×
23.08.2019
219.017.c2c8

Противовирусная композиция

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к фармакологии, а именно к композиции антиоксидантов, проявляющей противовирусную активность в отношении вирусов клещевого энцефалита и герпеса простого 1 типа. Композиция представляет собой смесь эхинохрома А, аскорбиновой кислоты и α-токоферола при массовом соотношении компонентов 5:5:1. Предлагаемая композиция является высокоэффективным вирулицидным и умеренно эффективным вирусиндуцирующим средством. 1 ил., 3 табл.
Реферат Свернуть Развернуть

Изобретение относится к фармакологии и касается композиции антиоксидантов, обладающей противовирусной активностью в отношении вирусов клещевого энцефалита (ВКЭ) и герпеса простого 1 типа (ВГП-1).

Возрастание доли вирусных инфекций в структуре общей инфекционной заболеваемости населения достигает 90%, а отсутствие вакцинных и противовирусных препаратов при многих вирусных инфекциях является одной из самых серьезных проблем современного здравоохранения. Вирусные заболевания представляют собой общую угрозу здоровью населения во всем мире. Вирусы, содержащие геном в виде РНК, а также ДНК, вызывают целый ряд серьезных заболеваний животных и являются наиболее опасными для человека. Опасность эпидемий и пандемий, вызванных РНК- и ДНК-содержащими вирусами, делает разработку новых противовирусных препаратов и новых средств и способов их инактивации одной из наиболее актуальных задач сегодняшнего дня.

Окислительный стресс, индуцированный вирусной инфекцией, играет важную роль в патогенезе многих вирусных заболеваний [1]. Он определяет не только вмешательство в ведущие метаболические процессы организма, но и регулирует репликацию вируса [2, 3]. Интенсификация процессов свободно-радикального окисления и резкое угнетение антиоксидантной и антирадикальной системы защиты организма наблюдается у больных клещевым энцефалитом [4] и при манифестации герпесвирусной инфекции [5, 6].

Считается, что антиоксиданты противодействуют разрушительному воздействию активных форм кислорода (АФК), в том числе и свободных радикалов, и, следовательно, предотвращают или лечат заболевания, связанные с окислительным стрессом [7].

Поскольку наиболее важным аспектом лечения вирусных заболеваний является подавление репликации вируса, то поиск препаратов среди природных антиоксидантов, обладающих противовирусными свойствами, остается актуальным, а применение препаратов с противовирусной и антиоксидантной активностью является потенциально полезной стратегией при любой вирусной инфекции.

Показан широкий спектр противовирусной активности природных фенольных антиоксидантов - розмариновой кислоты и лютеолина - компонентов полифенольного комплекса, выделенного из морских трав семейства Zosteraceae. Эти соединения проявляют противовирусное действие в отношении вирусов гриппа, папилломы человека, ротовируса, герпеса 1 типа, клещевого энцефалита и др. Противовирусная активность розмариновой кислоты и лютеолина обусловлена их высоким антиоксидантным, противовоспалительным и нейропротективным потенциалом [8].

Наиболее близкой к заявляемой композиции по составу (прототип) является эквимолярная тройная смесь антиоксидантов, таких как 7,8-дигидрокси-4-метил-2Н-хромен-2-он (производное дигидрокси-4-метилкумарина) с α-токоферолом и аскорбиновой кислотой [9]. Антиоксиданты в этой смеси проявляют сильный синергизм и показывают существенно более высокую антиоксидантную активность в стабилизации липидного субстрата, чем отдельные ее компоненты.

Однако указание на противовирусные свойства известной антиоксидантной композиции в доступной патентной и другой научно-технической литературе не обнаружено.

Задача изобретения - расширение арсенала противовирусных средств.

Задача решена созданием композиции антиоксидантов, проявляющей противовирусную активность в отношении вирусов клещевого энцефалита и герпеса простого 1 типа, представляющая собой смесь эхинохрома А, аскорбиновой кислоты и α-токоферола при массовом соотношении компонентов 5:5:1.

Технический результат, обеспечиваемый изобретением, заключается в создании новой композиции антиоксидантов, проявляющей активность, как в отношении РНК-содержащего вируса - вируса клещевого энцефалита, так и в отношении ДНК-содержащего вируса - вируса герпеса простого 1 типа.

Заявляемая композиция проявляет синергизм, который заключается в том, что количественный показатель ее антиоксидантной активности значительно выше, чем показатели каждого из компонентов, добавленных в одном и том же количестве для стабилизации липидного субстрата, а также проявляет синергетическое противовирусное действие в отношении вирусов клещевого энцефалита и герпеса простого 1 типа.

