×
02.10.2019
219.017.cddc

Результат интеллектуальной деятельности: ЛОПАТКА ГАЗОВОЙ ТУРБИНЫ ГТД-110М

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте лопаток, работающих в условиях воздействия газоабразивной эрозии. Лопатка газовой турбины ГТД-110М имеет нанесенный на ее поверхность методом высокоскоростного газопламенного напыления жаростойкий подслой толщиной 150-200 мкм и керамический термобарьерный слой. Керамический термобарьерный слой напыляют плазмотроном толщиной 100-120 мкм, затем лопатку подвергают двухстадийной обработке, вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревают до температуры 1050°С в течение 3-4 часов, выдерживают при той же температуре 2 часа и охлаждают до температуры 700°С со скоростью 40-50°С. После чего на воздухе нагревают до температуры 850°С в течение 2,5-3 часов, выдерживают при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Изобретение позволяет увеличить газоабразивную стойкость защитного покрытия лопатки газовой турбины.

Изобретение относится к машиностроению и может быть использована при изготовлении и ремонте лопаток, работающих в условиях воздействия газоабразивной эрозии.

Развитие современных газовых турбин предполагает увеличение мощности двигателя, уменьшение расхода топлива, увеличение общей надежности функционирования турбины и, как следствие, - увеличение ресурса. Пути решения вышеперечисленных задач лежат в плоскости увеличения рабочей температуры турбин, что в свою очередь требует применения новых конструкционных материалов со свойствами, позволяющими деталям, изготовленным из них, функционировать при увеличенных рабочих параметрах. Повышение эксплуатационных характеристик за счет использования имеющихся жаропрочных сплавов и покрытий практически исчерпало свои возможности, что требует инновационных подходов к совершенствованию и разработке нового поколения металлических и керамических материалов для деталей и покрытий различного функционального назначения, обладающих повышенной стойкостью к разрушению в условиях воздействия циклических термомеханических напряжений и агрессивных сред.

Оптимальным решением, позволяющим поднять рабочую температуру двигателя и увеличить его ресурс, является нанесение теплозащитных покрытий с чередующимися слоями различного композиционного состава и функционального назначения, формируемых на основе наноструктурированных материалов.

Поиск новых материалов керамического слоя теплозащитных покрытий (ТЗП) выявил ряд недостатков традиционного состава ZrO2-7Y2O3, среди, которых отмечается недостаточная фазовая стабильность и высокая скорость спекания при высоких температурах. При длительных выдержках в температурных условиях, соответствующих эксплуатационным, это приводит к росту теплопроводности покрытий от первоначальных значений (0,9-1,1 Вт/мК) до значений, характерных для плотного материала (1,9-2,2 Вт/мК). Теплозащитный эффект покрытия при этом падает всего до 20-ЗОК, не обеспечивая требуемых свойств. (Cao, X.Q. Application of rare earths in thermal barrier coating materials / X.Q. Cao // Journal of Material Science Technology, 2007, Vol. 2З No. 1. P. 15-35. Vassen, R. Overview on advanced thermal barrier coatings / R. Vassen, M, Jarligo, T. Steinke, D. Mack, D. Stoever // Surface and Coatings Technology, 2010. Vol. 205. P. 938-942.

В исследовательском центре NASA (США) разработаны покрытия с низкой теплопроводностью, которая слабо зависит от времени выдержки при высоких температурах благодаря легированию стандартного материала ZrO2-7Y2O3 оксидами редкоземельных металлов. Состав покрытия не раскрывается. Zhu, D. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings / Dongming Zhu, Robert A. Millor // Технический отчет NASA/TM- 2002-211481.2002. NASA. 15p.

Активно ведется разработка теплозащитных покрытий с низкой теплопроводностью для применения на деталях горячего тракта энергетических газотурбинных установок большой мощности в исследовательском центре Mitsubishi Heavy Industries. Новые покрытия доказали свою эффективность и будут применяться на турбинах. Состав покрытия не раскрывается. Ito, Е. Development of key technology for ultra-high-temperature gas turbines / E. Ito, К. Tsukagoshi, A. Muyama, J. Masada, T. Torigoe // Mitsubishi Heavy Industries Technical Review. 2010. Vol. 47 (1). P. 19.

Задача, на решение которой направлено настоящее изобретение, состоит в повышении ресурса термобарьерного покрытия на деталях горячего тракта «ГТД-110М».

Ближайшим к предлагаемому изобретению аналогом является лопатка газовой турбины (RU 2521924 С2, С22С 19/05, опубликовано 10.07.2014), содержащая нанесенное на поверхность лопатки методом высокоскоростного газопламенного напыления жаростойкого подслоя толщиной 150-200 мкм и затем керамического термобарьерного слоя.

