×
15.08.2019
219.017.bfed

Результат интеллектуальной деятельности: Способ определения артериального давления

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, в частности к физиологии и кардиологии. Регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн ОСГ. Определяют величину диастолического и систолического давления по величине давления в пережимной измерительной манжете. При этом определяют предельное значение амплитуды и постоянной времени. Для определения систолического давления на систолической части осциллограммы регистрируют постоянную времени по калибровочной характеристике. Калибровку проводят априори для двух измеренных и известных значений верхней и нижней границ адаптивного диапазона. Калибровочной характеристикой служит функция предельной амплитуды осциллограммы, компенсирующая неопределенность постоянной времени, выбранной произвольно, и связывающая эталонную и измеренную характеристику за счет нормирования измеренных значений известными. По калибровочной характеристике находят действительные значения постоянной времени и предельного значения амплитуды осциллограммы, по которым последовательно строят калибровочную характеристику, эталонную характеристику и определяют систолическое давление, аналогично находят диастолическое давление. Изобретение обеспечивает повышение метрологической эффективности за счет исключения метрологической и динамической погрешности по калибровочной характеристике предельной амплитуды осциллограммы, компенсирующей неопределенность постоянной времени, выбранной произвольно. 4 ил.

Предполагаемое изобретение относится к медицине, в частности к физиологии и кардиологии, может быть использовано как в клинических, так и в экспериментальных исследованиях.

Известен способ определения артериального давления (АД) методом Короткова [Медицинские приборы. Разработка и применение / Под ред. Ревенко С.В. - М.: Медицинская книга, 2004. - С. 326-330], по которому измеряют диастолическое и систолическое артериальное давление.

Недостатками этого решения являются необходимость создания высоких уровней давления в пережимной манжете, превышающих величину систолического давления в артерии, а также то, что между измерением диастолического и систолического давления проходит время не менее 15-20 с. Таким образом, измеряемые величины давления относятся к сердечным циклам, отстоящим далеко друг от друга.

Известен также тахоосциллографический метод (ТО) измерения АД, предложенный Н.Н. Савицким [Савицкий Н.Н. Некоторые методы исследования и функциональной оценки системы кровообращения. Медгиз, 1956]. В основе ТО метода лежит принцип измерения изменения объема конечности, которое происходит под действием пульсирующего тока крови в магистральных сосудах. Этот метод позволяет измерять диастолическое (Рмин), среднее динамическое (Рср), боковое систолическое (Рбс) и конечное (Рмакс) систолические давления в магистральном артериальном сосуде конечности, на которую наложена пережимная измерительная манжета. По указанным выше значениям АД рассчитывают величины пульсового (dP, Рбс, Рмин) и ударного (Руд, Рмакс, Рбс) АД. Погрешность измерения первых четырех показателей АД по данным автора составляет 5 мм рт.ст. при скорости подъема давления в пережимной манжете 4-5 мм рт.ст./с.

Недостатком этого способа является ряд инструментальных и методических недоработок, которые резко увеличивают погрешность измерений.

За прототип принят осциллографический способ измерения артериального давления [см. патент №2441581 РФ, кл. А61В 5/022, БИ от 10.02.2012 г.], включающий регистрирацию и анализ осциллограмм артерий в частотах от 0-0,1 Гц до 40-60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до появления волн ОСГ. Определяют величину диастолического и систолического давления по величине давления в пережимной измерительной манжете. При этом определяют предельное значение амплитуды и постоянной времени. Для определения систолического давления на систолической части осциллограммы регистрируют текущую амплитуду в первый момент времени и измеряют вторую амплитуду в кратный момент времени от первоначального значения времени. По двум значениям амплитуды и моментам времени находят предельное значение амплитуды и постоянную времени, по которым определяют систолическое давление, затем аналогично находят диастолическое давление.

Недостатком прототипа является низкая точность измерений за счет измерения по калибровочной характеристике с известными параметрами, которые на практике, как правило, неизвестны и изменяются нелинейно, компенсируя неопределенность другого параметра, выбранного произвольно.

Технической задачей способа являются повышение метрологической эффективности за счет исключения методической и динамической погрешности по калибровочной характеристике предельной амплитуды осциллограммы, компенсирующей неопределенность постоянной времени, выбранной произвольно.