Антиоксидант эхинохром А (2,3,5,6,8-пентагидрокси-7-этил-1,4-нафтохинон) - природный хиноидный пигмент морских ежей является действующим веществом препарата Гистохром®, который применяют в кардиологической и офтальмологической практике [10, 11]. Гистохром также может использоваться для лечения геморрагического инсульта [12], в качестве средства для лечения ишемии сосудов головного [13] и в качестве диуретического средства [14].

Известны композиции на основе эхинохрома А, которые используют для лечения и/или предотвращения сердечных заболеваний, таких как повреждение сердца, при аритмии, фибрилляции желудочков, сердечной недостаточности и ишемии-реперфузии [15], а также для профилактики или лечения нейродегенеративных заболеваний, вызванных дефицитом ацетилхолина [16].

Надо отметить то, что эхинохром А подвергается окислительной деструкции в присутствии кислорода воздуха. Однако в предлагаемой композиции антиоксидантов его стабильность значительно повышается.

Аскорбиновая кислота нормализует окислительно-восстановительные процессы, является мощным антиоксидантом в живом организме, продуктах питания в водных, но не липидных растворах. В медицине аскорбиновая кислота используется, как витамин С. Она применяется при гиповитаминозе С, геморрагическом диатезе, капилляротоксикозе, геморрагическом инсульте, кровотечениях, инфекционных заболеваниях и др. Аскорбиновая кислота используется в пищевой и фармацевтической промышленности для стабилизации лекарственных средств.

α-Токоферол (витамин Е) с терапевтической целью применяют перорально, парентерально и местно при дерматомиозитах, мышечных дистрофиях, в комбинированном лечении сердечно-сосудистой патологии, заболеваний глаз, для снижения побочных эффектов при терапии химиотерапевтическими лекарственными препаратами. В терапевтических дозах α-токоферол является относительно нетоксичным веществом и не вызывает серьезных побочных эффектов. При применении α-токоферола в высоких дозах может возникнуть метеоризм, тошнота, диарея, а у ряда пациентов - повышение артериального давления.

В фармацевтической промышленности α-токоферол широко используется как вспомогательное вещество в виде его ацетата. В концентрации 0,001-0,05% α-токоферол входит в состав лекарственных препаратов как антиоксидант. Также α-токоферол является отличным растворителем для плохорастворимых лекарственных субстанций.

То, что заявляемая композиция будет обладать противовирусной активностью в отношении вирусов клещевого энцефалита и герпеса простого 1 типа, явным образом не вытекает из известных из уровня техники свойств компонентов композиции и не является очевидным для специалиста.

Для подтверждения синергизма заявляемой композиции были проведены следующие экспериментальные исследования.

Определение антиоксидантной активности комплексов эхинохрома с аскорбиновой кислотой и α-токоферолом при различных соотношениях компонентов.

Проведено сравнительное исследование in vitro антиоксидантной активности эхинохрома, аскорбиновой кислоты и α-токоферола и их смеси на модели перекисного окисления линетола по известной методике [17]. Готовили стоковые растворы эхинохрома, аскорбиновой кислоты и α-токоферола в концентрации 10 мг/мл в этиловом спирте. Бинарные и тройные композиции антиоксидантов получали, смешивая объемы стоковых растворов в указанных соотношениях. 10 мкл каждого раствора помещали во взвешенные с точностью 0,0005 г стеклянные бюксы, добавляли 300 мкл линетола и помещали реакционные сосуды в термостат (37°C). Концентрация антиоксидантых препаратов в линетоле во всех случаях была равна 0,05 мг/мл или 0,005%. Дважды в сутки измеряли массу предварительно охлажденных до комнатной температуры реакционных смесей, когда масса увеличивалась примерно на 10 мг, реакцию останавливали. Период ингибирования окисления линетола (Δτ) вычисляли как разность времен, за которые происходило увеличение массы линетола на 10 мг в опытах с добавкой вещества и без него (контроль) по формуле Δτ=τ-τ0, где τ - время начала окисления линетола в присутствии антиоксиданта (ч); τ0 - время начала окисления линетола без добавки антиоксиданта (ч).

В таблице 1 представлены периоды ингибирования реакции окисления линетола в присутствии эхинохрома, аскорбиновой кислоты, α-токоферола и их смесей в разных соотношениях.