Недостатком ближайшего аналога является недостаточная адгезионная связь напыляемого материала и материала подложки. Помимо достаточной стойкости защитного слоя при агрессивных воздействиях отработавших газов при температурах порядка 1000°С, защитный слой должен также иметь достаточно хорошие механические свойства. В условиях газоабразивной эрозии покрытие не должно трескаться и отслаиваться.

Задача, на которую направлено предлагаемое изобретение, заключается в том, чтобы увеличить газоабразивную стойкость лопаток ГТД-110М.

Желаемым техническим результатом является увеличение газообразивной стойкости защитного покрытия лопатки газовой турбины без ухудшения аэродинамических характеристик лопатки.

Желаемый технический результат достигается тем, что керамический термобарьерный слой подвергнут двухстадийной обработке, вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагрет до температуры 1050°С в течение 3-4 часов, выдержан при той же температуре 2 часа и охлажден до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагрет до температуры 850°С в течение 2,5-3 часов, выдержан при той же температуре в течение 16 часов и охлажден в течение 4,7 часа до нормальной температуры и составляет 100-120 мкм.

В технологический цикл нанесения термобарьерных покрытий, как правило, входит многостадийная термообработка, которая повышает прочность покрытия.

Предлагаемая в настоящем изобретении двухстадийная обработка позволяет повысить прочность покрытия после нанесения. Для этого проводится диффузионный отжиг в вакууме при давлении 1×10-4 мм.рт.ст. нагревании до температуры 1050°С в течение 3-4 часов, выдержки при той же температуре 2 часа и охлаждении до температуры 700°С со скоростью 40-50°С. При диффузионном отжиге формируется диффузионная зона шириной до 30 мкм, что повышает прочность сцепления керамического термобарьерного слоя и металлического подслоя.

Заключительный окислительный отжиг проводится на воздухе нагреванием до температуры 850°С в течение 2,5-3 часов, выдержке при той же температуре в течение 16 часов и охлаждении в течение 4,7 часа до нормальной температуры. Окислительный отжиг позволяет привести структуру покрытия в равновесное состояние и повышает прочность покрытия.

Примером является лопатки рабочие 1-й и 2-й ступени газовой турбины ГТД-110М, выполненные из ЧС-88У-ВИ, с нанесенным термобарьерным покрытием подвергали двухстадийной обработке: вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревали до температуры 1050°С в течение 3-4 часов, выдерживали при той же температуре 2 часа и охлаждали до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагревали до температуры 850°С в течение 3 часов, выдерживали при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Газоабразивная стойкость термобарьерных покрытий увеличилась в 2-2,5 раза по сравнению с нетермообработанными.

Примером является лопатки рабочие 1-й и 2-й ступени газовой турбины ГТД-110М, выполненные из INC738, с нанесенным термобарьерным покрытием подвергали двухстадийной обработке: вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревали до температуры 1050°С в течение 3-4 часов, выдерживали при той же температуре 2 часа и охлаждали до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагревали до температуры 850°С в течение 3 часов, выдерживали при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Газоабразивная стойкость термобарьерных покрытий увеличилась в 1,5-2 раза по сравнению с нетермообработанными.

Примером является лопатки сопловые 1-й и 2-й ступени газовой турбины ГТД-110М, выполненные из ЧС-104-ВИ, с нанесенным термобарьерным покрытием подвергали двухстадийной обработке: вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревали до температуры 1050°С в течение 3-4 часов, выдерживали при той же температуре 2 часа и охлаждали до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагревали до температуры 850°С в течение 3 часов, выдерживали при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Газоабразивная стойкость термобарьерных покрытий увеличилась в 2-2,5 раза по сравнению с нетермообработанными.

Лопатка газовой турбины ГТД-110М с нанесенным на поверхность лопатки методом высокоскоростного газопламенного напыления жаростойкого подслоя толщиной 150-200 мкм и затем керамический термобарьерный слой, отличающийся тем, что керамический термобарьерный слой подвергнут двухстадийной обработке, вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагрет до температуры 1050°С в течение 3-4 часов, выдержан при той же температуре 2 часа и охлажден до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагрет до температуры 850°С в течение 2,5-3 часов, выдержан при той же температуре в течение 16 часов и охлажден в течение 4,7 часа до нормальной температуры и составляет 100-120 мкм.
Источник поступления информации: Роспатент

Showing 1-2 of 2 items.
20.01.2018
№218.016.1409

Способ доводки соплового аппарата турбины газотурбинного двигателя

Изобретение относится к двигателестроению, к области разработки газотурбинных двигателей, в частности к способам их доводки до окончательного конструктивного облика. Способ доводки соплового аппарата турбины газотурбинного двигателя включает установку в окружном направлении двухлопаточных...
Тип: Изобретение
Номер охранного документа: 0002634655
Дата охранного документа: 02.11.2017
02.10.2019
№219.017.cc0a

