×
16.08.2019
219.017.c0a8

Результат интеллектуальной деятельности: Способ регистрации следовых количеств веществ в газовой среде

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптике и аналитической технике и может быть применено для определения наличия следовых количеств летучих веществ. Способ регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в трехслойной тонкой пленочной структуре, содержащий зеркальный серебряный слой, защитный слой и слой из галогенида серебра, по изменению формы кривой коэффициента отражения падающего излучения от угла падения, отличающийся тем, что одновременно с засветкой молекул светом с частотой излучения, совпадающей с линией поглощения и вызывающей поверхностную оптическую сенсибилизацию, включается постоянное электрическое поле, параллельное плоскости пленок. Технический результат заключается в повышении чувствительности регистрации следовых количеств веществ в газовой среде.

Изобретение относится к оптике и аналитической технике и может быть применено для определения наличия следовых количеств летучих веществ.

Известен способ определения следовых количеств летучих веществ, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в трехслойной тонкой пленочной структуре Ag-Al2O3-AgI по изменению формы кривой коэффициента отражения падающего излучения от угла падения [С.В. Виноградов, М.А. Кононов, В.В. Савранский, С.И. Валянский, М.Ф. Урбайтис. Влияние оптической сенсибилизации на поверхностный плазмонный резонанс. Квантовая электроника, 33, №8 (2003), с. 711-713]. В этом способе берется прямоугольная призма, на гипотенузной грани которой размещена трехслойная тонкопленочная структура Ag-Al2O3-AgI, определяется диэлектрическая постоянная внешней пленки (AgI) методом нарушенного полного внутреннего отражения по схеме Кречмана. Затем грань призмы (сенсор) с тонкопленочной структурой вводится в контакт с тестируемым воздухом, где происходит адсорбция целевого вещества, и облучают ее светом с длиной волны возбуждения адсорбированных молекул, что вызывает их поверхностную оптическую сенсибилизацию. В результате на поверхности нанокристаллов пленки AgI образуются кластеры металлического серебра размером порядка 50×50 нм - формируются центры скрытого изображения, - которые вызывают изменение диэлектрической постоянной внешней пленки, что приводит к изменению резонансного угла поверхностного плозмонного резонанса, т.е. изменяется форма кривой коэффициента отражения падающего излучения от угла падения.

Недостатком метода является его низкая чувствительность для определения следовых количеств веществ, так как размер кластеров металлического серебра незначителен для четкой регистрации изменений резонансного угла поверхностного плозмонного резонанса.

Наиболее близким способом является способ определения малых концентраций молекул летучих веществ в газовой среде [Патент RU 2510014]. В этом способе также для трехслойной тонкопленочной структуры Ag-Al2O3-AgI, сформированной на грани призмы, диэлектрическая постоянная внешней пленки (AgI) определяется методом нарушенного полного внутреннего отражения по схеме Кречмана, для чего определяются параметры поверхностного плазмонного резонанса: резонансный угол для какой-либо длины волны либо резонансная длина волны при каком-либо угле. Затем тонкопленочную структуру вводят в контакт с тестируемым воздухом, где происходит адсорбция целевого вещества, и также облучают ее светом с длиной волны возбуждения адсорбированных молекул. В результате на поверхности пленки AgI формируются центры скрытого изображения, которые подвергаются фотографическому проявлению, так как процессы, происходящие в нанокристаллах йодистого серебра, аналогичны процессам, происходящим в нанокристаллах фотографических эмульсий. В способе осуществляется практически полное восстановление металлического серебра в центрах скрытого изображения с помощью фотографического проявления, что должно обеспечить значительный отклик поверхностного плазмонного резонанса. И это должно увеличить на несколько порядков чувствительность способа. И из теоретических расчетов, приведенных в патенте, следует какая чувствительность может быть достигнута.