Из таблицы 1 видно, что наиболее эффективным антиоксидантом в этом эксперименте оказался α-токоферол (Δτ 125 ч). Эхинохром был менее эффективен (Δτ 100 ч), аскорбиновая кислота не проявляла антиоксидантного эффекта в данной модели. Низкая эффективность аскорбиновой кислоты в данной модели объясняется ее высокой способностью к автоокислению в растворе линетола. Известно, что в экспериментах in vitro аскорбиновая кислота в отсутствии альфа-токоферола не проявляет антиоксидантной активности, что и продемонстрировал наш эксперимент (Δτ для смеси Аск+Ток (2:1) равнялось 195 ч). Наилучший результат по защите линетола от окисления показала тройная смесь Эх+Аск+Ток (5:5:1), в которой проявлялось синергетическое действие антиоксидантов (Δτ 223 ч).

Подтверждена стабильность заявляемой композиции (определено, что активные компоненты сохраняются без изменения в течение 12 месяцев).

Определение противовирусной активности эхинохрома А и его композиции с другими антиоксидантами.

Используемые вирусы и культуры клеток.

РНК-содержащий вирус клещевого энцефалита (ВКЭ) (штамм Dal'negorsk дальневосточного субтипа) был выделен в лаборатории флавивирусных инфекций НИИ эпидемиологии и микробиологии имени Г.П. Сомова в 1973 году из мозга умершего больного с очаговой формой. Его номер полногеномной последовательности в GenBank - FJ402886 [18, 19]. Использована 10% вируссодержащая суспензия мозга мышей-сосунков, инфицированных этим штаммом (10 пассажей). Титр ВКЭ составил 108,8 TCID50/МЛ. ДНК-содержащий вирус герпеса (ВГП-1, штамм VR3), получен из Национальной коллекции вирусов США (Rockville, Maryland, USA). Штамм ВГП-1 прошел 5-7 последовательных пассажей на культуре клеток Vero. Титр ВГП-1 составил 108,25 TCID50/мл.

Изучение противовирусной активности препаратов по отношению к ВКЭ проводилось на перевиваемой культуре клеток почек эмбриона свиньи (СПЭВ), выращенных в стандартной питательной среде «199» с добавлением 10% фетальной бычьей сыворотки (ПанЭко, Россия) и 100 ЕД/мл гентамицина при 37°C в СО2-инкубаторе, в поддерживающей среде концентрация FBS была снижена до 1%.

Исследования антигерпетической активности препаратов проводилось на перевиваемой клеточной линии почек африканской зеленой мартышки Vero. Клетки выращивали в полной культуральной среде DMEM с добавлением 5-10% фетальной сыворотки телят, 0,008% раствора гентамицина сульфата и глутамина при 37°C в CO2-инкубаторе. Во всех экспериментах концентрация клеток составила 104 кл/мл.

Препараты, приготовленные для исследования:

Эхинохром А - водный стоковый раствор 10 мг/мл.

Композиция антиоксидантов - заявляемый препарат, эхинохром А, аскорбиновая кислота, α-токоферол в массовом соотношении 5:5:1. Стоковый раствор с концентрацией 10 мг/мл препарата в диметилсульфоксиде (DMSO, Sigma, USA) хранили при -20°C.

Плацебо - препарат сравнения: композиция, содержащая аскорбиновую кислоту и α-токоферол в массовом соотношении 5:1. Стоковый раствор с концентрацией 10 мг/мл препарата в диметилсульфоксиде хранили при -20°C.

Рабочие растворы препаратов готовили из стоковых растворов (10 мг/мл), разводя соответствующей клеточной культуральной средой. Конечная концентрация DMSO в рабочих растворах составляла 0,5%. Растворы использовали свежеприготовленными.

Определение цитотоксичности.

Цитотоксичность препаратов оценивали по жизнеспособности СПЭВ и Vero клеток с использованием МТТ-теста [20]. Монослой клеток (2×104 клеток/лунку), выращенных в 96-луночных планшетах, обрабатывали различными концентрациями (от 0 до 400 мкг/мл) тестируемых препаратов, необработанные клетки служили контролем. Клетки культивировали при 37°C в CO2-инкубаторе в течение 6 сут. После инкубации к монослою клеток добавляли по 20 мкл/лунку раствора МТТ (метилтиазолилтетразолий бромид, Sigma, USA) с концентрацией 5 мг/мл, оставляли на 2 ч при 37°C, затем прибавляли изопропиловый спирт, подкисленный 0,4М HCl (150 мкл/лунку).

