×
25.08.2017
217.015.a9c6

Результат интеллектуальной деятельности: СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТИ НАНОЧАСТИЦ ОКСИДА КРЕМНИЯ С ВКЛЮЧЕННЫМИ КВАНТОВЫМИ ТОЧКАМИ

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных водных растворов полупроводниковых квантовых точек, покрытых оболочками оксида кремния, модифицированных активной группой для биоконъюгирования и стабилизированных полиоксиэтиленом. Описан способ модификации поверхности наночастиц оксида кремния с включенными квантовыми точками, в котором готовят микроэмульсию, содержащую неполярный растворитель и поверхностно-активное вещество, затем добавляют квантовые точки и тетраэтоксисилан и перемешивают в течение 24 ч, после чего добавляют 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)пропил-триметоксисилан и перемешивают в течение 24 ч, где в качестве неполярного растворителя используют гексан, в качестве поверхностно-активного вещества используют Brij L4, при этом в микроэмульсию добавляют деионизированную воду при следующем молярном соотношении компонентов: неполярный растворитель:поверхностно-активное вещество:деионизированная вода – 9:1:3; квантовые точки добавляют в количестве 0,5 нмоль на 1 мл неполярного растворителя, тетраэтоксисилан добавляют в количестве порядка 10 моль на один моль квантовых точек, 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)пропил-триметоксисилан добавляют в количестве 1/30 моль на один моль тетраэтоксисилана. Технический результат: разработан способ модификации нанокомпозитов оксида кремния с квантовыми точками посредством пришивания амино- и ПЭГ-групп. 5 пр.

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, модифицированных активной группой для биоконъюгирования и стабилизированных полиоксиэтиленом (полиэтиленгликоль (ПЭГ)). Заявляемый способ позволяет получить нанокомпозит, представляющий собой КТ, покрытую оболочкой оксида кремния с ПЭГ-фрагментами и доступными аминогруппами.

Существует метод синтеза КТ, заключенных в оболочку оксида кремния, с доступными функциональными аминогруппами и стабилизированных полимерными фрагментами (Bingbo Zhang, Da Xing, Chao Lin, Fangfang Guo, Peng Zhao, Xuejun Wen, Zhihao Bao, Donglu Shi. Improving colloidal properties of quantum dots with combined silica and polymer coating for in vitro immuofluorenscence assay. Journal of Nanoparticle Research. 13. 2011. 2407-2415). Для силанизации используется технология микроэмульсии: процесс полимеризации силанизирующего агента происходит на поверхности КТ в нанокапле воды, стабилизированной в органическом растворителе с помощью молекул поверхностно-активного вещества (ПАВ). Метод позволяет получать стабильные нанокомпозиты с узким распределением по размерам, квантовый выход которых не падает в процессе силанизации, с высокой стабильностью в физиологических средах. Недостатком данного метода является использование полиакриловой кислоты для повышения стабильности амино-модифицированных частиц.

Известен также коллоидный синтез по методу Штобера наночастиц оксида кремния, содержащих КТ, поверхность которых модифицирована ПЭГ-фрагментами (Yoshio Kobayashi, Hiromu Matsudo, Tomohiko Nakagawa, Yohsuke Kubota, Kohsuke Gonda, Noriaki Ohuchi. In-vivo fluorescence imaging technique using colloid solution of multiple quantum dots/silica/poly(ethylene glycol) nanoparticles. Journal of Sol-Gel Science and Technology. 66. 2013. 31-37). Метод позволяет получать стабильные нанокомпозиты, квантовый выход которых практически не падает в процессе силанизации. В качестве ПЭГ прекурсора использовали метокси-полиэтиленгликоль силан, М=5000 г/моль. Недостатками данного метода являются необходимость использования изначально водорастворимых КТ (в данном случае стабилизированных меркаптопропионовой кислотой), а также большой разброс по размерам полученных нанокомпозитов (50.2 ± 17.9 нм) и соответственно неравномерное распределение функциональных групп по поверхности каждой из наночастиц.