Недостатком способа является трудность интерпретации полученных измерений, так как в процессе проявления на поверхности пленки AgI помимо разложения этих молекул и выделение на поверхности пленок металлического серебра на этой поверхности будут адсорбироваться молекулы проявителя. Причем они будут адсорбироваться в любом случае, будет ли скрытое изображения за счет взаимодействия света с молекулами определяемого вещества либо этих молекул не будет на поверхности сенсора. Отмыть же пленку от проявителя, чтобы на ней не оставалось даже следовых количеств проявителя и проконтролировать это крайне сложно. То есть в любом случае произойдет изменение вида кривой отражения падающего излучения от угла падения в трехслойной тонкой пленочной структуре Ag-Al2O3-AgI. Кроме того, такой способ обнаружения происходит не в реальном режиме времени, а по прошествии проявки скрытого изображения.

Задача, на решение которой направлено заявляемое изобретение, заключается в создание способа, при котором размер образовавшихся кластеров металлического серебра достаточен для четкой регистрации изменений резонансного угла поверхностного плозмонного резонанса в тонкопленочной структуры Ag-Al2O3-AgI без ее фотографического появления.

Техническим результатом является повышение чувствительности регистрации следовых количеств веществ в газовой среде, происходящим в реальном режиме времени.

Технический результат достигается тем, что в способе регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в трехслойной тонкой пленочной структуре, содержащий зеркальный серебряный слой, защитный слой и слой из галогенида серебра, о наличии целевых веществ судят по изменению формы кривой коэффициента отражения падающего излучения от угла падения, причем, одновременно с засветкой молекул светом с частотой излучения совпадающей с линией поглощения и вызывающей поверхностную оптическую сенсибилизацию включается постоянное электрическое поле параллельное плоскости пленок. Тестируемые молекулы должны либо прямо, либо через подобранную последовательность реакций с другими адсорбированными на поверхности нанокристаллов молекулами, передавать возбуждения нанокристаллам галогенида серебра.

Для реализации способа необходим сенсор, содержащий тонкопленочную структуру: зеркальный серебряный слой, защитный, например, из оксида алюминия, и слой из галогенида серебра, например, иодида. Толщина слоев должна быть пригодна для исследования процессов поверхностного плазмонного резонанса. Затем в газовой среде не содержащей целевое вещество определяется диэлектрическая постоянная внешней пленки (AgI) методом нарушенного полного внутреннего отражения по схеме Кречмана, для чего определяются параметры поверхностного плазмонного резонанса, т.е. резонансный угол для какой-либо длины волны либо резонансная длина волны при каком- либо угле. Готовый сенсор с измеренным резонансным углом вводится в контакт с тестируемым газом. Одновременно включается свет с длиной волны, которая возбуждает молекулы целевого вещества и включается постоянное электрическое поле параллельное плоскости пленок. Постоянное электрическое поле концентрирует атомы серебра. Напряженность электрического поля должна быть порядка 1000 В/М. При меньшей напряженности процесс концентрации замедляется и может остаться незавершенным, при большей может произойти разрушение пленки галогенида серебра. Концентрация атомов серебра меняет диэлектрическую проницаемость пленки галогенида, что приводит к смещению резонансного угла и изменению вида кривой коэффициента отражения, по которым фиксируются наличие в газе тестируемые молекулы вещества.

На поверхности пленки после засветки кристаллов галогенида серебра в электрическом поле, частицы серебра выделяются в основном в той части кристалла, куда перемещаются фотоэлектроны в электрическом поле. С противоположной стороны кристалла, т.е. по направлению электрического поля должны быть следы дырок (атомов йода). Но, атомы йода быстро испаряется с поверхности, а серебро концентрируется на той части кристаллитов, которая противоположна направлению поля. Причем тестируемые молекулы играют роль катализаторов по созданию электронов. Поэтому нахождение хотя бы одной молекулы тестируемого вещества на нанокристале галогенида серебра способствует генерации серебра.

Подобные эксперименты по разделению галогенидов серебра на ионы серебра и ионы галогенида в электрическом поле описано в работе [Шапиро Б.И. Теоретические начала фотографического процесса, М.; Эдиториал УРСС, 2000. 288 с. 35-36].

Оценки чувствительности можно провести, базируясь на основных положениях молекулярно-кинетической теории.

Положим, имеется сенсор Ag-Al2O3-AgI. Необходимо определить наличие в воздухе молекул красителя Арсеназо III. Оптическую сенсибилизацию этого красителя вызывает его облучение светом с длиной волны 543,5 нм.