Оптическую плотность (ОП) измеряли при 540 нм на 96-луночном ридере (Labsystems Multiskan RC, Finland). Жизнеспособность клеток рассчитывали как (ОПо)/(ОПк)×100%, где ОПо - оптическая плотность клеток, обработанных тестируемыми препаратами, ОПк - оптическая плотность необработанных клеток. Значение 50% цитотоксической концентрации (СС50) определяли с помощью регрессионного анализа как концентрацию препарата, которая уменьшала количество жизнеспособных клеток на 50% по сравнению с контролем клеток.

Определение противовирусной активности.

Противовирусную активность определяли по ингибированию цитопатогенного действия (ЦПД) вируса с помощью инвертированного микроскопа (Биолам П-1, ЛОМО, Россия) и с использованием МТТ-теста [21, 22]. Препараты исследовали в диапазоне концентраций от 0 до 400 мкг/мл и при нескольких инфицирующих дозах вируса (от 101 до 103 TCID50/мл). Каждую инфицирующую дозу вируса соединяли с различными концентрациями соединений в соотношении 1:1, инкубировали 1 ч при 37°C. Затем наносили на монослой клеток (2×104 клеток/лунку), выращенных в 96-луночных планшетах и культивировали в течение 6 суток при 37°C в CO2-инкубаторе.

Противовирусную активность препаратов (при каждой инфицирующей дозе вируса) оценивали по степени ингибирования (IR) вируса препаратом, по 50% ингибирующей концентрации (IC50) и по селективному индексу (SI).

IR рассчитывали формуле: IR = (ОП опыт - ОП вир. контроль)/(ОП кл. контроль - ОП вир. контроль) × 100%. В качестве контроля клеток использовали клетки, необработанные вирусом и препаратами, а контролем вируса служили клетки, необработанные препаратами.

IC50 определяли с помощью регрессионного анализа зависимости степени ингибирования вируса (IR) в % от концентрации препарата, как концентрацию препарата, которая ингибировала цитопатогенное действие вируса на 50% по сравнению с контролем.

Индекс селективности (SI) - терапевтический индекс препарата рассчитывали как отношение СС50 к IC50.

Противовирусная активность исследуемых препаратов в отношении вируса клещевого энцефалита.

На основании результатов МТТ-анализа для каждого препарата в отношении клеточной культуры СПЭВ была рассчитана 50% цитотоксическая концентрация (CC50). Основные показатели противовирусной активности в отношении различных инфицирующих доз вируса клещевого энцефалита представлены в таблице 2.

Примечание: * - статистически значимые различия между показателями композиции антиоксидантов и остальными препаратами (р≤0,05).

Как видно из представленных данных, эхинохром А и композиция антиоксидантов проявляли примерно одинаковую умеренную цитотоксиченость. Показатель цитотоксичности плацебо был на порядок меньше. Однако, композиция антиоксидантов проявляла противовирусную активность при концентрации (IC50) примерно в полтора раза меньшей, чем эхинохром А, а следовательно, и показывала более высокий терапевтический индекс (SI). Величина последнего показателя является важной при разработке лекарств, так как она говорит о его высокой безопасности. Плацебо, представляющее собой смесь аскорбиновой кислоты и α-токоферола в таком же весовом соотношении 5:1, как и в заявляемой композиции, было мало токсично и мало активно в отношении вируса клещевого энцефалита (SI<1).

Противовирусная активность исследуемых препаратов в отношении вируса герпеса простого 1 типа.

На основании результатов МТТ-анализа для каждого препарата в отношении клеточной культуры Vero была рассчитана 50% цитотоксическая концентрация (СС50) и основные показатели противовирусной активности в отношении различных инфицирующих доз вируса герпеса простого I типа как описано выше. Результаты исследования представлены в таблице 3.

Примечание: * - статистически значимые различия между показателями композиции антиоксидантов и остальными препаратами (р≤0,05).

Как видно из таблицы 3, эхинохром А и композиция антиоксидантов на его основе проявляют более высокую цитотоксичность (СС50=54,4±1,8 и 57,9±2,3 мкг/мл соответственно), чем плацебо (СС50=521,7±5,3 мкг/мл). Однако эхинохром А и композиция антиоксидантов при различных инфицирующих дозах намного эффективнее подавляют репликацию вируса герпеса простого 1 типа, чем плацебо, и следовательно, имеют более высокий терапевтический индекс и могут быть использованы для разработки лекарственных средств. Наиболее эффективной является заявляемая композиция антиоксидантов на основе эхинохрома А, так как ее терапевтический индекс почти в два раза выше, чем у эхинохрома А.