Жаровая труба газовой турбины гтд-110м

Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте жаровых труб, работающих в условиях воздействия газообразивной эрозии. Жаровая труба газовой турбины ГТД-110М с нанесенным на внутреннюю поверхность жаровой трубы методом плазменного напыления...
Тип: Изобретение
Номер охранного документа: 0002701025
Дата охранного документа: 24.09.2019
Showing 1-10 of 37 items.
10.04.2013
№216.012.335c

Способ нанесения покрытия

Изобретение относится к области химии. На внутреннюю поверхность корпуса аппарата установок очистки природного газа от кислых компонентов, выполненного из стали, в местах длительного контакта с жидкой фазой насыщенного раствора абсорбента наносят покрытие. Покрытие наносят высокоскоростным...
Тип: Изобретение
Номер охранного документа: 0002478691
Дата охранного документа: 10.04.2013
20.10.2014
№216.012.fe5e

Состав уплотнительного покрытия для модификации элемента статора турбины

Изобретение относится к порошковой металлургии, в частности для получения уплотнительного покрытия методом газотермического напыления. Может использоваться при производстве паровых или газовых турбин для обеспечения стабильности зазоров в сопряженных элементах проточной части турбины....
Тип: Изобретение
Номер охранного документа: 0002530974
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe5f

Покрытие для нанесения на приводные элементы запорной и регулирующей арматуры

Изобретение относится к машиностроению, в частности к покрытиям для восстановления и упрочнения запорной и регулирующей арматуры. Покрытие для нанесения на приводные элементы запорной и регулирующей арматуры представляет собой двухслойную систему, состоящую из подслоя и основного слоя. Подслой...
Тип: Изобретение
Номер охранного документа: 0002530975
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe62

Состав присадочного материала

Изобретение относится к области машиностроения и может быть использовано при ремонте деталей паровых турбин. Состав присадочного материала в виде порошка для восстановления жаропрочных сталей характеризуется тем, что он содержит следующие компоненты при их соотношении, мас.%: Cr - 8-15, Si -...
Тип: Изобретение
Номер охранного документа: 0002530978
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.04e0

Многослойное теплозащитное покрытие

Изобретение относится к многослойному теплозащитному покрытию на детали горячего тракта энергетических газотурбинных установок большой мощности. Многослойное теплозащитное покрытие включает основной металлический подслой, выполненный из сплава на основе никеля, верхний керамический...
Тип: Изобретение
Номер охранного документа: 0002532646
Дата охранного документа: 10.11.2014
27.02.2015
№216.013.2d81

Способ получения защитного упрочняющего покрытия на деталях запорной арматуры

Изобретение относится к способу получения защитного упрочняющего покрытия на деталях запорной арматуры. Напыление производят высокоскоростным газопламенным методом со скоростью перемещения горелки относительно обрабатываемой поверхности 0,5÷1,0 м/с. Наносимый порошковый материал содержит...
Тип: Изобретение
Номер охранного документа: 0002543117
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3835

Способ ремонтной наплавки лопаток энергетических установок

Изобретение относится к способу ремонта лопаток энергетических установок. Способ включает подготовку поверхности лопатки. Нанесение покрытия с применением лазерного излучения и одновременной подачей порошкообразного присадочного материала в ванну расплава. В процессе наплавки осуществляют...
Тип: Изобретение
Номер охранного документа: 0002545877
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3836

Способ защиты лопаток паровых турбин от парокапельной эрозии

Изобретение относится к защите лопаток паровых турбин от парокапельной эрозии. Способ включает нанесение на лопатку защитного покрытия. Покрытие наносят методом лазерной наплавки. Лазерную головку перемещают со скоростью линейной интерполяции V не более 0,05 м/с. Мощность лазерного излучения...
Тип: Изобретение
Номер охранного документа: 0002545878
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3837

Способ модификации элемента статора энергетической турбины

Изобретение относится к способу получения покрытия на поверхности элемента статора энергетических турбин. Способ включает нанесение покрытия методом плазменного напыления. Порошок покрытия напыляют под углом 55-70 градусов по отношению к поверхности напыления. Скорость перемещения горелки...
Тип: Изобретение
Номер охранного документа: 0002545879
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3838

Способ нанесения газотермического покрытия на поверхность изделия

Изобретение относится к области газотермического нанесения покрытий, а именно к технологии подготовки поверхности изделия перед нанесением газотермических покрытий. Способ нанесения газотермического покрытия на поверхность изделия включает совместное воздействие на поверхность потока абразивных...
Тип: Изобретение
Номер охранного документа: 0002545880
Дата охранного документа: 10.04.2015
+ добавить свой РИД