×
11.07.2019
219.017.b2c9

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОЗАПАСА В СНЕЖНОМ ПОКРОВЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области метеорологии и может быть использовано для определения влагозапаса снежного покрова. Сущность: измеряют плотность потока бета-излучения над снежным покровом в период перед началом таяния снега в дневное время суток не менее чем через 3,5 часа после выпадения снега. Используя измеренное значение, рассчитывают влагозапас снежного покрова. Технический результат: повышение достоверности и упрощение определения влагозапаса снежного покрова. 1 ил.

Изобретение относится к метеорологии и может быть использовано для определения влагозапаса (запасенной за зиму влаги) в снежном покрове по измеренной плотности потока бета-излучения в приземной атмосфере.

Известен способ определения влагозапаса в снежном покрове путем измерения водного эквивалента снежного покрова [Снег. Справочник. / Под редакцией Д.М. Грея и Д.X. Мэйла. - Л.: Гидрометеоиздат, 1986. - С. 206.]. Способ заключается в измерении массы образцов снега, извлеченных из снежного покрова с помощью пробоотборника весового снегомера. Пробоотборник весового снегомера [Лесная метеорология. Метеорологические приборы и наблюдения: учебное пособие / А.В. Иванов. - Йошкар-Ола: Марийский государственный технический университет, 2009. - С. 100.] представляет собой полый цилиндр. Для проведения измерения цилиндр вертикально погружают в снег до контакта с почвой. Цилиндр, содержащий снег, вынимают и взвешивают на специальных весах, входящих в комплект снегомера. Плотность снега рассчитывают из полученного веса и объема пробы. Весовым снегомером можно сразу определить влагозапас в снежном покрове в метрах, а также рассчитать, сколько воды в тоннах или кубических метрах получит 1 га от таяния снега.

Однако способ трудоемок. Внутреннюю поверхность пробоотборника трудно очистить от снега, влаги, грунта, остатков растительности, что снижает достоверность результатов измерений. При проведении механических измерений зачастую теряются отдельные части прибора.

Известен радиометрический способ определения влагозапаса в снежном покрове [Москвич Т.И. Микроволновое зондирование как метод оценки снегозапасов // Труды ГУ Дальневосточный региональный научно-исследовательский гидрометеорологический институт - 2009. - №153. - С. 25.], основанный на пассивном СВЧ зондировании, заключающийся в определении высоты снежного покрова и снегозапаса по измеренным данным с искусственных спутников Земли в микроволновой области спектра (λ=0,1÷30 см) посредством пассивной радиометрической системы. Способ позволяет производить картирование областей залегания снега, выявлять состояние снежного покрова и, таким образом, выделять границы площадей одновременного снеготаяния. Физическая основа распознавания снежного и ледяного покровов заключается в широком диапазоне изменения их коэффициентов излучения в санти- и миллиметровом диапазонах, при этом значительное влияние оказывает дополнительное рассеяние, которое создает снежный покров на поверхности почвы. Возможность измерений характеристик снежного покрова в микроволновом диапазоне обусловлена большой разницей значений диэлектрической постоянной сухого и влажного снега. Влагозапас в снежном покрове определяют из снегозапаса параллельно с оценкой высоты снега.

Использование способа требует организации дополнительных трассовых измерений толщины снежного покрова или проведения измерений в репрезентативных реперных точках, что усложняет процесс оценки влагозапаса.

Известен способ определения влагозапаса в снежном покрове [Loijens H.S. Measurements of snow water equivalent and soil moisture by natural gamma radiation. // Proc. Can. Hydrol. Symp., 1975, Aug. 11-14, Winnipeg. P. 43-50], выбранный в качестве прототипа, основанный на зависимости гамма-излучения в атмосфере от влагозапаса в снежном покрове. Способ заключается в измерении числа фотонов гамма-излучения при полетах самолета на высоте 20-100 метров по сети маршрутов. Изменение влагозапаса в снежном покрове за время между двумя полетами определяют из выражения

где ΔР - изменение влагозапаса в снежном покрове между двумя полетами;

I1 и I2 - число фотонов гамма-излучения с энергией в интервале от E1 до Е2 в первом и втором полетах, соответственно;

α - коэффициент, характеризующий спектральные характеристики излучения.

Сложность этого способа заключается в необходимости использования авиации.

Предложенный способ определения влагозапаса в снежном покрове расширяет арсенал средств аналогичного назначения.

