×
24.08.2019
219.017.c3af

Результат интеллектуальной деятельности: Способ малоинвазивной низкоэнергетической многолучевой записи информации на поверхности объекта с целью длительного хранения, считывания, диагностики и его реализующее устройство - пучковая система записи-считывания и хранения данных

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам занесения информации на материальный объект, предназначенным для обеспечения длительного хранения на поверхности объектов - из числа предметов (изделий), получаемых в результате хозяйственной деятельности, а также специально изготовленных для длительного хранения информации, с возможностью быстрого получения информации в процессе считывания. Впервые предлагается способ и многопучковая система, создающая потоки параллельных пучков ионов низких энергий с непосредственной доставкой их к области воздействия для занесения информации, организованной побитно в виде оптимальных по размерам, числу, направлению движения, средней кинетической энергии сгустков (банчей) ионов контрастного вещества, имплантируемых в приповерхностный слой объекта, выполненные в едином корпусе (многопучковый инструмент внесения данных). В случае варианта для длительного архивного хранения информации применяются специально изготовленные пластины удовлетворяющие ×требованиям в зависимости от назначения. Двухстороннее (сквозное) считывание с относительно больших глубин занесенной информации требует прозрачности в используемых для считывания диапазонах электромагнитного спектра, минимального числа химических элементов (изотопов), входящих в базовую структуру основы (подложки, носителя информации), а также минимального количества примесей. Таким образом, рекомендациями по выбору подложки при двухстороннем считывании являются - прозрачность, чистота (базового состава). Минимальная толщина для информационно-значимого слоя вещества подложки составляет не менее 10 мкм при двухстороннем считывании и не менее 30-50 мкм для слоя, обеспечивающего жесткость и долговечность носителя. Достигаемый в этом случае объем информации, заносимой на кварцевую пластину с размерами 10×10×0.01 см (толщина рабочего слоя пластины ~10 мкм, остальная толщина для поддержания жесткости пластины при длительном хранении), составит величину порядка 1 Петабит или примерно 10 Терабит/см. 2 н. и 11 з.п. ф-лы.

Область техники

Изобретение относится к способам занесения информации на материальный объект, предназначенным для обеспечения длительного хранения на поверхности объектов - из числа предметов (изделий), получаемых в результате хозяйственной деятельности, а также специально изготовленных для длительного хранения информации, с возможностью быстрого получения информации в процессе считывания.

Заявленный способ может найти применение при создании и заполнении информационных носителей длительного и надежного хранения информации для текущего и будущего применений в машиностроении, авиастроении, искусстве, а также в других отраслях промышленного производства и сферах человеческой деятельности.

Предшествующий уровень техники

Патентованные [1] способы управления низкоэнергетическими пучками заряженных частиц, в том числе ионами и устройство «Маркиратор» реализующее описанные способы, позволяет получать на объекте пятно фокуса, размер шагов по поверхности и глубине с величинами порядка 1 мкм, числом частиц (ионов) в сгустке (банче, кластере, фрагменте) 103-108 и энергией ионов ≤1000 кэВ. Минимально возможный по размерам и числу частиц кластер, занесенный в приповерхностный слой объекта устройством «Маркиратор», распознается многодиапазонным сканирующим спекл-интерферометрическим устройством «Считыватель», предложенным также в [1] и реализующем методы описанные в том же патенте, как 1 бит информации. Оцененная там же удельная информационная емкость, достигаемая при записи идентифицируемых с высокой надежностью данных путем нанесения малоинвазивных идентификационных меток на изделия оценивается уровнем до 1 Мбит/кв. мм в случае использования 2-х мерных (плоскостных) меток и уровнем до 10 Мбит/куб. мм в случае 3-х мерных (объемных) меток.

Применение современных достижений в способах лазерного получения ускоренных заряженных частиц, дает непосредственную возможность распространить метод нанесения-считывания малоинвазивных приповерхностных меток на область методов, устройств и носителей для долговременного (архивного, «вечного») хранения информации.