Мощность излучения He-Ne лазера с длиной волны 543,5 нм составляет P~5 мВт/см2, тогда количество фотонов будет N=Pλ/ch=5×1016 фотонов/см2с, где λ - длина волны излучения лазера, с - скорость света, h - постоянная планка.

Характерный размер площади нанокристалла AgI равен 104 нм2. На 1 см2 будет 1010 нанокристаллов. То есть на каждый нанокристал приходится 5×106 фотонов/с. Коэффициент диффузии молекул в воздухе D=7,7 10-1 см/с. Средняя скорость молекул Арсеназо III V=(kT/m)1/2=20 м/с, где k - постоянная Больцмана, Т - температура окружающей среды в Кельвинах, m - масса молекулы Арсеназо III. Если на нанокристалле есть хоть одна молекула красителя, то по нашему методу будет происходить генерация электронов и тем самым атомов серебра, то есть одна молекула красителя может сгенерировать до 100 атомов серебра и более (их количество зависит от времени экспозиции). Кроме того увеличивая время экспозиции увеличивается число молекул красителя адсорбирующихся на нанокристала. При экспозиции в 600 секунд дает возможность обнаруживать концентрацию 5×105 частиц/см2.

Таким образом, предложенный способ измерения малых концентраций летучих веществ на основе поверхностного плазмонного резонанса с применением йодида серебра позволяет значительно (на несколько порядков) повысить чувствительность сенсора к находящимся в воздухе фотосенсибилизирующим йодид серебра веществам с помощью метода одновременного экспонирования поверхности излучением нужной частоты (которая зависит от оптических свойств материала) и наложения электрического поля на эту поверхность параллельно ей.

Способ регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в трехслойной тонкой пленочной структуре, содержащий зеркальный серебряный слой, защитный слой и слой из галогенида серебра, по изменению формы кривой коэффициента отражения падающего излучения от угла падения, отличающийся тем, что одновременно с засветкой молекул светом с частотой излучения, совпадающей с линией поглощения и вызывающей поверхностную оптическую сенсибилизацию, включается постоянное электрическое поле, параллельное плоскости пленок.
Источник поступления информации: Роспатент

Showing 71-80 of 108 items.
02.05.2019
№219.017.4864

Способ получения биодеградируемого полимерного покрытия на основе полилактида на проволоке tinbtazr

Изобретение относится к способу получения биодеградируемого полимерного покрытия на основе полилактида на проволоке TiNbTaZr для кава-фильтров, применяемых в эндоваскулярной профилактике тромбоэмболии легочной артерии. Способ включает растворение полилактида в хлороформе, добавление...
Тип: Изобретение
Номер охранного документа: 0002686747
Дата охранного документа: 30.04.2019
20.05.2019
№219.017.5d26

Способ обескремнивания нефелинового концентрата и устройство для его осуществления

Изобретение относится к области металлургии, в частности к переработке нефелинового концентрата с получением из него синтетического боксита, содержащего до 80% AlO и до 1,5% SiO. Способ включает приготовление шихты из концентрата и углерода и карботермическую восстановительную плавку шихты в...
Тип: Изобретение
Номер охранного документа: 0002688083
Дата охранного документа: 17.05.2019
11.07.2019
№219.017.b28b

Способ изготовления тонкой проволоки из биосовместимого сплава tinbtazr

Изобретение относится к способам изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr для кава-фильтров и стентов. Способ включает выплавку заготовки и ее деформационно-термическую обработку. Возможность получения изделий повышенной прочности, пластичности и улучшенных...
Тип: Изобретение
Номер охранного документа: 0002694099
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b29f

Устройство для измерения толщины и диэлектрической проницаемости тонких пленок

Изобретение относится к области оптического приборостроения и касается устройства для исследования толщины и диэлектрических свойств тонких пленок. Устройство включает в себя два лазера с различной длиной волны, делительный кубик, расширитель светового потока, линзу, два поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002694167
Дата охранного документа: 09.07.2019
14.08.2019
№219.017.bf38

Борированный порошок для плазменного напыления

Изобретение относится к материалу для нанесения покрытия, в частности борированному порошку для плазменного напыления. Может использоваться для формирования износостойких покрытий. Частицы борированного порошка для плазменного напыления, состоят из ядра и борсодержащей оболочки, которая...
Тип: Изобретение
Номер охранного документа: 0002697147
Дата охранного документа: 12.08.2019
16.08.2019
№219.017.c0ae