Способ определения влагозапаса в снежном покрове, также как в прототипе, включает измерение ионизирующего излучения над снежным покровом.

Согласно изобретению производят измерение плотности потока бета-излучения в период перед началом таяния снежного покрова, в дневное время суток, и не менее чем через 3,5 часа после выпадения снега, а влагозапас в снежном покрове определяют из выражения:

где: W - влагозапас в снежном покрове, м;

- измеренное на высоте z от земной поверхности значение плотности потока бета-излучения при наличии снежного покрова, 1/(м2⋅с);

- плотность потока вторичного бета-излучения на высоте z от земной поверхности в отсутствии снежного покрова, создаваемого содержащимися в поверхностном слое грунта радионуклидами 1/(м2⋅с);

ρв - плотность воды, кг/м3;

μm - массовый коэффициент ослабления излучения, м2/кг.

Известно, что в период года без снежного покрова суммарная плотность потока бета-излучения в приземной атмосфере обусловлена 4-мя составляющими: 1) бета-излучением радионуклидов, содержащихся в грунте; 2) вторичным бета-излучением, которое образуется при взаимодействии гамма-излучения почвенных радионуклидов с атмосферой [B.C. Яковлева, В.Д. Каратаев, В.В. Зукау. Моделирование атмосферных полей γ- и β-излучений, формирующихся почвенными радионуклидами // Вестник КРАУНЦ. Физ.-мат. науки. 2011. №1 (2). С. 65-74]; 3) вторичным бета-излучением, образованным при взаимодействии космической радиации с атмосферой; 4) бета-излучением короткоживущих дочерних продуктов распада изотопов радона, содержащихся в атмосфере [Яковлева B.C. Методы и приборы контроля полей α-, β-, γ-излучений и радона в системе "грунт-атмосфера": диссертация на соискание ученой степени доктора технических наук: спец. 05.11.13; Национальный исследовательский Томский политехнический университет. - Томск: 2013, С. 64].

Так как в зимний период снежный покров толщиной более 0,1 м полностью поглощает бета-излучение от радионуклидов, содержащихся в грунте [Машкович В.П., Кудрявцева А.В. Защита от ионизирующих излучений: Справочник, 4-е изд., перераб. и доп. - М.: Энергоатомиздат, 1995. С. 423], то первую составляющую не надо учитывать. Вклад космической радиации в суммарный бета-фон приземной атмосферы на высотах до 50 м от земной поверхности составляет около 1% [Яковлева B.C., Каратаев В.Д., Зукау В.В. Моделирование атмосферных полей γ- и β-излучений, формирующихся почвенными радионуклидами. Вестник КРАУНЦ. Физ.-мат. науки, 2011, №1 (2), С. 64-73], следовательно, третьей составляющей можно пренебречь.

Количественной характеристикой интенсивности турбулентного перемешивания в приземной атмосфере является коэффициент турбулентности [Гальперин Б.М. Турбулентный тепло- и влагообмен поверхности суши и водоемов с атмосферой: Учебное пособие. - Ленинград: Изд-во ЛГИ, 1970. С. 11]. При низком коэффициенте турбулентности бета-излучение короткоживущих дочерних продуктов распада радона, содержащихся в атмосфере, может вносить значимый (до 30%) вклад в суммарный бета-фон [Яковлева B.C. Методы и приборы контроля полей α-, β-, γ-излучений и радона в системе "грунт-атмосфера": диссертация на соискание ученой степени доктора технических наук: спец. 05.11.13; Национальный исследовательский Томский политехнический университет. - Томск: 2013. С. 64]. Проведение измерений в то время суток, когда интенсивность турбулентного перемешивания в приземной атмосферы максимальна, позволяет уменьшить этот вклад до единиц %. Максимум коэффициента турбулентности наблюдается в дневные часы [Гальперин Б.М. Турбулентный тепло- и влагообмен поверхности суши и водоемов с атмосферой: Учебное пособие. - Ленинград: Изд-во ЛГИ, 1970. С. 27]. Так как зимой плотность потока радона из грунта в атмосферу существенно снижается, в среднем, в 2-3 раза [Яковлева B.C. Методы измерения плотности потока радона и торона с поверхности пористых материалов: монография. - Томск: Изд-во ТПУ, 2011. С. 120, С. 144], то это приводит к пропорциональному снижению среднего содержания радона и дочерних бета-, гамма-излучающих продуктов его распада в атмосфере, что позволяет пренебречь вкладом четвертой составляющей суммарной плотности потока бета-излучения в приземной атмосфере.

