×
02.08.2019
219.017.bbc5

Результат интеллектуальной деятельности: СПОСОБ ГАЗОФАЗНОГО ОСАЖДЕНИЯ ТАНТАЛА НА ПОВЕРХНОСТЬ СТАЛЬНОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу газофазного осаждения покрытий тантала на поверхности изделий и может быть использовано для создания защитных покрытий, например, на оружейных стволах, в печатающих головках струйных устройств, биомедицинских имплантатах, а также для создания покрытий в изделиях микроэлектроники, например, в качестве диффузионного барьера между медью и кремнием, в качестве электрода затвора в полупроводниковых полевых транзисторах. Способ газофазного осаждения тантала на поверхность стального изделия включает подачу паров галогенида тантала и паров восстановителя к поверхности стального изделия. В качестве восстановителя используют кадмий, цинк, магний или алюминий. Пары галогенида тантала и пары восстановителя транспортируют к поверхности стального изделия в потоках инертных газов-носителей раздельно. Перед осаждением на поверхность стального изделия обеспечивают смешивание упомянутых паров галогенида тантала и паров восстановителя в соотношении от 1:1 до 1:10 и их нагрев до 500-1400С. В частных случаях осуществления изобретения в качестве галогенида тантала используют бромид тантала. В качестве галогенида тантала используют иодид тантала, при этом в поток иодида тантала добавляют пары йода. Обеспечивается осаждение покрытий тантала на поверхности изделий в безводородной атмосфере при относительно низких температурах осаждения, что улучшает качество покрытий, обеспечивает безопасность работы и снижает требования к оборудованию. 2 з.п. ф-лы, 1 ил., 1 пр.

Настоящее изобретение относится к способу осаждения тантала на поверхности изделий и может быть использовано для создания защитных покрытий, например, на оружейных стволах, в печатающих головках струйных устройств, биомедицинских имплантатах, а также для создания покрытий в изделиях микроэлектроники, например, в качестве диффузионного барьера между медью и кремнием, в качестве электрода затвора в полупроводниковых полевых транзисторах.

Известен способ осаждения тантала из паров металлорганических реагентов таких, например, как бета-дикетонатные и алкоксидные комплексы тантала (Патент US № US 5677002 А, опубликован 14.10.1997, МПК С23С 16/00). Реагенты испаряют при температурах 140-260°C, а полученные пары транспортируют в потоке газа-носителя к нагретой до температур от 250 до 1000°C подложке, на которой реагенты разлагаются с образованием танталового покрытия. Использование в качестве реагентов различных видов металлорганических соединений тантала позволяет изменить характеристики процесса осаждения покрытий за счет различия температур испарения и разложения реагентов, а также возможности их использования с другими реагентами для получения более сложных, чем чистый тантал, покрытий (оксидов, силицидов и др.). Известно, что при использовании некоторых реагентов, например, циклопентадиениловых соединений тантала, чистоту получаемых покрытий тантала можно повысить (Патент US № US 6989457 В2, опубликован 24.01.2006, МПК С23С 14/26).

Недостатком осаждения тантала из металлорганических соединений тантала является возможность образования в покрытии примесей углерода и водорода, находящихся в составе металлоорганических соединений. Контролировать образование и содержание указанных примесей сложно, поэтому свойства танталовых покрытий могут меняться довольно сильно и неконтролируемо. Применение металлорганических соединений с относительно низкой температурой разложения позволяет повысить чистоту покрытий, но снижает адгезию тантала к подложке, так как при низких температурах не образуется зона диффузного взаимодействия покрытия с подложкой. Другим недостатком применения металлорганических соединений является их способность полимеризоваться при нагревании в процессе их испарения и последующего прохождения реакционной зоны. Продукты полимеризации непригодны в качестве реагентов для осаждения тантала и могут осаждаться в испарительной камере и газопроводах, приводя к неработоспособности оборудования.

