×
01.09.2019
219.017.c5e1

Результат интеллектуальной деятельности: СВЧ фотонный кристалл

Вид РИД

Изобретение

Аннотация: Использование: для создания СВЧ фотонного кристалла. Сущность изобретения заключается в том, что СВЧ фотонный кристалл выполнен в виде прямоугольного волновода, содержащего периодически чередующиеся в направлении распространения электромагнитного излучения металлические элементы, по крайней мере одну n–i–p–i–n диодную структуру в центральном элементе и источник питания, согласно решению металлические элементы выполнены в виде штырей, в количестве не менее пяти, расположенных вдоль продольной оси широкой стенки волновода, при этом центральный штырь гальванически соединен с обеими противоположными стенками волновода, имеет разрыв для размещения диодной n–i–p–i–n структуры, n-области которой соединены с противоположными концами центрального штыря, а p-область соединена с положительным полюсом источника питания, штыри, расположенные справа и слева от центрального, ближайшие к нему, имеют емкостные зазоры у одной из широких стенок волновода и выполнены с возможностью регулировки величины этих зазоров, последующие штыри, расположенные слева и справа от ближайших к центральному, имеют емкостные зазоры меньшей величины у противоположной широкой стенки, при этом диаметр центрального штыря меньше диаметров остальных штырей. Технический результат: обеспечение возможности достижения указанной величины диапазона регулировки мощности при уменьшении продольного размера СВЧ фотонного кристалла и сокращении, даже до одного, количества управляющих элементов в виде полупроводниковых n–i–p–i–n-диодов. 4 ил.

Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники.

Известен фотонный кристалл, реализованный в виде последовательно соединенных отрезков микрополосковой линии передачи с периодически изменяющейся шириной полоска (Д.А.Усанов, А.В.Скрипаль, А.В.Абрамов, А.С.Боголюбов, М.Ю.Куликов. Фотонные структуры и их использование для измерения параметров материалов. Известия вузов. Электроника 2008, №5, с.25–32).

Недостатком данного фотонного кристалла является невозможность электрического управления его амплитудно-частотными характеристиками.

Этот недостаток частично устранен в СВЧ-фильтре с регулируемыми положением частотной области пропускания и величиной пропускания в этой области. Фильтр включает отрезок волновода, частотно-селективный элемент и элемент для регулирования затухания. Частотно-селективный элемент выполнен в виде одномерного волноводного 11-слойного фотонного кристалла, представляющего собой чередующиеся слои поликора (ε=9.6) толщиной 1 мм и пенопласта (ε=1.1) толщиной 12 мм, с нарушением периодичности в виде уменьшенной до 5.5 мм, 5 мм и 4.5 мм толщины центрального слоя, в котором элемент для регулирования затухания выполнен в виде p–i–n-диодной структуры, расположенной после фотонного кристалла по направлению распространения электромагнитной волны и подключенной к источнику питания с регулируемым напряжением (см. патент на изобретение РФ №2407114, МПК H01P 1/00).

Недостатком данного СВЧ-фильтра с электрически управляемыми характеристиками является ограниченный диапазон регулировки мощности выходного сигнала на частоте дефектной моды фотонного кристалла в схеме на отражение, не превышающий 25 дБ.

Наиболее близким к заявляемому изобретению является волноводный СВЧ фотонный кристалл, представляющий собой структуру, состоящую из семи периодически расположенных прямоугольных металлических резонансных диафрагм на расстоянии L=20 мм друг от друга в прямоугольном волноводе трехсантиметрового диапазона. Ширина и высота щелей диафрагм фотонного кристалла выбирались равными 20  и 2 мм соответственно. Для эффективного управления резонансными свойствами таких фотонных кристаллов использовалась конструкция с n–i–p–i–n-диодной матрицей, состоящей из четырех диодных элементов, размещенных в центральной диафрагме, выполненной в виде двух прямоугольных щелей, размером 10.5х1.0 мм2 каждая [Усанов Д.А., Никитов С.А., Скрипаль А.В., Мерданов М.К., Евтеев С.Г. Волноводные фотонные кристаллы на резонансных диафрагмах с управляемыми n–i–p–i–n-диодами характеристиками// Радиотехника и электроника. 2018.  № 1. С. 65–71].