Наиболее близким к заявленному техническому решению является способ модификации поверхности наночастиц оксида кремния с включенными квантовыми точками, описанный в J. Mater. Chem., 2011, 21, 19257. В данном методе КТ и наночастицы магнетита покрывают оболочками оксида кремния по методу обратной микроэмульсии, а после модифицируют поверхность силанизирующими агентами, содержащими аминогруппу (3-аминопропилтриметоксисилан (АПС)) и полиэтиленгликолевые фрагменты (2-метокси(полиэтиленокси)6-9пропил-триметоксисилан (МПЭГТМС)). Для создания микроэмульсии при интенсивном перемешивании смешивают 35 г неполярного растворителя циклогексана и 2 г неионогенного поверхностно-активного вещества Igepal CO-520, через 20 минут добавляют 0,45 мг КТ структуры CuInS2/ZnS и 0,2 мг наночастиц магнетита, с последующим добавлением 36 мкл раствора аммиака и 150 мкл тетраэтоксисилана (ТЭОС). Через 24 часа перемешивания к полученному раствору добавляли 300 мкл свежеприготовленной смеси АПС и МПЭГТМС при соотношении компонентов в смеси 3:1 соответственно, а затем продолжали перемешивать еще 24 часа. Далее частицы очищали и растворяли в водных растворах. Повышение стабильности с помощью ПЭГ-фрагментов не только повышает стабильность наночастиц, но и делает их биосовместимыми. Однако в способе, принятом за прототип, используют большие объемы органических растворителей, что является очевидным недостатком.

Задачей изобретения является разработка способа модификации нанокомпозитов оксида кремния с КТ посредством пришивания амино- и ПЭГ-групп. Добавление активной аминогруппы на поверхность нанокомпозита оксида кремния с КТ происходит за счет определенной методики синтеза, включающей использование конкретных кремнийорганических соединений.

Технический результат заявляемого изобретения заключается в увеличении буферной стабильности полученных наночастиц, модифицированных с помощью ПЭГ-фрагментов. Заявляемый способ отличается высоким выходом продукта, простотой процесса и обеспечивает максимальную устойчивость полученных наночастиц в водных и буферных растворах с различными рН и ионной силой. Кроме того, заявляемый способ позволяет снизить расход модифицирующих реагентов и неполярного растворителя.

Указанный технический результат достигается тем, что в способе модификации поверхности наночастиц оксида кремния с включенными квантовыми точками, в котором готовят микроэмульсию, содержащую неполярный растворитель и поверхностно-активное вещество, затем добавляют квантовые точки и тетраэтоксисилан и перемешивают в течение 24 часов, после чего добавляют 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)6-9пропил-триметоксисилан и перемешивают в течение 24 часов, согласно решению в качестве неполярного растворителя используют гексан, в качестве поверхностно-активного вещества используют Brij L4, при этом в микроэмульсию добавляют деионизированную воду при следующем молярном соотношении компонентов: неполярный растворитель:поверхностно-активное вещество:деионизированная вода - 9:1:3; квантовые точки добавляют в количестве 0,5 нмоль на 1 мл неполярного растворителя, тетраэтоксисилан добавляют в количестве порядка 105 моль на один моль квантовых точек, 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)6-9пропил-триметоксисилан добавляют в количестве 1/30 моль на один моль тетраэтоксисилана.

Для синтеза КТ, покрытых оболочкой оксида кремния, используют удобный метод обратной микроэмульсии, который впоследствии позволяет легко модифицировать поверхность различными функциональными группами, используя одновременно два модифицирующих кремнийорганических соединения, содержащих аминогруппу (АПС) и полиэтиленгликолевые фрагменты (МПЭГТМС).

КТ структуры CdSe/CdS/ZnS получают по известной методике (Elena S. Speranskaya, Natalia V. Beloglazova, Pieterjan Lenain, Sarah De Saeger, Zhanhui Wang, Suxia Zhang, Zeger Hens, Dietmar Knopp, Reinhard Niessner, Dmitry V. Potapkin, Irina Yu. Goryacheva. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics. 53. 2014. 225-231). Полученные КТ заключают в оболочки оксида кремния методом обратной микроэмульсии согласно следующей методике: для создания микроэмульсии в неполярный растворитель (гексан) добавляют неионогенное поверхностно-активное вещество (Brij L4) и деионизированную воду, так чтобы мольное соотношение неполярной и полярной фазы по отношению к ПАВ не превышало 9 и 3 соответственно; к полученной микроэмульсии добавляют КТ из расчета 0,5 нмоль на 1 мл неполярного растворителя и тетраэтоксисилан (ТЭОС) в качестве кремнийорганического соединения в сильном избытке по отношению к КТ (до 105 по молям) и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют модифицирующие силанизирующие АПС и МПЭГТМС в 30-кратном недостатке по отношению к вышеуказанному количеству ТЭОС и оставляют созревать раствор еще на 24 часа при перемешивании. Готовые частицы очищают и растворяют в воде или водных буферах.