Известен способ осаждения тантала на поверхности материалов с температурой плавления выше примерно 500°C из смеси водорода и галогенида тантала (Патент US №2604395, опубликован 22.07.1952, МПК С23С 16/14), который принят в качестве прототипа. Галогенид тантала испаряют при температурах ниже температуры кипения галогенида. Полученные пары смешивают с водородом так, чтобы водорода было достаточно для полного восстановления галогенида тантала или больше, что в большинстве случаев предпочтительно. Указанная смесь паров транспортируется в реакционную зону, где при температурах от 500 до 1300°C водород восстанавливает галогенид тантала, в результате чего металлический тантал осаждается на подложке. Оптимальная температура осаждения тантала зависит от типа подложки. Для подложек меди и молибдена температура начала осаждения составляет около 500°C, для подложек железа - около 800°C для никеля - около 1000°C. Особенностью данного метода осаждения тантала является диффузия тантала в поверхностный слой подложки, что обеспечивает адгезию покрытия.

Недостатком данного способа является то, что применение водорода небезопасно и может привести к наводораживанию и водородному охрупчиванию, например, реакционной камеры, покрытия, частей подложи, что, в частности, ухудшает свойства покрытий. Коме того, применение водорода и его взаимодействие с галогенидами с образованием химически агрессивных галогенводородов повышает требования к используемому оборудованию. Транспортировка водорода совместно с галогенидом тантала к подложке по одному каналу может приводить к их нежелательному преждевременному взаимодействию.

На рисунке 1 изображена схема части реактора с размещением исходных реагентов - бромида тантала и кадмия в дозаторе-смесителе, где:

1. Галогенид тантала

2. Металл-восстановитель

3. Сопловые вкладыши со смесителем в виде сопла

4. Подложка

5. Нагреватель

6, 7, 8. Каналы подачи инертного газа-носителя.

Техническим результатом данного изобретения является повышение безопасности осаждения покрытий, снижение требований к применяемому оборудованию и повышение качества покрытий.

Технический результат достигается тем, что в качестве восстановителя используют кадмий, цинк, магний или алюминий, причем пары галогенида тантала и пары восстановителя транспортируют к поверхности стального изделия в потоках инертных газов-носителей раздельно, а перед осаждением на поверхность стального изделия, обеспечивают смешивание упомянутых паров галогенида тантала и паров восстановителя в соотношении от 1:1 до 1:10 и их нагрев до 500-1400°C.

Кроме того, в качестве галогенида тантала используют бромид тантала.

Кроме того, в качестве галогенида тантала используют иодид тантала, при этом в поток иодида тантала добавляют пары йода.

Применение металла-восстановителя в качестве восстановителя позволит повысить безопасность осаждения покрытий, снизит требования к применяемому оборудованию покрытий и улучшит их качество покрытий за счет отсутствия необходимости подачи водорода и негативного воздействия водорода на материалы.

Раздельная подача реагентов по каналам за счет отсутствия контакта между ними предотвратит их досрочное взаимодействие.

Применение бромида тантала в качестве галогенида и кадмия в качестве металла-восстановителя позволит максимально снизить температуры осаждения и требования к оборудованию.

Сущность изобретения заключается в том, что для осаждения металлического тантала на поверхности и внутренних полостях изделий сложной формы используется восстановление паров галогенидов тантала парами металла-восстановителя, в соответствие с общей реакцией:

где G один из F, Cl, Br, I, а металл-восстановитель Me один из Cd, Zn, Mg, Al, K, Na, Li.

Для протекания реакции (1) галогенид тантала и металл-восстановитель испаряются в разных испарителях. Полученные пары транспортируются по отдельным каналам потоками инертных газов-носителей (гелием или аргоном) для предотвращения их досрочного взаимодействия. Вблизи подложки пары смешиваются нагреваются до температуры осаждения и взаимодействуют по реакции (1), что приводит к осаждению тантала на подложке. Качество и толщина покрытий будет определяться температурой и временем осаждения, видом реагентов в реакции, их концентрацией в потоках газов носителей и другими параметрами. При проведении осаждения рекомендуется поддерживать соотношение реагентов TaG5 / Me от 1/1 до 1/10.