Поскольку при выпадении атмосферных осадков бета-излучение осажденных на земную поверхность дочерних продуктов распада изотопов радона сильно увеличивает бета-фон приземной атмосферы в 2 и более раз [Yakovleva V.S., Nagorsky P.M., Cherepnev M.S., Kondratyeva A.G., Ryabkina K.S., 2016. Effect of precipitation on the background levels of the atmospheric β- and γ-radiation. Applied Radiation and Isotopes. 118, 190-195], то необходимо выждать не менее 3,5 часов (около 7 периодов полураспада) до полного распада осажденных радионуклидов, чтобы избежать их влияния на результат измерения .

Выбор высоты измерения плотности потока бета-излучения ограничен только высотой снежного покрова и техническими возможностями.

Определение плотности потока вторичного бета-излучения на высоте z от земной поверхности в отсутствии снежного покрова и массового коэффициента ослабления излучения μm не представляет особой сложности, поскольку необходимые данные по удельным активностям радионуклидов 238U, 232Th, 40K и 137Cs содержатся в научной литературе и в отчетах о геологических изысканиях.

Таким образом, предложенный способ определения влагозапаса в снежном покрове является простым, поскольку достаточно произвести только одно измерение плотности потока бета-излучения при наличии снежного покрова.

Способ пригоден как для разовых измерений, так и для мониторинга влагозапаса в снежном покрове, если используется блок детектирования бета-излучения, работающий в режиме мониторинга.

На фиг. 1 представлены временные изменения: а) атмосферной температуры по данным с сайта ООО «Расписание Погоды», данные усреднены по 12 часов; б) плотности потока бета-излучения на высотах 1 м и 10 м, полученные экспериментально с 1 октября 2016 г. по 1 октября 2017 г., данные усреднены по 12 часов; в) влагозапаса в снежном покрове по данным с сайта ООО «Расписание Погоды», г) высоты снежного покрова по данным с сайта ООО «Расписание Погоды».

Для определения влагозапаса в снежном покрове выбрали площадку, расположенную недалеко от института мониторинга климатических и экологических систем СО РАН г. Томска.

По результатам анализа динамики атмосферной температуры по данным с сайта ООО «Расписание Погоды» [RL: http://rp5.ru/ Погода_в_Томске], с учетом метеорологических прогнозов, определили, что после 13 марта 2017 г. начнется таяние снега. Это подтверждается переходом среднесуточной атмосферной температуры (а на фиг. 1) из области отрицательных значений в область положительных значений.

Максимальная турбулентность атмосферы наблюдается, в основном, в дневные часы [Гальперин Б.М. Турбулентный тепло- и влагообмен поверхности суши и водоемов с атмосферой: Учебное пособие. - Ленинград: Изд-во ЛГИ, 1970. - С. 27], поэтому выбрали время начала проведения измерения в 14:00 час.

В 14:00 13 марта 2017 г. в отсутствие снежных осадков произвели измерение плотности потока бета-излучения на высоте 1 м от земной поверхности, с использованием блока детектирования бета-излучения БДПБ-01, которое составило (б на фиг 1).

Значение плотности потока вторичного бета-излучения на высоте z=1 м от земной поверхности в отсутствии снежного покрова и значение массового коэффициента ослабления излучения в снежном покрове рассчитали с помощью метода Монте-Карло в программе PCLab [Компьютерная лаборатория (КЛ/PCLab). Свидетельство о государственной регистрации программы ЭВМ №2007615275 от 28.12.2007]. В качестве входных данных использовали данные об удельной активности радионуклидов, содержащихся в поверхностном слое грунта, для территории Томской области [Каратаев В.Д., Яковлева B.C., Эргашев Д.Э. Исследование радиоактивности объектов окружающей среды на территории Томской области // Известия вузов. Физика. 2000. Т. 43. №4. С. 105-109] следующим образом: определили плотность потока вторичного бета-излучения в атмосфере, создаваемое на высоте 1 м от земной поверхности почвенными бета-, гамма-излучающими радионуклидами в отсутствие снежного покрова при W=0, задавая в качестве источника ионизирующего излучения грунт с радионуклидами, а в качестве поглотителя - атмосфера; рассчитали зависимость плотности потока вторичного бета-излучения в атмосфере, создаваемого почвенными бета-, гамма-излучающими радионуклидами на высоте 1 м от земной поверхности, от влагозапаса при наличии снежного покрова, задавая в качестве источника ионизирующего излучения - грунт с радионуклидами; в качестве поглотителей - снежный покров и атмосфера. Снег представляли как водный эквивалент (влагозапас). Значения влагозапаса задавали от 0 м до 0,5 м с шагом 0,05-0,1 м. Полученную зависимость на высоте z=1 м аппроксимировали экспоненциальной функцией вида:

Массовый коэффициент ослабления излучения μm определили из выражения (2). При моделировании произвели учет вторичного излучения, каскадного характера взаимодействия излучения с атмосферой, процессов альбедо, а также учет векового радиоактивного равновесия между родоначальниками рядов и дочерними продуктами их распада.

Удельные активности 226Ra (238U), 232Th, 40K и 137Cs в поверхностном слое грунта составляют 25; 26; 345 и 10 Бк/кг, соответственно [Каратаев В.Д., Яковлева B.C., Эргашев Д.Э. Исследование радиоактивности объектов окружающей среды на территории Томской области // Известия вузов. Физика. 2000. Т. 43. №4. С. 105-109].

Активность 235U определили по известному вековому соотношению AU235=AU238/21. Рассчитанное значение плотности потока вторичного бета-излучения на высоте 1 м от земной поверхности в отсутствии снежного покрова составило Массовый коэффициент ослабления излучения μm определили из выражения (2), который составил μm=2,17⋅10-3 м2/кг. Плотность воды ρв=1000 кг/м3.

Влагозапас в снежном покрове из выражения (1) составил:

Полученное значение влагозапаса в снежном покрове хорошо согласуется с данными сайта ООО «Расписание Погоды» (в на фиг. 1), что свидетельствует о достоверности предлагаемого способа определения влагозапаса в снежном покрове.

Полученная зависимость плотности потока бета-излучения в приземной атмосфере в течение зимнего периода (б на фиг. 1) снижается практически экспоненциально с ростом влагозапаса (водного эквивалента снега) (в на фиг. 1) и, соответственно, высоты снежного покрова (г на фиг 1). Снижение плотности потока бета-излучения наблюдается вплоть до начала таяния снега (б фиг. 1). Зависимости изменения плотности потока бета-излучения в приземной атмосфере на разных высотах 1 м (кривая 1) и 10 м (кривая 2) от изменения влагозапаса аналогичны, (б на фиг. 1). После полного схода снежного покрова плотность потока бета-излучения возрастает до своего значения, наблюдаемого до начала установления снежного покрова.

Всплески бета-фона в 1,5-3 раза, наблюдаемые на фиг. 1 б в разные сезоны года, обусловлены выпадением дождя (при положительной атмосферной температуре (а на фиг. 1) или снега (при отрицательной атмосферной температуре (г на фиг. 1).


СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОЗАПАСА В СНЕЖНОМ ПОКРОВЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОЗАПАСА В СНЕЖНОМ ПОКРОВЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОЗАПАСА В СНЕЖНОМ ПОКРОВЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОЗАПАСА В СНЕЖНОМ ПОКРОВЕ
Источник поступления информации: Роспатент

Showing 51-60 of 255 items.
13.01.2017
№217.015.897c

Сверхпроводящий быстродействующий выключатель

Использование: для создания сверхпроводящего быстродействующего выключателя. Сущность изобретения заключается в том, что сверхпроводящий быстродействующий выключатель, содержащий отключающий элемент, выполненный в виде двух последовательно соединенных фольговых проводников из сверхпроводящего...
Тип: Изобретение
Номер охранного документа: 0002602767
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.89c9

Способ получения водорастворимой композиции наночастиц серебра

Изобретение относится к способам получения высокодисперсных коллоидных частиц или наночастиц серебра, которые могут быть использованы в биотехнологии, медицине и ветеринарии в составе препаратов с антибактериальным действием, а также в производстве катализаторов химических процессов. Способ...
Тип: Изобретение
Номер охранного документа: 0002602741
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8afb