Недостатком данного фотонного кристалла является значительный продольный размер и использование сложной конструкции с n–i–p–i–n-диодной матрицей, содержащей значительное (не менее четырех) количество n–i–p–i–n-диодов, для достижения величины диапазона регулировки мощности выходного сигнала на частоте дефектной моды фотонного кристалла в схеме на отражение, превышающей 45 дБ. Уменьшение количества n–i–p–i–n-диодов до одного приводило к уменьшению величины диапазона регулировки мощности выходного сигнала до 20 дБ.

Техническая проблема заключается в разработке конструкции СВЧ фотонного кристалла, обеспечивающего достижение величины диапазона регулировки мощности выходного сигнала на частоте дефектной моды фотонного кристалла в схеме на отражение, превышающей 47 дБ.

Техническим результатом является достижение указанной величины диапазона регулировки мощности при уменьшении продольного размера СВЧ фотонного кристалла и сокращении, даже до одного, количества управляющих элементов в виде полупроводниковых n–i–p–i–n-диодов.

Указанный технический результат достигается тем, что СВЧ фотонный кристалл, выполненный в виде прямоугольного волновода, содержащего периодически чередующиеся в направлении распространения электромагнитного излучения металлические элементы, по крайней мере, одну n–i–p–i–n диодную структуру в центральном элементе, и источник питания, согласно решению, металлические элементы выполнены в виде штырей, в количестве не менее пяти, расположенных вдоль продольной оси широкой стенки волновода, при этом центральный штырь гальванически соединен с обеими противоположными стенками волновода, имеет разрыв для размещения диодной n–i–p–i–n структуры, n-области которой соединены с противоположными концами центрального штыря, а p-область соединена с положительным полюсом источника питания, штыри, расположенные справа и слева от центрального, ближайшие к нему, имеют емкостные зазоры у одной из широких стенок волновода и выполнены с возможностью регулировки величины этих зазоров, последующие штыри, расположенные слева и справа от ближайших к центральному, имеют емкостные зазоры меньшей величины у противоположной широкой стенки, при этом диаметр центрального штыря меньше диаметров остальных штырей.

Предлагаемое устройство поясняется чертежами:

Фиг.1. СВЧ фотонный кристалл в виде волноводной штыревой системы с переключательным диодом на основе n–i–p–i–n структуры.

Фиг.2. Схема расположения штырей с зазорами.

Фиг.3. Расчетные частотные зависимости коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы.

Фиг.4. Экспериментальные частотные зависимости коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы.

Позициями на чертежах обозначены:

1 – отрезок волновода сечением 23х10 мм2;

2 – положительный полюс источника питания;

3 – n–i–p–i–n структура;

4 – широкие стенки волновода;

5 – штыри;

6 – зазоры;

7 – разрыв величиной 1 мм центрального штыря для размещения n–i–p–i–n структуры;

8 – расчетная частотная зависимость коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы при удельной электропроводности i-слоя n–i–p–i–n-структуры σ=0 См/м (штриховая линия);

9 – расчетная частотная зависимость коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы при удельной электропроводности i-слоя n–i–p–i–n-структуры σ=103 См/м (сплошная линия);

10 – экспериментальная частотная зависимость коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы при отсутствии управляющего тока, протекающего через переключательный диод 2А505А на основе n–i–p–i–n-структуры (штриховая линия);

11 – экспериментальная частотная зависимость коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы при величине управляющего тока, протекающего через переключательный диод 2А505А на основе n–i–p–i–n-структуры, равной 200 мА (сплошная линия).