Сравнительную противовирусную эффективность композиции антиоксидантов, эхинохрома А и плацебо определили при одной инфицирующей дозе вирусов ВКЭ и ВГП-1 - 102 TCID50/мл и одинаковой концентрации препаратов - 20 мкг/мл на разных стадиях жизненного цикла вирусов. Исследовали вирулицидное действие - воздействие препаратов на сами вирусы, профилактическое действие - перед заражением вирусами клетки предварительно обрабатывали препаратами, и ингибирующее действие - эффективность препаратов на ранней стадии репликации вируса. Противовирусную активность препаратов оценивали по степени ингибирования цитопатогенного действия вирусов с помощью МТТ-теста, как описано выше.

Вирулицидная активность исследуемых соединений.

Вирусы обрабатывали раствором исследуемых препаратов в соотношении 1:1, инкубировали 1 ч при 37°C, затем наносили на монослой клеток и культивировали в течение 6 суток при 37°C в CO2-инкубаторе.

Профилактическая активность исследуемых соединений.

Монослой клеток обрабатывали исследуемыми препаратами в течение 1 ч при 37°C, затем инфицировали вирусом и культивировали в течение 6 суток при 37°C в CO2-инкубаторе.

Вирусингибирующая активность исследуемых соединений.

Монослой клеток инфицировали вирусом и выдерживали в течение 1 ч (для вируса КЭ) либо 10-15 мин (для вируса ВГП-1) при 37°C, затем клетки обрабатывали исследуемыми препаратами и в течение 6 суток культивировали при 37°C в СО2-инкубаторе.

На фигуре представлены результаты определения вирулицидной, профилактической и вирусингибирующей активности препаратов в отношении вируса клещевого энцефалита и вируса герпеса простого 1 типа. * - Статистически значимые различия между показателями композиции антиоксидантов и плацебо (р≤0,05).

Как видно из фигуры, заявляемая композиция антиоксидантов обладает высоким вирулицидным действием. Предварительная инкубация вирусов с исследуемыми препаратами в течение 1 ч перед инфицированием клеток показала следующую картину: вирулицидная активность эхинохрома А была незначительно ниже, чем у композиции, а плацебо проявляло низкую активность (менее 35%). Заявляемая композиция проявляла значимую активность в отношении обоих вирусов, так как ингибировала ВКЭ и ВГП-1 на 90% и 100%, соответственно.

Внесение исследуемых препаратов за 1 ч до инфицирования клеток не оказало значимого эффекта на репродукцию вируса. Степень ингибирования вирусов при профилактическом применении композиции и плацебо в отношении ВГП-1 составляет 35% и 25%, соответственно. При этом профилактическое действие эхинохрома А было гораздо слабее, чем у композиции и плацебо.

При воздействии заявляемой композиции антиоксидантов на раннюю стадию репликации вирусов ВКЭ и ВГП-1 (через 1 ч после инфицирования клеток), вирусингибирующий эффект был умеренный (35 и 42% соответсвенно), эхинохром А был примерно в полтора раза менее активным, а плацебо всего на 5 и 15% подавляло репликацию вирусов соответственно.

Таким образом, показано, что заявляемая композиция антиоксидантов является высокоэффективным вирулицидным и умеренноэффективным вирусиндуцирующим средством в отношении РНК-содержащего вируса - вируса клещевого энцефалита и ДНК-содержащего вируса - вируса герпеса простого 1 типа.

Литература

1. Valyi-Nagy Т, Dermody T.S. Role of oxidative damage in the pathogenesis of viral infections of the nervous system. Histol Histopathol 2005. Vol. 20. P. 957-967.

2. Reshi M L, Su Y.-C, Hong J.-R. RNA viruses: ROS-mediated cell death. Int J Cell Biol 2014; ID 467452.

3. Gullberg R.C, Steel J.J., Moon S.L., et al. Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology 2015. Vol. 475. P. 219-229.

4. Захарычева Т.А, Ковальский Ю.Г., Лебедько О.А. и др. Оксидативный стресс у больных клещевым энцефалитом на Дальнем Востоке Российской Федерации. Дальневост. журн. инфекц. патол. 2012 Т. 20. С. 41-45.

5. Sebastiano М., Chastel О., de Thoisy В., et al. Oxidative stress favours herpes virus infection in vertebrates: a meta-analysis. Current Zoology, 2016, 62(4), 325-332.

6. Kavouras J.H., Prandovszky E., Valyi-Nagy K., et al. Herpes simplex virus type 1 infection induces oxidative stress and the release of bioactive lipid peroxidation by-products in mouse P19N neural cell cultures. JNeurovirol. 2007 Oct; 13(5):416-25.