Способ получения биоцемента для заполнения костных дефектов на основе дикальцийфосфата дигидрата и сульфата кальция двуводного

Изобретение относится к медицине и касается получения биоцемента для заполнения костных дефектов. Для этого цементный раствор получают в результате смешения порошка трикальцийфосфата и сульфата кальция полуводного с водным раствором дигидроортофосфата магния 4-водного - раствор 50-66% соли...
Тип: Изобретение
Номер охранного документа: 0002697396
Дата охранного документа: 14.08.2019
23.08.2019
№219.017.c2d7

Способ изготовления керамики на основе композита нитрид кремния - нитрид титана

Изобретение относится к способу получения керамического композита из нитрида кремния, упрочненного нитридом титана, обладающего совокупностью физико-механических свойств, таких как высокая прочность и твердость, низкий коэффициент термического расширения, износостойкость и электрическая...
Тип: Изобретение
Номер охранного документа: 0002697987
Дата охранного документа: 21.08.2019
01.11.2019
№219.017.dc2d

Способ плазменного напыления с насадкой к плазмотрону и устройство для его осуществления

Изобретение относится к области металлургии, к напылению плазменных покрытий и может быть использовано для формирования износостойких, коррозионностойких и функциональных покрытий с минимальным содержанием оксидов, формирующихся в процессе напыления. Способ и устройство напыления покрытий при...
Тип: Изобретение
Номер охранного документа: 0002704680
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dc41

Высокопрочная дисперсионно-твердеющая азотосодержащая коррозионно-стойкая аустенитная сталь

Изобретение относится к области металлургии, а именно к высокопрочным дисперсионно-твердеющим азотосодержащим коррозионно-стойким аустенитным сталям, используемым для изготовления высоконагруженных конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит...
Тип: Изобретение
Номер охранного документа: 0002704703
Дата охранного документа: 30.10.2019
04.11.2019
№219.017.de5f

Способ получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция

Изобретение может быть использовано в реконструктивно-пластической хирургии для пластической реконструкции поврежденных костных тканей. Для получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, для заполнения костных дефектов проводят синтез in...
Тип: Изобретение
Номер охранного документа: 0002705084
Дата охранного документа: 01.11.2019
Showing 11-14 of 14 items.
25.04.2019
№219.017.3b97

Способ изготовления термостабильных редкоземельных магнитов

Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в системах автоматики, промышленном оборудовании, автомобилях. Осуществляют выплавку базового сплава на основе интерметаллического соединения NdFeB и...
Тип: Изобретение
Номер охранного документа: 0002685708
Дата охранного документа: 23.04.2019
29.04.2019
№219.017.42af

Способ получения металлов

Изобретение относится к области электрохимии, в частности к электролитическому получению металлов из их сульфидов. Электролиз ведут с использованием раствора электролита и положительного электрода, содержащего сульфид получаемого металла, порошок вещества, являющегося акцептором атомов серы, и...
Тип: Изобретение
Номер охранного документа: 0002307202
Дата охранного документа: 27.09.2007
11.07.2019
№219.017.b29f

Устройство для измерения толщины и диэлектрической проницаемости тонких пленок

Изобретение относится к области оптического приборостроения и касается устройства для исследования толщины и диэлектрических свойств тонких пленок. Устройство включает в себя два лазера с различной длиной волны, делительный кубик, расширитель светового потока, линзу, два поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002694167
Дата охранного документа: 09.07.2019
01.06.2023
№223.018.750a

Способ герметизации мембран из сплавов палладия с рзм в конструкции фильтрующих элементов для глубокой очистки водорода методом контактной сварки

Изобретение может быть использовано для получения неразъемных вакуумно-плотных соединений при герметизации мембран из сплавов палладия с РЗМ в конструкции фильтрующих элементов для глубокой очистки водорода. После очистки соединяемых поверхностей проводят сборку пакета, содержащего детали из...
Тип: Изобретение
Номер охранного документа: 0002749404
Дата охранного документа: 09.06.2021
+ добавить свой РИД