В качестве СВЧ фотонного кристалла рассматривался волновод трехсантиметрового диапазона с брэгговской структурой, выполненной в виде периодически расположенных металлических штырей. Штыри располагались по центру широкой стенки волновода на равном расстоянии друг от друга. Диаметр центрального штыря был задан равным 1 мм, диаметр остальных – 2 мм. Продольный размер системы из пяти штырей составил 50 мм. Величина зазоров между крайними штырями и одной и той же широкой стенкой волновода выбиралась равной 0.2 мм, величина зазоров между вторым и четвертым штырями и противоположной широкой стенкой волновода выбиралась равной 0.59 мм.

В качестве центрального штыря выбирался штырь, гальванически соединенный с обеими противоположными широкими стенками волновода и имеющий в центре разрыв величиной 1 мм. Для управления характеристиками СВЧ фотонного кристалла выбиралась n–i–p–i–n-структура, которая располагалась в разрыве центрального штыря.

Конструкция СВЧ фотонного кристалл в виде волноводной штыревой системы с n–i–p–i–n-структурой представлена на фиг. 1.

Схема расположения штырей с зазорами представлена на фиг. 2.

На основе численного моделирования с использованием метода конечных элементов в программе ANSYS HFSS исследовались амплитудно-частотные характеристики коэффициентов отражения фотонного кристалла при различной удельной электропроводности i-слоя n–i–p–i–n-структуры. Предполагалось, что при прямом смещении удельная электропроводность данного элемента изменялась в диапазоне от 0 до 103 См/м. Такое изменение величины удельной электропроводности , обусловленное обогащением i-областей инжектированными носителями заряда, соответствует величине протекающего тока в диапазоне от 0 до 200 мА с использованием n–i–p–i–n-структуры типа 2A505.

Как следует из результатов расчета, при достижении удельной электропроводности i-областей n–i–p–i–n-структуры значения, равного 103 См/м, сопротивление n–i–p–i–n-структуры уменьшается до нескольких единиц Ом, что приводит к фактическому «исчезновению» разрыва центрального штыря.

Результаты расчета частотной зависимости коэффициента отражения S11 СВЧ фотонного кристалла представлены на фиг. 3.

Как следует из результатов расчета на АЧХ СВЧ фотонного кристалла в виде периодической структуры со штыревым центральным элементом, замкнутым на обе противоположные широкие стенки волновода, возникает широкая запрещенная зона от 8 ГГц до 12.1 ГГц. Наличие лишь слабого возмущения в запрещенной зоне АЧХ (кривая 9 на фиг. 3) на частоте 10.8 ГГц свидетельствует о незначительности влияния вносимого нарушения в виде центрального сплошного штыря уменьшенного диаметра (1 мм) на распространение СВЧ-волны в созданном СВЧ фотонном кристалле, содержащем цилиндрические штыри равного диаметра (2 мм), расположенные на равном расстоянии друг от друга.

При отсутствии напряжения смещения n–i–p–i–n-структура, являющаяся элементом нарушения фотонного кристалла, при удельной электропроводности i-слоя, равной 0 См/м, совместно с элементами центрального металлического штыря может быть приближенно представлена в виде последовательного R–L–C-контура, где R – сопротивление потерь в сильнолегированных областях, омических контактах и выводах n–i–p–i–n-структуры, С – емкость i-слоя, L– индуктивность элементов центрального металлического штыря.

Как следует из результатов расчета АЧХ (кривая 8 на фиг. 3), в этом режиме на частоте 11,44 ГГц в запрещенной зоне фотонного кристалла возникает ярко выраженная дефектная мода, характеризующаяся коэффициентом отражения равным –33.3 дБ.

Увеличение удельной электропроводности i-слоя n–i–p–i–n-структуры, приводит к увеличению коэффициента отражения на частоте дефектной моды, который достигает величины –0.03 дБ при величине удельной электропроводности i-слоя n–i–p–i–n-структуры, равной 103 См/м.