Описание изобретения

Впервые предлагается способ и многопучковая система создающая потоки параллельных пучков ионов низких энергий (ПИНЭ) с непосредственной доставкой их к области воздействия для занесения информации организованной побитно в виде оптимальных по размерам, числу, направлению движения, средней кинетической энергии сгустков (банчей) ионов контрастного вещества, имплантируемых в приповерхностный слой объекта, выполненные в едином корпусе (многопучковый инструмент внесения данных - мПИВД). Многопучковый генератор ПИНЭ строится на основе лазерных методов получения и ускорения частиц с помощью короткоимпульсных (фемто - аттосекундных) лазеров с высокой концентрацией энергии в импульсе взаимодействующем со специальными лазерными мишенями-излучателями (МИ). В результате взаимодействия рождаются сгустки (банчи) заряженных частиц. Коллимирование и фокусировка банчей образовавшихся частиц позволяет создавать компактные генераторы ионных (ионы, электроны и гамма-кванты) банчей со средними энергиями ионов до сотен МэВ/нуклон и релятивистские электроны в сопровождении позитронов и гамма-квантов. Доставка лазерных импульсов к мишенно-фокусирующей головке (МФГ), являющейся выходным элементом для имлантации банчей и считывания записанной информации, обеспечивается гибкими световодами, что позволяет создавать компактные приборы записи данных.

Лазерное ускорение

Лазерное ускорение обеспечивается ускорением ионов кулоновским взрывом кластерных и твердотельных мишеней-излучателей (МИ). Возможны также следующие варианты лазерного ускорения:

- ускорением ионов в приповерхностном слое МИ;

- ускорением ионов радиационным давлением света;

- ускорением ионов в магнитном вихре;

- ускорением ионов на фронте бесстолкновительной ударной волны [2].

Процесс получения каким-либо (любым) методом ускоренных ионов сопровождается генерацией быстрых электронов, дальнейшее распространение которых в веществе рождает также позитроны и гамма-кванты.

В настоящее время максимальная энергия ионов, ускоренных с использованием тонких твердотельных мишеней-излучателей и фемтосекундных лазеров, составляет 40 МэВ [3], 45 МэВ [4], 160 МэВ [5] для протонов; 1 ГэВ (т.е. 83 МэВ/нуклон) для углерода [6].

Использование метода ускорения ионов кулоновским взрывом кластерных и твердотельных мишеней-излучателей (МИ) позволяет создать компактную установку с Гигаваттной мощностью в импульсе для генерации ионных (в сопровождении электронов, позитронов и гамма-квантов) банчей суммарной интенсивности 1010-1012 ионов/сек и средней энергией до 50 МэВ/нуклон.

С помощью перечисленных методов лазерного ускорения происходит генерация банчей со сложным ионным составом в сопровождении электронов, позитронов и гамма-квантов, что позволяет осуществлять эффективное занесение информации (маркирование, как метод создания памяти) в облучаемую часть объекта, а также осуществлять одновременно и диагностику (контроль правильности процесса и конечного результата занесения информации) облучаемой и прилегающих областей объекта [7, 8]. Кроме того, например, если сформировать протонный пучок с небольшой добавкой ионов углерода и/или кислорода, то в веществе объекта будет стимулироваться формирование оксидов/карбидов, которые будут дополнительно химически воздействовать на вещество объекта, увеличивая контрастность информационных сгустков.

Доставка импульсов формирующего лазера осуществляется по гибким световодам, вмонтированным в используемые устройства к МФГ. Мишенная часть МФГ имеет фрагментарный и секторальный характер, т.е. в нее включены фрагменты разных веществ, что обеспечивает возможность динамического выбора определенного типа ионов банча в процессе работы (разноионный состав выходного пучка) и возможности многопучковой (многоканальной) записи считывания.

Несколько десятков идентичных управляемых индивидуально каналов образуют основу полного многоканального (многопучкового) устройства записи информации, состоящего из многоканального ГПИНЭ (МКГПИНЭ), гибких световодов собранных в жгут, многоканальной управляемой оптики (МКУО) в составе многоканальной МФГ (МКМФГ). Конструкция МКМФГ, как и в одноканальном варианте, обеспечивает возможность сканирования головки как целого в телесном угле 2π (4π если необходимо) и, кроме того, на конечном участке устройство каждого канала позволяет иметь некоторый дополнительный диапазон по полярному углу (относительно оси первоначального пучка) для индивидуального синхронно-асинхронного сканирования.

Блок вычислений и управления (БВУ) управляет параметрами многопучкового устройства для лучевого внесения информации (МПУЛВМ), который является элементом ПИВД. БВУ осуществляет управление следующими характеристиками ионного (ион-электрон-позитрон-гамма-квантного) банча с помощью манипулирования параметрами лазерных импульсов и мишенной части головки:

- средняя энергия банча;

- начальная угловая расходимость банча;

- интенсивность банча;

- длительность банча;

- тип ионов (ион-электрон-позитрон-гамма-квантного) банча.