Поставленная техническая задача достигается тем, что в способе определения артериального давления включающем регистрацию и анализ осциллограмм артериальных сосудов в процессе нарастания давления в пережимной измерительной манжете с последующим электрическим преобразованием, регистрацию и анализ объемной осциллограммы (ОСГ) артериальных сосудов производят в полосе частот от 0-0,1 Гц до 40-60 Гц, компрессию пережимной измерительной манжеты продолжают до момента появления волн ОСГ, определяют величину диастолического и систолического давления по величине давления в пережимной измерительной манжете, определяют предельное значение амплитуды и постоянной времени, в отличие от прототипа, для определения систолического давления на систолической части осциллограммы регистрируют постоянную времени по калибровочной характеристике, калибровку проводят априори для двух измеренных и известных значений верхней и нижней границ адаптивного диапазона, калибровочной характеристикой служит функция предельной амплитуды осциллограммы, компенсирующая неопределенность постоянной времени, выбранной произвольно, и связывающая эталонную и измеренную характеристику за счет нормирования измеренных значений известными, по калибровочной характеристике находят действительные значения постоянной времени и предельного значения амплитуды осциллограммы, по которым последовательно строят калибровочную характеристику, эталонную характеристику и определяют систолическое давление, аналогично находят диастолическое давление.

1. Определяют постоянную времени Т0 по калибровочной функции U0i.

2. Калибровку проводят априори для известных эталонных UЭ (фиг. 1 кривая 1) и измеренных U (фиг. 1 кривая 2) значений артериального давления.

3. Калибровочной характеристикой служит характеристика U0i предельной амплитуды осциллограммы, компенсирующая неопределенность постоянной времени Т*, выбранной произвольно, и связывающая эталонную UЭ и измеренную U зависимости за счет нормирования измеренных значений известными

По калибровочной характеристике U0i восстанавливают характеристику U (t), тождественную эталонной

которая максимально приближена к эталонной кривой UЭ(t):

Эталонная характеристика UЭ(t) и характеристика, ей тождественная, U (t) получены из экспоненциальной динамической характеристики с искомыми информативными параметрами U0, Т0:

где T0 - постоянная времени и U0 - предельное значение амплитуды. Физический смысл информативных параметров следует из предельных соотношений:

т.е. U0 - предельное напряжение крови для t=0,

т.е. Т0 - постоянная времени.

На практике один из информативных параметров исследуемой характеристики, как правило, неизвестен. В этом случае один параметр задается произвольно Т*, а второй принимает вид функции U0i, которая компенсирует незнание первого информативного параметра. С помощью этой функции калибруется измеренная характеристика.

Задаем произвольно параметр T*=const вместо неизвестного действительного значения постоянной времени Т0. Для компенсации произвольности константы Т* предельное значение амплитуды U0 превратится в характеристику U0i, компенсирующую незнание постоянной времени Т0. Калибровочной функцией для известных параметров Т0, U0 служит экспоненциальная динамическая характеристика (1).

Калибровочную характеристику U0i выразим из системы уравнений с известными параметрами T0, U0 характеристики UЭ(t), являющейся эталонной (получено путем аппроксимации экспериментальных данных), и характеристики и (t)=Ui, являющейся измеренной, с произвольной константой Т* и характеристикой U0i:

Поделим одно уравнение системы на другое, чтобы выразить калибровочную характеристику:

В соответствии с закономерностями калибровки и tЭ=t следует калибровочная характеристика U0i, связывающая между собой эталонную и измеренную кривые:

Следовательно, калибровочной характеристикой служит функция предельного значения амплитуды, компенсирующая неопределенность постоянной времени, выбранной произвольно (фиг. 1, кривая 3).

4. По калибровочной характеристике U0i находят действительные значения постоянной времени Т0 и предельного значения амплитуды U0, которые являются информативными параметрами, доставляющими оптимум калибровочной характеристике. Из характеристики (4) составим систему уравнений для i=1,2:

Поделив одно уравнение системы (5) на другое и прологарифмировав, определяют алгоритм постоянной времени Т0:

Следовательно, алгоритм (6) оптимизации постоянной времени регламентирован отношением диапазона времени к логарифму измеренных амплитуд границ осциллограммы в кратные моменты времени.

Выразив Т0 из первого и второго уравнений системы (5) и приравняв их друг другу

находят алгоритм определения предельного значения амплитуды осциллограммы:

Следовательно, алгоритм (7) оптимизации предельного значения амплитуды осциллограммы регламентирован отношением измеренных амплитуд границ осциллограммы в кратные моменты времени.

5. По действительным значениям постоянной времени Т0 и предельного значения амплитуды осциллограммы U0, последовательно строят калибровочную характеристику U0i предельного напряжения крови и эталонную характеристику UЭ. Результатом калибровки служит тождественность измеряемой характеристики U эталонной UЭ, т.е. U≡UЭ.

Для информативных параметров (6) и (7) строят (аппроксимируют) калибровочную характеристику U0i (4) (фиг. 1 кривая 3), по которой находят согласно (3) действительную Udi характеристику (фиг. 2, точки), тождественную эталонной Uэi (фиг. 2, линия) искомой характеристике, когда Udi=Uэi.