Пример 1

Для создания микроэмульсии в 1 мл гексана при перемешивании добавляют 0,32 мл Brij L4 и 10 мкл деионизированной воды; к полученной микроэмульсии добавляют 0,5 нмоль КТ и 30 мкл ТЭОС в качестве кремнийорганического соединения и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют 1,5 мкл АПС и 3 мкл МПЭГТМС для модифицирования поверхности КТ, заключенной в оболочку оксида кремния, и оставляют созревать раствор еще на 24 часа. Готовые частицы очищают и растворяют в воде или водных буферах. Полученные растворы содержат нерастворимые в водной среде фрагменты вследствие недостаточного количества полярной фазы, используемой для создания микроэмульсии.

Пример 2

Для создания микроэмульсии в 1 мл гексана при перемешивании добавляют 0,32 мл Brij L4 и 100 мкл деионизированной воды; к полученной микроэмульсии добавляют 0,5 нмоль КТ и 30 мкл ТЭОС в качестве кремнийорганического соединения и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют 1,5 мкл АПС и 3 мкл МПЭГТМС для модифицирования поверхности КТ, заключенной в оболочку оксида кремния, и оставляют созревать раствор еще на 24 часа. Готовые частицы очищают и растворяют в воде или водных буферах. Полученные растворы содержат агрегаты частиц вследствие избытка добавляемой полярной фазы при создании микроэмульсии.

Пример 3

Для создания микроэмульсии в 1 мл гексана при перемешивании добавляют 0,32 мл Brij L4 и 50 мкл деионизированной воды; к полученной микроэмульсии добавляют 0,5 нмоль КТ и 10 мкл ТЭОС в качестве кремнийорганического соединения и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют 1,5 мкл АПС и 3 мкл МПЭГТМС для модифицирования поверхности КТ, заключенной в оболочку оксида кремния, и оставляют созревать раствор еще на 24 часа. Готовые частицы очищают и растворяют в воде или водных буферах. Полученные растворы содержат большое количество нерастворимых в воде частиц, образовавшихся вследствие использования недостаточного количества силанизирующего агента ТЭОС.

Пример 4

Для создания микроэмульсии в 1 мл гексана при перемешивании добавляют 0,32 мл Brij L4 и 50 мкл деионизированной воды; к полученной микроэмульсии добавляют 0,5 нмоль КТ и 60 мкл ТЭОС в качестве кремнийорганического соединения и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют 1,5 мкл АПС и 3 мкл МПЭГТМС для модифицирования поверхности КТ, заключенной в оболочку оксида кремния, и оставляют созревать раствор еще на 24 часа. Готовые частицы очищают и растворяют в воде или водных буферах. Полученные растворы не обладают достаточной интенсивностью флуоресценции вследствие слишком плотной и широкой оболочки SiO2, образовавшейся вследствие использования большого избытка силанизирующего агента ТЭОС.

Пример 5

Для создания микроэмульсии в 1 мл гексана при перемешивании добавляют 0,32 мл Brij L4 и 50 мкл деионизированной воды; к полученной микроэмульсии добавляют 0,5 нмоль КТ и 30 мкл ТЭОС в качестве кремнийорганического соединения и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют 1,5 мкл АПС и 3 мкл МПЭГТМС для модифицирования поверхности КТ, заключенной в оболочку оксида кремния, и оставляют созревать раствор еще на 24 часа. Готовые частицы очищают и растворяют в воде или водных буферах. Полученные растворы стабильны во времени, обладают достаточной интенсивностью флуоресценции. Данные соотношения признаны оптимальными.

Заявляемый способ модификации применим ко всем КТ, получаемым методами высокотемпературного синтеза в органических растворителях и, как следствие, нуждающимся в процедуре модификации поверхности. В частности, заявляемый способ применим к КТ структуры CuInS2/ZnS, используемым в прототипе. Кроме того, способ был успешно апробирован на КТ, имеющих следующие структуры:

CdSe/ZnS (методика получения КТ описана в Beloglazova N.V., Speranskaya E.S., De Saeger S., Hens Z., S., Goryacheva I.Yu. Quantum dot based rapid tests for zearalenone detection. Anal. Bioanal. Chem. 2012. V. 403. N. 10. P. 3013-3024),

CuInS2/ZnS (методика получения КТ описана в Speranskaya E.S., Beloglazova N.V., S., Aubert Т., Smet P., Poelman D., Goryacheva I.Yu., De Saeger S., Hens Z. Environment-friendly CuInS2/ZnS quantum dots: hydrophilization with a PEG-containing polymer and application as fluorescent label in immunoassay. Langmuir, 2014, V. 30 (25), P. 7567-7575),

CdSe/CdS (методика получения КТ описана в Beloglazova, N.V., Foubert, А., Gordienko, A., Tessier, M.D., Aubert, Т., Drijvers, E., Goryacheva, I., Hens, Z., De Saeger, S., Sensitive QD@SiO2-based immunoassay for triplex determination of cereal-borne mycotoxins, Talanta, 2016, V. 160, P. 66-71).