Характер подложки

В случае варианта для длительного архивного хранения информации применяются специально изготовленные пластины удовлетворяющие требованиям в зависимости от назначения.

Двухстороннее (сквозное) считывание с относительно больших глубин занесенной информации требует прозрачности в используемых для считывания диапазонах электромагнитного спектра, минимального числа химических элементов (изотопов) входящих в базовую структуру основы (подложки, носителя информации), а также минимального количество примесей. Таким образом, рекомендациями по выбору подложки при двухстороннем считывании являются - прозрачность, чистота (базового состава).

Минимальная толщина для информационно-значимого слоя вещества подложки составляет не менее 10 мкм при двухстороннем считывании и не менее 30-50 мкм для слоя обеспечивающего жесткость и долговечность носителя.

Варианты материалов при двухстороннем считывании выбираются из класса диэлектриков или полупроводников; в частности, подходящими материалами будут кристаллические и аморфные - кварц, кремний, германий и другие.

При одностороннем считывании (и естественно, ограниченной глубине занесения информации) возможно использование гораздо более широкого набора материалов, в том числе и металлов.

Плотность записи

Для минимальной чувствительности считывающего устройства при считывании 103 атомов любого выбранного для занесения элемента периодической системы в 1 куб. мкм число частиц заносимых в ячейку объемом 1 куб. мкм можно варьировать в широких пределах - 103-105 ионов (превышение уровня - 105 ионов для одной ячейки технически возможно, но потребует достаточно больших энергетических затрат и, таким образом, не всегда целесообразно).

К настоящему времени известно [9] 115 химических элементов, из них 82 находятся в достаточном количестве в земной коре и используются в производственной деятельности, кроме того, количество открытых различных изотопов элементов составляет ~3500, таким образом, оценка ~100 изотопов, которые можно использовать для обеспечения разнообразия типов информационных меток являющимся носителями бит информации, является нижней оценкой.

Достижимый в этом случае объем информации заносимой на кварцевую пластину с размерами 10×10×0.01 см3 (толщина рабочего слоя пластины ~10 мкм, остальная толщина для поддержания жесткости пластины при длительном хранении) составит величину порядка 1 Петабит (Пбит), или примерно 10 Терабит (Тбит)/см2.

Предложенный способ использования малоинвазивной многопучковой лучевой низкоэнергетической записи информации (способ малоинвазивной многопучковой лучевой низкоэнергетической записи информации - мИМПЛНэЗИ), надежный способ воспроизведения (считывания) занесенной информации и система, реализующая данный способ позволяет впервые осуществить новый способ и устройство прецизионного занесения информации для долговременного хранения путем введения сверхмалых доз (атто - сгустков, кластеров, фрагментов) контрастных веществ в точечно подобную пространственную область облучаемой зоны объекта.

Вычисление параметров управления для пучкового устройства мИМПЛНэЗИ и контроль идентичности вносимой информации заданной изначально производится в блоке вычислений и управления за счет информации поступающей с системы мониторинга встроенной соосно с МКМФГ.

ЛИТЕРАТУРА

1. Патент №2644121.

2. Haberberger D et al. Nature Phys. 8 95 (2012).

3. Ogura К et al. Opt. Lett. 37 2868 (2012).

4. Kim I J et al. Phys. Rev. Lett. 111 165003 (2013).

5. Hegelish В M et al., arXiv: 1310.8650.

6. Jung D et al. Phys. Plasmas 20 083103 (2013).

7. Korzhimanov A V et al. Phys. Rev. Lett. 109 245008 (2012).

8. Nishiuchi M et al. Rev. Sci. Instrum. 85 02B904 (2014).

9. https://ru.wikipedia.org/wiki/Изотопы

Источник поступления информации: Роспатент

Showing 1-3 of 3 items.
13.02.2018
№218.016.26be

Способ скрытого малоинвазивного маркирования объекта с целью его идентификации

Изобретение относится к способам маркировки, предназначенным для мечения поверхности объектов - из числа предметов, получаемых в результате хозяйственной деятельности с возможностью проверки соответствия их характеристик в процессе идентификации, в том числе изготовителя. Способ предполагает...
Тип: Изобретение
Номер охранного документа: 0002644121
Дата охранного документа: 07.02.2018
29.06.2020
№220.018.2ce9