6. Измеряют систолическое давление, (фиг. 3)

Аппроксимируя осциллограмму по зависимости (2), вводят меру отсчета, которая равна постоянной времени TS.

Для систолической части модели t=TS, поэтому для измеряемого давления Р=νt по линейному закону:

где ν - скорость линейного набора давления в пережимной измерительной манжете.

7. Измерение диастолического давления.

Аналогично для диастолической части вводят меру отсчета, которая равна постоянной времени TD, и измеряют диастолическое давление:

PD=νt.

Адекватность предлагаемого способа физике эксперимента доказывает математическое моделирование действительной характеристики, относительно эквивалента экспериментальной характеристики, по полученным значениям.

Проводят оценку адекватности полученных зависимостей по формуле определения относительной погрешности:

ее оценка представлена на фиг. 4а.

При задании произвольного значения T*=const, отличного от эталонного Т0, предельное значение амплитуды осциллограммы U0 превращается в функцию, которая компенсирует незнание значения Т0. Эталонная и действительная характеристики тождественны (погрешность порядка 2*10-8 (фиг. 4 а), что доказывает эффективность применения калибровки.

Эффективность по точности предлагаемого решения - постоянная величина единичного уровня, а для прототипа - определяется нелинейностью η (см. фиг. 4б) калибровочной характеристики Ui:

Нелинейность (9) прототипа регламентирует методическую погрешность (см. фиг. 4б) для известных параметров U0, Т0 эквивалента, но на практике, как правило, один из параметров неизвестен. Его выбирают произвольно T*. При этом второй параметр из константы U0 принимает вид функции Uoi (фиг. 1, кривая 3), которая компенсирует незнание параметра Т0, что исключает методическую погрешность (9) характеристики. Это следует из тождественности эквиваленту действительной характеристики (фиг. 2).

Таким образом, определение артериального давления по калибровочной характеристике предельной амплитуды осциллограммы, компенсирующей неопределенность постоянной времени, выбранной произвольно, в отличие от известных решений (фиг. 4б), повышает точность определения артериального давления на несколько порядков за счет адекватности предлагаемого способа эксперименту при отсутствии методической и динамической погрешностей.


Способ определения артериального давления
Способ определения артериального давления
Способ определения артериального давления
Способ определения артериального давления
Способ определения артериального давления
Способ определения артериального давления
Способ определения артериального давления
Источник поступления информации: Роспатент

Showing 41-50 of 118 items.
11.10.2018
№218.016.9038

Стенд для изготовления вспомогательного несущего элемента ригеля с термовкладышами каркаса сборно-монолитного здания

Изобретение относится к области строительства и может быть использовано при изготовлении вспомогательного несущего элемента ригеля с термовкладышами каркаса сборно-монолитного здания. Технической результат изобретения заключается в сокращении трудозатрат. Стенд для изготовления вспомогательного...
Тип: Изобретение
Номер охранного документа: 0002669054
Дата охранного документа: 08.10.2018
11.10.2018
№218.016.9074

Пневмовакуумное вибрационное загрузочное устройство непрерывного действия

Изобретение относится к области агропромышленного комплекса и может найти применение при транспортировании сухих сыпучих растительных материалов. Техническая задача - обеспечение регулирования производительности и увеличение КПД за счет применения двух синхронно работающих шиберов и...
Тип: Изобретение
Номер охранного документа: 0002669255
Дата охранного документа: 09.10.2018
13.10.2018
№218.016.9106

Способ определения составляющих импеданса биообъекта

Изобретение относится к медицине, может быть использовано для оценки функционального состояния организма. В качестве составляющих импеданса биологического объекта определяют активное сопротивление R и эквивалентную емкость С тканей биообъекта. При этом на биообъект подают импульс...
Тип: Изобретение
Номер охранного документа: 0002669484
Дата охранного документа: 11.10.2018
13.10.2018
№218.016.9114

Способ определения функционального состояния системы гемостаза

Изобретение относится к медицине и может быть использовано для определения функционального состояния системы гемостаза. Для этого проводят измерение амплитуды записи процесса свертывания крови в его начале. Определяют показатели начала и конца процесса свертывания электрокоагулограммы крови....
Тип: Изобретение
Номер охранного документа: 0002669347
Дата охранного документа: 10.10.2018
16.10.2018
№218.016.9297

Способ определения модуля продольной упругости стенки кровеносного сосуда на основе эндоскопической оптической когерентной томографии