Рассмотрим оптимальный выбор реагентов реакции (1) для следующих условий: проведение осаждения при атмосферном давлении, относительно невысокая температура осаждения тантала - 500°C, соответствующая минимальной температуре, указанной для прототипа, температуры испарения исходных реагентов ниже, чем температура осаждения, обеспечение безопасности работы в сочетании с низкими требованиями к оборудованию. Галогениды тантала начинают интенсивно испаряться выше 200°C (кроме иодида), при этом их летучесть падает в ряду TaF5>TaCl5>TaBr5>Tal5. Иодид тантала значительно менее летуч, чем остальные галогениды, и частично разлагается при испарении, что затрудняет его использование. Для предотвращения разложения иодида в испаритель галогенида можно в потоке газа-носителя подавать пары йода, но при этом будет сложнее контролировать содержание галогенида в парах. При 500°C у галогенидов металлов-восстановителей, участвующих в реакции (1), летучесть растет в ряду фторид > хлорид > бромид > иодид. Фториды и хлориды металлов-восстановителей при данных условиях будут соосаждаться вместе с танталом. Соосаждение бромидов металлов-восстановителей будет существенно меньше и потому выбор бромида тантала в качестве исходного реагента предпочтителен с точки зрения чистоты осадка. В ряду металлов-восстановителей Na>K>Mg>Cd>Li>Zn>Al летучесть соответствующих бромидов падает. При этом только четыре последних металла в приведенном ряду имеют относительно низкую летучесть бромидов и практически не будут соосаждаться при 500°C вместе с танталом. При 500°C летучесть паров металлов-восстановителей падает в ряду K>Na>Cd>Zn>Li>Mg>Al. Щелочные металлы в этом ряду довольно опасны и неудобны в использовании. Низкая летучесть Zn, Mg и Al при 500°C обеспечит достаточную для проведения реакции (1) концентрацию их паров. Кадмий имеет достаточно высокое давление насыщенных паров и потому, при выбранных условиях, является наиболее предпочтительным металлом-восстановителем.

Пример. На фигуре приведена схема части реактора с размещением исходных реагентов - галогенида тантала и металла-восстановителя в дозаторе-смесителе, имеющем два установленных друг над другом испарителя со спиральными каналами, в которые загружены бромид тантала 1 и кадмий 2 и коаксиально установленные сопловые вкладыши 3 со смесителем в виде сопла в нижней части, образующие каналы для подачи насыщенной парогазовой смеси в реакционную камеру к подложке 4, нагреваемой нагревателем 5.

Газ-носитель гелий подается по каналам 6, 7, 8. Подаваемый по каналу 6 гелий насыщается парами бромида тантала, испаряемыми при температурах 180-250°C и транспортируется по центральному сопловому вкладышу 3 к образцу 4. Подаваемый по каналу 8 гелий насыщается парами кадмия при температурах 400-500°C и транспортируется к образцу по внешнему сопловому вкладышу 3. Дополнительный канал 6 используется для возможности разбавления потоков подаваемых из соплового вкладыша 3. Конструкция дозатора-смесителя позволяет поддерживать содержание паров близким к их содержанию в насыщенном паре, управляя температурами испарения в каждом из испарителей 1 и 2, и, следовательно, задавать соотношение бромида тантала к кадмию на необходимом уровне. Нагревателем 5 поддерживается температура осаждения тантала от 500°C до 1400°C.

Выше указывалось, что толщина и качество покрытий зависят от ряда факторов. Например, при атмосферном давлении на изготовленных из стали 12Х18Н10Т плоских дисках диаметром 12 мм, при соотношении бромид тантала/кадмий примерно 2/5 и температуре осаждения 700°C за один час осаждается покрытие тантала толщиной 10 мкм.


СПОСОБ ГАЗОФАЗНОГО ОСАЖДЕНИЯ ТАНТАЛА НА ПОВЕРХНОСТЬ СТАЛЬНОГО ИЗДЕЛИЯ
СПОСОБ ГАЗОФАЗНОГО ОСАЖДЕНИЯ ТАНТАЛА НА ПОВЕРХНОСТЬ СТАЛЬНОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
15.10.2019
№219.017.d5f7

Градиентное металлополимерное покрытие

Изобретение относится к области защитных полимерных покрытий, может быть использовано в машиностроительной, авиационной, приборостроительной промышленности и других областях техники. Градиентное металлополимерное покрытие для металлической поверхности выполнено в виде градиентного оплавленного...
Тип: Изобретение
Номер охранного документа: 0002702881
Дата охранного документа: 11.10.2019
Showing 31-40 of 40 items.
02.10.2019
№219.017.cc0a

Жаровая труба газовой турбины гтд-110м

Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте жаровых труб, работающих в условиях воздействия газообразивной эрозии. Жаровая труба газовой турбины ГТД-110М с нанесенным на внутреннюю поверхность жаровой трубы методом плазменного напыления...
Тип: Изобретение
Номер охранного документа: 0002701025
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.cddc