7. Firuzi O, Miri R, Tavakkoli M, et al. Antioxidant therapy: current status and future prospects. Curr. Med. Chem. 2011. Vol. 18. P. 3871-3888.

8. Крылова H.B., Попов A.M., Леонова Г.Н. Антиоксиданты как потенциальные противовирусные препараты при флавивирусных инфекциях. Антибиотики и химиотер. 2016. Vol. 61. Р. 5-6.

9. Kancheva V.D., Slavova-Kazakova А.K., Angelova S.E., et al. Protective effects of new antioxidant compositions of 4-methylcoumarins and related compounds with dl-α-tocopherol and 1-ascorbic acid. Parmar. Sci Food Agric. 2018. Vol. 98. P. 3784-3794.

10. RU 2134107 C1, 10.08.1999

11. RU 2137472 C1, 23.04.1999

12. RU 2266737 C1, 27.12.2005

13. RU 2625740 C1, 18.07.2017

14. RU 2408367 C1, 10.01.2011

15. KR 20150106996 A, 23.09.2015

16. KR 20150114096 A, 12.10.2015

17. Веселова M.B., Федореев С.А., Василевская Н.А., и др. Антиоксидантная активность полифенолов из дальневосточного растения тиса остроконечного. Хим. фарм. журн. 2007. Т. 41, №2. С. 29-34.

18. Belikov SI, Kondratov IG, Potapova UV, et al. The relationship between the structure of the tick-borne encephalitis virus strains and their pathogenic properties. PLoS One 2014. T: 9 Вып. 4. e94946.

19. Leonova GN, Maystrovskaya OS, Kondratov IG, et al. The nature of replication of tick-borne encephalitis virus strains isolated from residents of the Russian Far East with inapparent and clinical forms of infection. Virus Res. 2014. Vol. 189. P. 34-42.

20. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65:55-63.

21. Bastos JCS, de Menezes CBA, Fantinatti-Garboggini F, et al. Antiviral Activity of Marine Actinobacteria against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis С Virus. RRJMB. 2015. Vol. 4, N 4. P. 55-62.

22. Matsuda M, Shigeta S, Okutani K. Antiviral activities of marine Pseudomonas polysaccharides and their oversulfated derivatives. Mar. Biotechnol. 1999. Vol. 1. P. 68-73.

Композиция антиоксидантов, проявляющая противовирусную активность в отношении вирусов клещевого энцефалита и герпеса простого 1 типа, представляющая собой смесь эхинохрома А, аскорбиновой кислоты и α-токоферола при массовом соотношении компонентов 5:5:1.
Противовирусная композиция
Источник поступления информации: Роспатент

Showing 1-10 of 41 items.
10.04.2013
№216.012.3308

Способ получения 6,7-замещенных 2,3,5,8-тетрагидрокси-1,4-нафтохинонов (спиназаринов)

Настоящее изобретение относится к способу получения 6,7-замещенных производных 2,3,5,8-дигидрокси-1,4-нафтохинона (спиназаринов) формулы I, где R и R оба одновременно обозначают Н, Me, Cl, или R=H, a R=Me, Et, t-Bu, Cl, OMe; R=Me, a R=Cl, OMe, OEt, OH; R=Et, a R=Cl, OMe, OEt, OH, которые могут...
Тип: Изобретение
Номер охранного документа: 0002478607
Дата охранного документа: 10.04.2013
10.08.2013
№216.012.5d0b

Способ получения эстрогенсвязывающего белка, ассоциированного со злокачественными новообразованиями

Изобретение относится к биотехнологии и медицине (практической онкологии), а именно к разработке способа получения эстроген-связывающего белка эмбриональной природы (ЭСБ). Способ предусматривает следующее. Осадок А (отход, получаемый при промышленном получении гамма-глобулиновой фракции из...
Тип: Изобретение
Номер охранного документа: 0002489440
Дата охранного документа: 10.08.2013
10.10.2013
№216.012.719d

Средство, ингибирующее множественную лекарственную устойчивость опухолевых клеток

Изобретение относится к медицине, ветеринарии и фармацевтической промышленности. Изобретение обеспечивает применение тритерпеновых гликозидов из голотурий фрондозида А или комплекса фрондозида А с холестерином в качестве средства, ингибирующего множественную лекарственную устойчивость...
Тип: Изобретение
Номер охранного документа: 0002494742
Дата охранного документа: 10.10.2013
20.01.2014
№216.012.97e4