Способ модификации поверхности наночастиц оксида кремния с включенными квантовыми точками, в котором готовят микроэмульсию, содержащую неполярный растворитель и поверхностно-активное вещество, затем добавляют квантовые точки и тетраэтоксисилан и перемешивают в течение 24 ч, после чего добавляют 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)пропил-триметоксисилан и перемешивают в течение 24 ч, отличающийся тем, что в качестве неполярного растворителя используют гексан, в качестве поверхностно-активного вещества используют Brij L4, при этом в микроэмульсию добавляют деионизированную воду при следующем молярном соотношении компонентов: неполярный растворитель:поверхностно-активное вещество:деионизированная вода – 9:1:3; квантовые точки добавляют в количестве 0,5 нмоль на 1 мл неполярного растворителя, тетраэтоксисилан добавляют в количестве порядка 10 моль на один моль квантовых точек, 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)пропил-триметоксисилан добавляют в количестве 1/30 моль на один моль тетраэтоксисилана.
Источник поступления информации: Роспатент

Showing 1-10 of 96 items.
10.06.2013
№216.012.4868

Способ повышения стабильности водного раствора квантовых точек - наночастиц селенида кадмия, покрытых меркаптокислотами

Изобретение относится к аналитической химии. Водный раствор квантовых точек на основе селенида кадмия, покрытых меркаптокислотой, стабилизируют, вводя сульфит натрия до его концентрации в растворе 0,02-0,2 моль/л. Технический результат - повышение стабильности водного раствора квантовых точек...
Тип: Изобретение
Номер охранного документа: 0002484116
Дата охранного документа: 10.06.2013
10.02.2014
№216.012.9fae

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии и может быть использована для определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях. Способ осуществляют путем проведения в колонке тест-системы иммуноферментного анализа, включающего размещение в колонке...
Тип: Изобретение
Номер охранного документа: 0002506586
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a756

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии и может быть использована для повышения эффективности и достоверности определения уровня токсикантов в различных средах путем проведения твердофазного иммуноферментного анализа. Способ, осуществляемый путем проводимого в колонке тест-системы...
Тип: Изобретение
Номер охранного документа: 0002508553
Дата охранного документа: 27.02.2014
10.01.2015
№216.013.1c6f

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии. Более подробно группа изобретений относится к способу определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-системе. Группа изобретений основана на том, что в колонке тест-системы размещают носитель в...
Тип: Изобретение
Номер охранного документа: 0002538707
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3ed9

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Изобретение относится к области биотехнологии и может быть использовано для повышения эффективности и достоверности определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проведения твердофазного иммуноферментного анализа. Способ определения уровня...
Тип: Изобретение
Номер охранного документа: 0002547577
Дата охранного документа: 10.04.2015
10.12.2015
№216.013.992a

Способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния

Использование: для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Сущность изобретения заключается в том, что способ выделения и очистки квантовых точек,...
Тип: Изобретение
Номер охранного документа: 0002570830
Дата охранного документа: 10.12.2015
27.08.2016
№216.015.4d69

Способ прогнозирования эффективности речевого воздействия фрагментов дискурса на разных языках

Изобретение относится к средствам для прогнозирования эффективности речевого воздействия фрагментов дискурса на разных языках. Технический результат заключается в прогнозировании эффективности речевого воздействия (ЭРВ) фрагмента дискурса на разных языках. Отбирают параметры, которые могут...
Тип: Изобретение
Номер охранного документа: 0002595616
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4e3f

Способ выбора изображений для идентификации оружия по следу бойка

Изобретение относится к области идентификации огнестрельного оружия по следам бойка с индивидуальным признаком в виде пятна произвольной формы путем обработки цифровых изображений следов бойков и последующего их анализа. Исследуемую гильзу сканируют с получением исходного цифрового изображения...
Тип: Изобретение
Номер охранного документа: 0002595181
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.50ff