Пример практической реализации устройства.

Был создан СВЧ фотонный кристалл 3-сантиметрового диапазона длин волн (размеры поперечного сечения волновода 23×10 мм2).

СВЧ фотонный кристалл, выполнен в виде прямоугольного волновода 1 и содержит источник питания 2. В волноводе размещены периодически чередующиеся в направлении распространения электромагнитного излучения металлические элементы, расположенные вдоль продольной оси широкой стенки волновода 4. Металлические элементы выполнены в виде пяти штырей 5. Центральный штырь гальванически соединен с обеими противоположными стенками волновода 1 и имеет в центре разрыв, с размещенной в нем n–i–p–i–n диодной структурой 3, n-области которой соединены с противоположными концами штыря, а p-область гальванически соединена с положительным полюсом источника питания 2. Штыри, расположенные справа и слева от центрального, ближайшие к центральному, имеют емкостные зазоры равные 0.59 мм, у одной из широких стенок волновода, выполнены с возможностью регулировки зазоров, например, с помощью резьбовой подачи. Последующие штыри, расположенные слева и справа от ближайших к центральному, имеют емкостные зазоры меньшей величины с противоположной широкой стенкой, равные 0.2 мм. Центральный штырь был гальванически соединен с обеими противоположными широкими стенками 4 волновода 1 и имел в центре разрыв величиной 1 мм. Диаметр центрального штыря равен 1 мм, диаметры остальных штырей равны 2 мм. Продольный размер системы из пяти штырей составил 50 мм.

Для управления характеристиками СВЧ фотонного кристалла использовался кремниевый переключательный диод 2А505А на основе n–i–p–i–n-структуры, который располагался в разрыве центрального штыря. p-область n–i–p–i–n-структуры гальванически соединялась через отверстие в узкой стенке волновода с положительным полюсом источника питания.

Частотные зависимости коэффициентов отражения S11 СВЧ фотонного кристалла измерялись с помощью векторного анализатора цепей Agilent Microwave Network Analyzer N5242A PNA-X в диапазоне частот от 8 ГГц до 12.5 ГГц, результаты измерений в диапазоне частот от 10 ГГц до 12.5 ГГц представлены на фиг. 4.

Как следует из результатов эксперимента (кривая 11 на фиг. 4), при увеличении управляющего тока, протекающего через переключательный диод 2А505А, до 200 мА сопротивление i-области переключательного диода 2А505А уменьшается до единиц Ом, что приводит к фактическому «исчезновению» разрыва центрального штыря. На амплитудно-частотной характеристике СВЧ фотонного кристалла в виде периодической структуры со штыревым центральным элементом, замкнутым на обе противоположные широкие стенки волновода, возникает широкая запрещенная зона от 8 ГГц до 12.23 ГГц. При этом в запрещенной зоне АЧХ возникает достаточно слабое возмущение (кривая 11 на фиг. 4) на частоте 10.8 ГГц.

При отсутствии управляющего тока, протекающего через переключательный диод 2А505А, центральный штырь уменьшенного до 1 мм диаметра, в разрыве которого размещен переключательный диод 2А505А, выступает в качестве нарушения периодичности СВЧ фотонного кристалла на штыревых элементах.

В этом случае, как следует из результатов эксперимента, при отсутствии управляющего тока, протекающего через переключательный диод 2А505А, в запрещенной зоне СВЧ фотонного кристалла на частоте 11,315 ГГц возникает ярко выраженная дефектная мода, характеризующаяся коэффициентом отражения, равным –47.1 дБ.

При увеличении управляющего тока, протекающего через переключательный диод 2А505А, происходит монотонное увеличение коэффициента отражения СВЧ фотонного кристалла на частоте дефектной моды, который достигает величины –0.3 дБ, при токе, равном 200 мА.

Сравнение результатов расчета и экспериментальных результатов, полученных при практической реализации устройства, свидетельствует об их хорошем качественном соответствии.