Плазмида 40gal, определяющая синтез α-галактозидазы α-psgal, штамм e.coli rosetta(de3)/40gal - продуцент химерного белка, включающего аминокислотную последовательность α-psgal, и способ ее получения

Изобретение относится к области биохимии и представляет собой плазмиду, определяющую синтез α-галактозидазы α-PsGal, включающую NcoI/SalI - фрагмент плазмиды pET-40b(+) (Novagen) и фрагмент ДНК, размером 2142 пар оснований, содержащий химерный ген, состоящий из структурной части гена α-PsGal,...
Тип: Изобретение
Номер охранного документа: 0002504583
Дата охранного документа: 20.01.2014
20.03.2014
№216.012.ac1c

Средство, обладающее противоопухолевой, антикоагулянтной, ранозаживляющей, противовоспалительной, антиоксидантной активностью, способностью ингибировать коллагеназу и ангиотензинпревращающий фермент (апф), и способ его получения

Изобретения относятся к биотехнологии и могут быть использованы для получения биологически активных пептидов коллагена. Морскую звезду Patiria pectinifera обезвоживают 96% этиловым спиртом, затем деминерализируют 1-2 N раствором минеральной кислоты при соотношении сырье:минеральная кислота...
Тип: Изобретение
Номер охранного документа: 0002509775
Дата охранного документа: 20.03.2014
20.08.2014
№216.012.e9e2

Плазмида 40nagal, определяющая синтез α-n-ацетилгалактозаминидазы α-alnagal, штамм e.coli rosetta(de3)/40nagal - продуцент химерного белка, включающего аминокислотную последовательность рекомбинантной α-n-ацетилгалактозаминидазы α-alnagal, и способ ее получения

Изобретение относится к области биохимии и представляет собой плазмиду 40NaGal, определяющую синтез α-N-ацетилгалактозаминидазы α-AlNaGal, включающую NcoI/SalI-фрагмент плазмиды pET-40b(+) (Novagen) и фрагмент ДНК размером 1299 пар оснований, содержащий химерный ген, состоящий из структурной...
Тип: Изобретение
Номер охранного документа: 0002525682
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.074a

Способ фотон-захватной терапии опухолей

Изобретение относится к медицине, а именно к лучевой терапии опухолей. Способ включает введение в опухоль средства, содержащего наноразмерные частицы золота и йодсодержащее контрастное вещество. Данное средство вводят непосредственно в опухоль, после чего проводят обработку опухоли фотонным...
Тип: Изобретение
Номер охранного документа: 0002533267
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0c2d

Гликозидные производные 1,2-дитиол-3-тиона или 1,2-дитиол-3-она и лекарственные средства на их основе

Настоящее изобретение относится к гликозидным производным 1,2-дитиол-3-тиона или 1,2-дитиол-3-она формулы 1, где R=S или O; R является остатком пер-O-ацетил D-глюкозы, пер-O-ацетил D-галактозы, пер-O-ацетил D-маннозы, пер-O-ацетил D-ксилозы, пер-O-ацетил L-арабинозы, пер-O-ацетил D-мальтозы...
Тип: Изобретение
Номер охранного документа: 0002534525
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.12c2

Средство, обладающее гастропротекторной активностью

Изобретение относится к области фармацевтики, а именно к применению водорастворимого полиэлектролитного комплекса каппа-каррагинан:хитозан при соотношении компонентов 1:10 в/в с молекулярной массой каппа-каррагинана 311 кДа и с молекулярной массой хитозана 115 кДа и степенью N-ацетилирования 6%...
Тип: Изобретение
Номер охранного документа: 0002536225
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1a55

Рекомбинантная плазмидная днк pet40cmap/mbl-t, кодирующая гибридный бифункциональный полипептид cmap/mbl-t со свойствами высокоактивной щелочной фосфатазы cmap и маннан-связывающего лектина с-типа mbl-t, рекомбинантный штамм e.coli rosetta(de3)/pet40cmap/mbl-t - продуцент гибридного бифункционального полипептида cmap/mbl-t и способ его получения

Изобретение относится к биотехнологии и представляет собой плазмиду pET40CmAP/MBL-T, определяющую синтез гибридного бифункционального полипептида CmAP/MBL-T со свойствами высокоактивной щелочной фосфатазы морской бактерии Cobetia marina (CmAP) и маннан-связывающего лектина С-типа...
Тип: Изобретение
Номер охранного документа: 0002538169
Дата охранного документа: 10.01.2015
Showing 1-10 of 28 items.
10.06.2013
№216.012.4851