Способ лечения косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и предназначено для лечения косоглазия. Пациента просят следить за объектом, колеблющимся с постоянной частотой, выбранной из диапазона от 0,2 до 0,5 Гц, в начале и в конце упражнений в течение 10-40 с, в зависимости от выбранной...
Тип: Изобретение
Номер охранного документа: 0002595793
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.8620

Оптоакустический объектив

Изобретение относится к области спектроскопии конденсированных сред и фотоакустического анализа материалов. Оптоакустический объектив содержит звукопровод с кольцевым пьезоэлектрическим преобразователем на одном его торце, акустической линзой на другом его торце и сквозным цилиндрическим...
Тип: Изобретение
Номер охранного документа: 0002603819
Дата охранного документа: 27.11.2016
Showing 1-10 of 39 items.
10.06.2013
№216.012.4868

Способ повышения стабильности водного раствора квантовых точек - наночастиц селенида кадмия, покрытых меркаптокислотами

Изобретение относится к аналитической химии. Водный раствор квантовых точек на основе селенида кадмия, покрытых меркаптокислотой, стабилизируют, вводя сульфит натрия до его концентрации в растворе 0,02-0,2 моль/л. Технический результат - повышение стабильности водного раствора квантовых точек...
Тип: Изобретение
Номер охранного документа: 0002484116
Дата охранного документа: 10.06.2013
10.02.2014
№216.012.9fae

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии и может быть использована для определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях. Способ осуществляют путем проведения в колонке тест-системы иммуноферментного анализа, включающего размещение в колонке...
Тип: Изобретение
Номер охранного документа: 0002506586
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a756

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии и может быть использована для повышения эффективности и достоверности определения уровня токсикантов в различных средах путем проведения твердофазного иммуноферментного анализа. Способ, осуществляемый путем проводимого в колонке тест-системы...
Тип: Изобретение
Номер охранного документа: 0002508553
Дата охранного документа: 27.02.2014
10.01.2015
№216.013.1c6f

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии. Более подробно группа изобретений относится к способу определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-системе. Группа изобретений основана на том, что в колонке тест-системы размещают носитель в...
Тип: Изобретение
Номер охранного документа: 0002538707
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3ed9

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Изобретение относится к области биотехнологии и может быть использовано для повышения эффективности и достоверности определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проведения твердофазного иммуноферментного анализа. Способ определения уровня...
Тип: Изобретение
Номер охранного документа: 0002547577
Дата охранного документа: 10.04.2015
10.12.2015
№216.013.992a

Способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния

Использование: для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Сущность изобретения заключается в том, что способ выделения и очистки квантовых точек,...
Тип: Изобретение
Номер охранного документа: 0002570830
Дата охранного документа: 10.12.2015
27.08.2016
№216.015.4d69

Способ прогнозирования эффективности речевого воздействия фрагментов дискурса на разных языках

Изобретение относится к средствам для прогнозирования эффективности речевого воздействия фрагментов дискурса на разных языках. Технический результат заключается в прогнозировании эффективности речевого воздействия (ЭРВ) фрагмента дискурса на разных языках. Отбирают параметры, которые могут...
Тип: Изобретение
Номер охранного документа: 0002595616
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4e3f

Способ выбора изображений для идентификации оружия по следу бойка

Изобретение относится к области идентификации огнестрельного оружия по следам бойка с индивидуальным признаком в виде пятна произвольной формы путем обработки цифровых изображений следов бойков и последующего их анализа. Исследуемую гильзу сканируют с получением исходного цифрового изображения...
Тип: Изобретение
Номер охранного документа: 0002595181
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.50ff

Способ лечения косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и предназначено для лечения косоглазия. Пациента просят следить за объектом, колеблющимся с постоянной частотой, выбранной из диапазона от 0,2 до 0,5 Гц, в начале и в конце упражнений в течение 10-40 с, в зависимости от выбранной...
Тип: Изобретение
Номер охранного документа: 0002595793
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.8620

Оптоакустический объектив

Изобретение относится к области спектроскопии конденсированных сред и фотоакустического анализа материалов. Оптоакустический объектив содержит звукопровод с кольцевым пьезоэлектрическим преобразователем на одном его торце, акустической линзой на другом его торце и сквозным цилиндрическим...
Тип: Изобретение
Номер охранного документа: 0002603819
Дата охранного документа: 27.11.2016
+ добавить свой РИД