Некоторое количественное несовпадение, выражающееся в небольшом различии частоты дефектной моды и динамического диапазона изменения коэффициента отражения на частоте дефектной моды при вариации уровня инжекции неравновесных носителей заряда в i-области n–i–p–i–n-структуры, может быть связано с ограниченностью модели, описывающей взаимодействие электромагнитного излучения с полупроводниковой n–i–p–i–n-структурой с использованием программы ANSYS HFSS, удельная эффективная электропроводность σef которой определяется как средняя величина удельной электропроводности полупроводниковой структуры s(x) и вычисляется с учетом координатной зависимости распределения неравновесных носителей заряда p(x) в i-области с помощью выражения [Стафеев В.И. ЖТФ. 1958. Т.28. №8. С.1631–1642. Баранов Л.И., Климов Б.Н., Селищев Г.В. Радиотехника и электроника. 1966. Т.11, №8. С. 1441-1446]:

(1).

где μn, μp – подвижность электронов и дырок, n0, p0– равновесная концентрация электронов и дырок в i – области, li – длина i области, b=mn/mp.

Следует отметить, что в случае учета зависимости коэффициентов диффузии электронов и дырок от напряженности электрического поля при высоком уровне инжекции неравновесных носителей заряда в i-области n–i–p–i–n-структуры может быть получена немонотонная зависимость распределения концентрации свободных носителей заряда p(x) вдоль n–i–p–i–n-структуры, то есть наблюдаются, так называемые, пространственные осцилляции плотности заряда в кремниевом p–i–n диоде [Усанов Д.А., Горбатов С.С., Кваско В.Ю., Фадеев А.В., Калямин А.А. Письма в ЖТФ. 2014. Т. 40. Вып. 21. С. 104–110.].

В этом случае удельная эффективная электропроводность n–i–p–i–n-структуры должна рассчитываться с использованием выражения (1) с учетом немонотонной зависимости p(x).

Таким образом, заявляемое изобретение позволяет создать СВЧ фотонный кристалл, динамический диапазон изменения коэффициента отражения которого при изменении управляющего тока, протекающего через единственный переключательный диод 2А505А от 0 до 200 мА достигает 47 дБ, при этом линейный размер фотонного кристалла составил 50 мм.

СВЧ фотонный кристалл, выполненный в виде прямоугольного волновода, содержащего периодически чередующиеся в направлении распространения электромагнитного излучения металлические элементы, по крайней мере одну n–i–p–i–n диодную структуру в центральном элементе, и включающий источник питания, отличающийся тем, что металлические элементы выполнены в виде по крайней мере пяти штырей, расположенных вдоль продольной оси широкой стенки волновода, центральный штырь гальванически соединен с обеими противоположными стенками волновода и имеет в центре разрыв для размещения в нем n–i–p–i–n диодной структуры, n-области которой соединены с противоположными концами штыря, а p-область соединена с положительным полюсом источника питания, штыри, расположенные справа и слева от центрального, ближайшие к центральному, имеют емкостные зазоры с одной из широких стенок волновода, выполнены с возможностью регулировки зазоров, последующие штыри, расположенные слева и справа от ближайших к центральному имеют емкостные зазоры меньшей величины с противоположной широкой стенкой, при этом диаметр центрального штыря меньше диаметров остальных штырей.
СВЧ фотонный кристалл
СВЧ фотонный кристалл
СВЧ фотонный кристалл
Источник поступления информации: Роспатент

Showing 1-10 of 90 items.
27.08.2016
№216.015.4d69

Способ прогнозирования эффективности речевого воздействия фрагментов дискурса на разных языках

Изобретение относится к средствам для прогнозирования эффективности речевого воздействия фрагментов дискурса на разных языках. Технический результат заключается в прогнозировании эффективности речевого воздействия (ЭРВ) фрагмента дискурса на разных языках. Отбирают параметры, которые могут...
Тип: Изобретение
Номер охранного документа: 0002595616
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4e3f