Способ получения аллантоина

Изобретение относится к биотехнологии и представляет собой способ получения аллантоина, ценного биологически активного вещества для медицины и косметологии. Аллантоин получают из клеточной культуры Mertensia maritima (L.) S.F.Gray, которую экстрагируют смесью хлороформа и этилового спирта в...
Тип: Изобретение
Номер охранного документа: 0002484093
Дата охранного документа: 10.06.2013
20.11.2013
№216.012.81ee

Электрокаталитический способ получения элементной серы из сероводорода

Изобретение относится к области электрохимии. В органический растворитель с фоновым электролитом вводят электрокатализатор - 3,5-ди-трет-бутил--бензохинон и проводят электролиз сероводорода на платиновом аноде при температуре 20-25°С и атмосферном давлении. При этом получают элементную...
Тип: Изобретение
Номер охранного документа: 0002498938
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.879a

Средство, обладающее кардиопротекторным действием, и способ его получения

Предложено кардиопротекторное средство на основе эхинохрома-2,3,5,6,8-пентагидрокси-7-этил-1,4-нафтохинона, который получают из природного источника (плоских морских ежей) или синтетическим путем, отличающееся тем, что оно представляет собой водный раствор эхинохрома в молекулярно...
Тип: Изобретение
Номер охранного документа: 0002500396
Дата охранного документа: 10.12.2013
20.05.2014
№216.012.c4fe

Способ нанесения металлического покрытия на токопередающие поверхности разборных контактных соединений

Изобретение может быть использовано при монтаже, ремонте и эксплуатационном обслуживании электротехнического оборудования ЛЭП, электрических станций, подстанций, контактных сетей и на заводах, выпускающих электротехническое оборудование. Токопередающую поверхность разборного контактного...
Тип: Изобретение
Номер охранного документа: 0002516189
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c621

Электрохимический способ получения элементной серы из сероводорода в органических растворителях

Изобретение относится к области органической химии, в частности, к способам получения элементной серы из сероводородсодержащих газов и газоконденсатных смесей, и может быть использовано на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002516480
Дата охранного документа: 20.05.2014
27.09.2014
№216.012.f9d3

Способ оценки эффективности противогерпетического действия фотодинамического воздействия на вирус простого герпеса (впг) in vitro

Изобретение относится к области медицины, а именно к способу оценки эффективности противогерпетического действия фотодинамического воздействия на вирус простого герпеса (ВПГ) in vitro. Сущность способа состоит в том, что оказывают фотодинамическое воздействие на культуру клеток почки...
Тип: Изобретение
Номер охранного документа: 0002529792
Дата охранного документа: 27.09.2014
20.01.2016
№216.013.a309

Средство, обладающее антиагрегантной и антикоагулянтной активностью

Изобретение относится к медицине и может быть использовано как антиагрегантное и антикоагулянтное средство. Для этого применяют 7-О-гентиобиозид формононетина, который выделен из суммарного спиртового экстракта корней Maackia amurensis. Изобретение обеспечивает антиагрегантное и...
Тип: Изобретение
Номер охранного документа: 0002573379
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2f8a

Способ нанесения металлического покрытия на токопередающие поверхности контактных соединений

Изобретение относится к области электротехники, а именно к области монтажа, ремонта и обслуживания электротехнического оборудования. Способ нанесения защитного металлопокрытия из легкоплавкого сплава на основе висмута на токопередающие поверхности контакт-деталей контактных соединений включает...
Тип: Изобретение
Номер охранного документа: 0002580355
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.326c

Способ получения пентагидроксиэтилнафтохинона (эхинохрома а)

Изобретение относится к способу получения пентагидроксиэтилнафтохинона (эхинохром А), являющегося активной субстанцией для получения лекарственных средств: «Гистохром®, раствор для инъекций 0,2 мг/мл» и «Гистохром®, раствор для внутривенного введения 10 мг/мл» и производства биологически...
Тип: Изобретение
Номер охранного документа: 0002581055
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.82a9

Средство, обладающее антиагрегантной и антикоагулянтной активностью

Изобретение относится к фармацевтической промышленности, а именно к средству, обладающему антиагрегантной и антикоагулянтной активностью. Средство, обладающее антиагрегантной и антикоагулянтной активностью, на основе сухого этанольного экстракта Maackia amurensis, которое представляет собой...
Тип: Изобретение
Номер охранного документа: 0002601407
Дата охранного документа: 10.11.2016
+ добавить свой РИД