Пучковые устройство, система и комплекс ионно-лучевого наноинвазивного низкоэнергетического воздействия на биологические ткани и агломераты клеток, с функциями впрыска и мониторирования

Изобретение относится к медицинской технике. Пучковое устройство лучевой терапии (ПУЛТ) избирательно воздействует ориентированно на опухоль или другую патологию пучком заряженных частиц, сформированным в виде прецизионно сфокусированных банчей с обеспечением минимального воздействия на...
Тип: Изобретение
Номер охранного документа: 0002724865
Дата охранного документа: 25.06.2020
23.05.2023
№223.018.6bdf

Способ, устройство и система прецизионных многополевых синхронных адаптивных замеров и мониторинга внешней среды

Группа изобретений относится к средствам детектирования слабых возмущений окружающей среды. Сущность: устройство для замеров слабых возмущений окружающей среды состоит из пяти чувствительных элементов (1-5) размерами 1×1×5 см, измерительной части и внутренней вычислительной сети. Чувствительные...
Тип: Изобретение
Номер охранного документа: 0002787264
Дата охранного документа: 09.01.2023
Showing 1-6 of 6 items.
27.01.2013
№216.012.1f90

Гидроизоляционное морозостойкое покрытие асфальта автомобильной дороги

Изобретение относится к области строительства и может быть использовано для строительства автомобильных дорог. Покрытие содержит полимерную основу - два жидких низкомолекулярных каучука с концевыми функциональными группами, эпоксидными и карбоксильными, сополимеризующиеся и трехмерно...
Тип: Изобретение
Номер охранного документа: 0002473581
Дата охранного документа: 27.01.2013
10.05.2015
№216.013.4b03

Способ повышения долговечности асфальтового покрытия автомобильной дороги

Изобретение относится к области строительства и может быть использовано для строительства автомобильной дорог, расположенных в географических широтах с резко континентальным климатом, где температура может колебаться от +50 до -50°С. В асфальтовом слое на расстоянии 5-10 м друг от друга...
Тип: Изобретение
Номер охранного документа: 0002550710
Дата охранного документа: 10.05.2015
29.12.2017
№217.015.f15d

Гидроизоляционное морозостойкое покрытие асфальта автомобильной дороги

Изобретение относится к области строительства и может быть использовано для строительства автомобильных дорог. Покрытие содержит полимерную основу, наполнитель - полифракционный диоксид кремния и технологические добавки, включающие трехмерно сшивающий агент - серу, тиксотропный усилитель и...
Тип: Изобретение
Номер охранного документа: 0002638976
Дата охранного документа: 19.12.2017
13.02.2018
№218.016.26be

Способ скрытого малоинвазивного маркирования объекта с целью его идентификации

Изобретение относится к способам маркировки, предназначенным для мечения поверхности объектов - из числа предметов, получаемых в результате хозяйственной деятельности с возможностью проверки соответствия их характеристик в процессе идентификации, в том числе изготовителя. Способ предполагает...
Тип: Изобретение
Номер охранного документа: 0002644121
Дата охранного документа: 07.02.2018
29.06.2020
№220.018.2ce9

Пучковые устройство, система и комплекс ионно-лучевого наноинвазивного низкоэнергетического воздействия на биологические ткани и агломераты клеток, с функциями впрыска и мониторирования

Изобретение относится к медицинской технике. Пучковое устройство лучевой терапии (ПУЛТ) избирательно воздействует ориентированно на опухоль или другую патологию пучком заряженных частиц, сформированным в виде прецизионно сфокусированных банчей с обеспечением минимального воздействия на...
Тип: Изобретение
Номер охранного документа: 0002724865
Дата охранного документа: 25.06.2020
23.05.2023
№223.018.6bdf

Способ, устройство и система прецизионных многополевых синхронных адаптивных замеров и мониторинга внешней среды

Группа изобретений относится к средствам детектирования слабых возмущений окружающей среды. Сущность: устройство для замеров слабых возмущений окружающей среды состоит из пяти чувствительных элементов (1-5) размерами 1×1×5 см, измерительной части и внутренней вычислительной сети. Чувствительные...
Тип: Изобретение
Номер охранного документа: 0002787264
Дата охранного документа: 09.01.2023
+ добавить свой РИД