Способ выбора изображений для идентификации оружия по следу бойка

Изобретение относится к области идентификации огнестрельного оружия по следам бойка с индивидуальным признаком в виде пятна произвольной формы путем обработки цифровых изображений следов бойков и последующего их анализа. Исследуемую гильзу сканируют с получением исходного цифрового изображения...
Тип: Изобретение
Номер охранного документа: 0002595181
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.50ff

Способ лечения косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и предназначено для лечения косоглазия. Пациента просят следить за объектом, колеблющимся с постоянной частотой, выбранной из диапазона от 0,2 до 0,5 Гц, в начале и в конце упражнений в течение 10-40 с, в зависимости от выбранной...
Тип: Изобретение
Номер охранного документа: 0002595793
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.8620

Оптоакустический объектив

Изобретение относится к области спектроскопии конденсированных сред и фотоакустического анализа материалов. Оптоакустический объектив содержит звукопровод с кольцевым пьезоэлектрическим преобразователем на одном его торце, акустической линзой на другом его торце и сквозным цилиндрическим...
Тип: Изобретение
Номер охранного документа: 0002603819
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9719

Многодиапазонная радиочастотная идентификационная метка на поверхностных акустических волнах

Изобретение относится к пьезоэлектрическим приборам, в частности к пассивным меткам на поверхностных акустических волнах для систем радиочастотной идентификации. Технический результат: предотвращение искажения кодового сигнала, генерируемого меткой, и снижение потерь сигнала за счет...
Тип: Изобретение
Номер охранного документа: 0002609012
Дата охранного документа: 30.01.2017
25.08.2017
№217.015.99bb

Способ определения массовой доли диэтилендисульфида основного вещества в образце методом автоматического потенциометрического титрования

Изобретение относится к аналитической химии, а именно к определению содержания массовой доли основного вещества в образце состава диэтилендисульфида. Для этого проводят количественный анализ образца диэтилендисульфида методом автоматического потенциометрического титрования. Определение основано...
Тип: Изобретение
Номер охранного документа: 0002609830
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.9c5d

Способ измерения скорости течения крови

Изобретение относится к измерительной технике и касается способа измерения скорости течения жидкости с рассеивающими свет частицами. Способ включает в себя освещение потока жидкости одновременно двумя пучками лазерного излучения и определение спектра мощности P(f) отраженного сигнала. Затем...
Тип: Изобретение
Номер охранного документа: 0002610559
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a6c4

Двухканальный дифракционный фазовый микроскоп

Изобретение относится к области фазовой микроскопии и касается дифракционного фазового микроскопа. Микроскоп включает в себя два источника света с разными длинами волн, микрообъектив, тубусную линзу, дифракционную решетку на пропускание, первую и вторую линзы дифракционного фазового модуля,...
Тип: Изобретение
Номер охранного документа: 0002608012
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.a9c6

Способ модификации поверхности наночастиц оксида кремния с включенными квантовыми точками

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных водных растворов полупроводниковых квантовых точек, покрытых оболочками оксида кремния, модифицированных активной группой для биоконъюгирования и стабилизированных полиоксиэтиленом. Описан...
Тип: Изобретение
Номер охранного документа: 0002611541
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.a9c9

Способ получения композитного материала на подложке

Изобретение относится к полимерной химии. Выбирают металлические частицы двух разных размеров. Измельчают полимер до меньшего размера частиц металла. Раздельно перемешивают крупные и мелкие частицы металла с частицами полимера с образованием двух фракций порошков. Производят нагрев частиц...
Тип: Изобретение
Номер охранного документа: 0002611540
Дата охранного документа: 28.02.2017
Showing 1-10 of 53 items.
10.01.2013
№216.012.1719