Лопатка газовой турбины гтд-110м

Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте лопаток, работающих в условиях воздействия газоабразивной эрозии. Лопатка газовой турбины ГТД-110М имеет нанесенный на ее поверхность методом высокоскоростного газопламенного напыления жаростойкий...
Тип: Изобретение
Номер охранного документа: 0002700496
Дата охранного документа: 17.09.2019
02.10.2019
№219.017.ce96

Гребной винт с защитным металлополимерным покрытием

Изобретение относится к области судовых движителей, а именно к защите гребных винтов и других судовых движителей. Гребной винт с защитным металлополимерным покрытием состоит из лопастей и ступицы, покрытых защитным покрытием. Покрытие поверхности лопастей и ступицы толщиной 100-300 мкм содержит...
Тип: Изобретение
Номер охранного документа: 0002700519
Дата охранного документа: 17.09.2019
05.03.2020
№220.018.0976

Способ электродугового напыления покрытия

Изобретение относится к способу электродугового напыления покрытий и может быть использовано в машиностроении для повышения удобства в эксплуатации при нанесении покрытий на труднодоступные поверхности изделий. Нанесение покрытия осуществляют с помощью металлизационной струи и инжектирования...
Тип: Изобретение
Номер охранного документа: 0002715827
Дата охранного документа: 03.03.2020
04.07.2020
№220.018.2e7b

Способ восстановления и упрочнения антивибрационных полок титановых лопаток компрессора гтд

Изобретение относится к способу восстановления и упрочнения антивибрационных полок титановых лопаток компрессора ГТД и может быть использовано в отрасли авиастроения для ремонта и упрочения как бывших в эксплуатации, так и новых титановых лопаток компрессора ГТД. Методом лазерной наплавки...
Тип: Изобретение
Номер охранного документа: 0002725469
Дата охранного документа: 02.07.2020
07.07.2020
№220.018.306f

Устройство для нанесения металлополимерного покрытия

Изобретение относится к устройствам для нанесения металлополимерных покрытий и может быть использовано для изготовления, ремонта и упрочнения поверхностей в различных отраслях промышленности. Устройство для нанесения металлополимерного покрытия содержит пистолет-металлизатор, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002725785
Дата охранного документа: 06.07.2020
15.05.2023
№223.018.58e6

Способ получения покрытия с низкой поверхностной энергией против биообрастания

Изобретение относится к способам получения покрытий для защиты от биообрастания корпусов судов и гидротехнических сооружений, устройств, конструкций, эксплуатирующихся в морской среде. Предложен способ получения покрытия с низкой поверхностной энергией против биообрастания на металлических...
Тип: Изобретение
Номер охранного документа: 0002760600
Дата охранного документа: 29.11.2021
15.05.2023
№223.018.5c09

Способ получения нескользящего покрытия

Изобретение может быть использовано при нанесении покрытий на металлические поверхности трапов, лестниц, мостиков, пешеходных дорожек, автомобильных пандусов, вертолетных площадок, палуб судов. Способ получения нескользящего покрытия включает подготовку поверхности и нанесение полимерного...
Тип: Изобретение
Номер охранного документа: 0002753273
Дата охранного документа: 12.08.2021
15.05.2023
№223.018.5c0a

Способ получения нескользящего покрытия

Изобретение может быть использовано при нанесении покрытий на металлические поверхности трапов, лестниц, мостиков, пешеходных дорожек, автомобильных пандусов, вертолетных площадок, палуб судов. Способ получения нескользящего покрытия включает подготовку поверхности и нанесение полимерного...
Тип: Изобретение
Номер охранного документа: 0002753273
Дата охранного документа: 12.08.2021
16.05.2023
№223.018.61ae

Деталь и сборочная единица соплового аппарата турбины высокого давления

Изобретение относится к области авиадвигателестроения, в частности к конструкции деталей и сборочных единиц (ДСЕ) соплового аппарата турбины высокого давления (СА ТВД) газотурбинного двигателя, преимущественно для высокоманевренных самолетов. Деталь сборочной единицы соплового аппарата турбины...
Тип: Изобретение
Номер охранного документа: 0002746196
Дата охранного документа: 08.04.2021
+ добавить свой РИД