной деформации с повышенными скоростями...
Тип: Изобретение
Номер охранного документа: 0002451105
Дата охранного документа: 20.05.2012
18.05.2019
№219.017.5ae9

Способ получения сверхпластичного листа высокопрочного алюминиевого сплава

Изобретение предназначено для оптимизации технологии получения листов из алюминиевого сплава системы Al-Ni-Zn-Mg-Cu-Zr, предназначенных для сверхпластической формовки. Возможность усложнения геометрической формы изделий за счет сверхпластической деформации, превышающей 500% до разрушения с...
Тип: Изобретение
Номер охранного документа: 0002449047
Дата охранного документа: 27.04.2012
16.05.2023
№223.018.63f2

Сплав системы al-mg с гетерогенной структурой для высокоскоростной сверхпластической формовки

Изобретение относится к области алюминиевых сплавов с микрозеренной структурой, в частности к сплавам системы Al-Mg, которые могут быть использованы для изготовления методом сверхпластической формовки полуфабрикатов и изделий в различных отраслях промышленности. Сплав с гетерогенной структурой...
Тип: Изобретение
Номер охранного документа: 0002772479
Дата охранного документа: 20.05.2022
+ добавить свой РИД