Способ оценки прогрессирования стадии первичной открытоугольной глаукомы

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для оценки стадии прогрессирования первичной открытоугольной глаукомы. Для конкретного пациента с уже установленным клиническими методами диагнозом первичная открытоугольная глаукома стадии S проводят...
Тип: Изобретение
Номер охранного документа: 0002471405
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.171a

Способ бесконтактного измерения внутриглазного давления

Изобретение относится к области медицины и может быть использовано для измерения внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером, используя калибровочную кривую для модели глаза. Преобразуют...
Тип: Изобретение
Номер охранного документа: 0002471406
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a8a

Цифровой генератор хаотического сигнала

Изобретение относится к области радиотехники и может быть использовано в современных, помехозащищенных и конфиденциальных системах связи, в системах защиты информации для создания шумового сигнала, в контрольно-измерительных системах для измерения частотных характеристик, а также в системах...
Тип: Изобретение
Номер охранного документа: 0002472286
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2801

Способ изготовления зонда для ближнеполевой сверхвысокочастотной микроскопии

Изобретение относится к измерительной технике и может быть использовано в ближнеполевой сканирующей СВЧ и оптической микроскопии. Способ изготовления стеклянного зонда с проводящей сердцевиной включает помещение в стеклянную трубку легкоплавкого металла или металлического сплава, температура...
Тип: Изобретение
Номер охранного документа: 0002475761
Дата охранного документа: 20.02.2013
20.04.2013
№216.012.357d

Способ оценки стадии первичной открытоугольной глаукомы

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для оценки стадии прогрессирования первичной открытоугольной глаукомы. Осуществляют видеорегистрацию зрачковых реакций в темноте без фонового освещения глаза на световую вспышку у пациента с диагнозом:...
Тип: Изобретение
Номер охранного документа: 0002479246
Дата охранного документа: 20.04.2013
27.06.2013
№216.012.4f3e

Способ измерения внутриглазного давления

Изобретение относится к области медицины, в частности к области офтальмологии для измерений внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером. Далее преобразуют отраженный сигнал в автодинный сигнал,...
Тип: Изобретение
Номер охранного документа: 0002485879
Дата охранного документа: 27.06.2013
10.11.2013
№216.012.8039

Малошумящий кварцевый генератор с автоматической регулировкой усиления

Изобретение относится к радиоэлектронике, в частности к генераторам с кварцевым резонатором. Технический результат заключается в обеспечении низкого уровня фазового шума выходного сигнала при постоянном уровне выходной мощности. Малошумящий кварцевый генератор с автоматической регулировкой...
Тип: Изобретение
Номер охранного документа: 0002498498
Дата охранного документа: 10.11.2013
27.12.2013
№216.012.9235

Термостатированный кварцевый генератор

Изобретение относится к радиоэлектронике, а именно к термостатированным генераторам с кварцевыми резонаторами. Технический результат - повышение стабильности частоты в широком интервале рабочих температур при минимизации массогабаритных параметров. Термостатированный кварцевый...
Тип: Изобретение
Номер охранного документа: 0002503122
Дата охранного документа: 27.12.2013
20.02.2014
№216.012.a32c

Способ определения амплитуды нановибраций по сигналу лазерного автодина

Изобретение относится к измерительной технике и предназначено для измерений вибраций. Способ измерения амплитуды нановибраций ξ заключается в том, что освещают объект лазерным излучением, преобразуют отраженное от него излучение в электрический (автодинный) сигнал, раскладывают сигнал в...
Тип: Изобретение
Номер охранного документа: 0002507487
Дата охранного документа: 20.02.2014
20.05.2014
№216.012.c52f

Способ определения электропроводности и энергии активации примесных центров полупроводниковых слоев

Изобретение относится к измерительной технике, а именно к способу определения электропроводности и толщины слоя полупроводника на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Предложенный способ включает...
Тип: Изобретение
Номер охранного документа: 0002516238
Дата охранного документа: 20.05.2014
+ добавить свой РИД