Изобретение относится к области измерений для диагностических целей, в частности к способам оценки состояния сердечно-сосудистой системы, и может быть использовано для определения модуля продольной упругости стенки кровеносного сосуда на основе эндоскопической оптической когерентной томографии....
Тип: Изобретение
Номер охранного документа: 0002669732
Дата охранного документа: 15.10.2018
19.10.2018
№218.016.937b

Способ получения продукта для регенерации воздуха

Изобретение относится к способам получения продуктов для регенерации воздуха для систем жизнеобеспечения человека. Для получения продукта для регенерации воздуха осуществляют смешение раствора пероксида водорода с сульфатом магния и гидроксидами лития и калия с последующей дегидратацией...
Тип: Изобретение
Номер охранного документа: 0002669857
Дата охранного документа: 16.10.2018
25.10.2018
№218.016.9561

Стержневая барабанная мельница

Изобретение относится к устройствам для сухого или мокрого измельчения минерального сырья и полуфабрикатов, преимущественно имеющих слоистую структуру, таких как графит и дисульфид молибдена, в химической промышленности и других производствах. Мельница содержит вращающийся барабан, частично...
Тип: Изобретение
Номер охранного документа: 0002670495
Дата охранного документа: 23.10.2018
09.11.2018
№218.016.9c0c

Электробаромембранный аппарат рулонного типа с низким гидравлическим сопротивлением

Изобретение относится к конструкциям мембранных аппаратов рулонного типа и может быть использовано для осуществления процессов мембранной технологии: электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электрогиперфильтрации. Электробаромембранный аппарат рулонного типа,...
Тип: Изобретение
Номер охранного документа: 0002671723
Дата охранного документа: 06.11.2018
16.01.2019
№219.016.afe8

Битум марки бн 90/10, наполненный стеклянным порошком

Изобретение относится к композиции битума, которая может быть использована в строительстве для гидроизоляции, и к которой предъявляются требования повышенных сроков эксплуатации. Композиция битума по изобретению включает битум марки БН 90/10 и стеклянный порошок в соотношении 1:2 по объему....
Тип: Изобретение
Номер охранного документа: 0002677201
Дата охранного документа: 15.01.2019
18.01.2019
№219.016.b0b3

Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в ортотропных капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Заявлен способ...
Тип: Изобретение
Номер охранного документа: 0002677259
Дата охранного документа: 16.01.2019
Showing 21-26 of 26 items.
13.10.2018
№218.016.9106

Способ определения составляющих импеданса биообъекта

Изобретение относится к медицине, может быть использовано для оценки функционального состояния организма. В качестве составляющих импеданса биологического объекта определяют активное сопротивление R и эквивалентную емкость С тканей биообъекта. При этом на биообъект подают импульс...
Тип: Изобретение
Номер охранного документа: 0002669484
Дата охранного документа: 11.10.2018
13.10.2018
№218.016.9114

Способ определения функционального состояния системы гемостаза

Изобретение относится к медицине и может быть использовано для определения функционального состояния системы гемостаза. Для этого проводят измерение амплитуды записи процесса свертывания крови в его начале. Определяют показатели начала и конца процесса свертывания электрокоагулограммы крови....
Тип: Изобретение
Номер охранного документа: 0002669347
Дата охранного документа: 10.10.2018
16.02.2019
№219.016.bb3e

Способ определения ударного объема сердца

Изобретение относится к области медицины, а именно к кардиологии, кардиохирургии, функциональной диагностике. Для определения ударного объема сердца выполняют наложение двух электродов на участки тела и регистрируют сопротивление между электродами. Ударный объем сердца определяют по исследуемой...
Тип: Изобретение
Номер охранного документа: 0002679948
Дата охранного документа: 14.02.2019
01.06.2019
№219.017.728a

Способ и система регулирования температуры и давления тензомостом

Изобретения относятся к измерительной технике, в частности к регулированию температуры и давления тензомостом. В способе регулирования температуры и давления тензомостом, включающем подачу тока на диагональ питания тензомоста и измерение напряжения на измерительной диагонали U, при смене...
Тип: Изобретение
Номер охранного документа: 0002690090
Дата охранного документа: 30.05.2019
23.07.2019
№219.017.b723

Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к медицине и может быть использовано для определения динамики изменения скорости оседания эритроцитов (СОЭ). Для этого проводят смешивание исследуемой пробы крови с антикоагулянтом. Полученный раствор помещают в гематокритный капилляр и центрифугируют. Затем проводят...
Тип: Изобретение
Номер охранного документа: 0002695072
Дата охранного документа: 19.07.2019
03.09.2019
№219.017.c67d

Способ определения артериального давления

Изобретение относится к медицине, в частности к физиологии и кардиологии. Регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн объемной...
Тип: Изобретение
Номер охранного документа: 0002698986
Дата охранного документа: 02.09.2019
+ добавить свой РИД