Резонансный свч компрессор

Изобретение относится к области радиотехники. Особенностью заявленного резонансного СВЧ компрессора является то, что резонатор выполнен планарно-объемным в форме меандра путем деления отрезка волновода длиной L=Nλ/2 на m одинаковых секций длиной L=kλ/2 каждая, где k=N/m - число вариант рабочей...
Тип: Изобретение
Номер охранного документа: 0002604107
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8b06

Электромагнитный привод тормоза форсированного пуска асинхронного двигателя

Изобретение относится к электротехнике и может быть использовано в качестве быстродействующего электромагнитного привода тормоза в электродвигателях, требующих быстрого торможения и фиксации вала механизма в электроталях, лифтах, станках и т.д. Электромагнитный привод тормоза форсированного...
Тип: Изобретение
Номер охранного документа: 0002604203
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9fa0

Устройство для генерации последовательно движущихся капель жидкости

Изобретение относится к области исследования свойств жидкостей, а именно к дозаторам с внешним управлением для повторяющегося отмеривания и выдачи заданных объемов жидкостей, и может быть использовано при проведении научных исследований в области гидродинамики, химии, биологии, медицины и др....
Тип: Изобретение
Номер охранного документа: 0002606090
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9ffc

Ионный диод с магнитной самоизоляцией

Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик. Ионный диод с магнитной самоизоляцией содержит...
Тип: Изобретение
Номер охранного документа: 0002606404
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a748

Способ переработки растворов после карбонатного вскрытия вольфрамовых руд

Изобретение относится к способу переработки растворов после карбонатного вскрытия вольфрамовых руд. Способ включает извлечение вольфрама из раствора после карбонатного выщелачивания в фазу органического анионита, извлечение вольфрама из анионита в водный продуктивный раствор с получением из...
Тип: Изобретение
Номер охранного документа: 0002608117
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.af1d

Водогрейный жаротрубный котёл с турбулизаторами улиточного типа

Изобретение относится к теплоэнергетике и может быть использовано для нагрева теплоносителя в системах отопления и горячего водоснабжения для жилищно-коммунального хозяйства, бытовых и производственных нужд. Водогрейный жаротрубный котел с турбулизаторами улиточного типа содержит корпус,...
Тип: Изобретение
Номер охранного документа: 0002610985
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.b0d1

Устройство для оценки потока газа, переносимого всплывающими пузырьками, выходящими из дна водоемов

Изобретение относится к устройствам для дистанционной оценки потока газа, переносимого всплывающими пузырьками, выходящими из дна водоемов, и может быть использовано, например, для измерения потоков метана на шельфе, переносимого всплывающими пузырьками, выходящими из верхнего осадочного слоя...
Тип: Изобретение
Номер охранного документа: 0002613335
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b286

Транзисторный преобразователь частоты

Изобретение относится к преобразовательной технике и может быть использовано в качестве источников питания индукционных и сварочных установок, в частотно-регулируемом электроприводе, во вторичных источниках электропитания. Транзисторный преобразователь частоты, содержащий неуправляемый...
Тип: Изобретение
Номер охранного документа: 0002614045
Дата охранного документа: 22.03.2017
Showing 1-5 of 5 items.
25.08.2017
№217.015.bcf0

Способ мониторинга плотности невозмущенного потока радона с поверхности грунта

Изобретение относится к области измерения ядерных излучений, а именно к измерению в режиме мониторинга плотности невозмущенного потока радона с поверхности грунта. Способ мониторинга плотности невозмущенного потока радона с поверхности грунта содержит этапы, на которых выполняют регистрацию...
Тип: Изобретение
Номер охранного документа: 0002616224
Дата охранного документа: 13.04.2017
09.06.2018
№218.016.5c98

Способ определения коэффициента турбулентной диффузии в приземном слое атмосферы

Изобретение относится к области метеорологии и может быть использовано для определения коэффициента турбулентной диффузии в приземном слое атмосферы. Сущность: измеряют объемную активность радона одновременно на двух высотах: 0,5-2 м от поверхности земли и не менее 10 м от поверхности земли. С...
Тип: Изобретение
Номер охранного документа: 0002656114
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5cd3

Способ определения интенсивности дождевых осадков в приземном слое атмосферы

Изобретение относится к способам контроля за состоянием и динамикой атмосферы, интегральных характеристик осадков, а именно к определению интенсивности дождевых осадков в приземном слое атмосферы по измеренной мощности дозы гамма-излучения. Способ определения интенсивности дождевых осадков в...
Тип: Изобретение
Номер охранного документа: 0002656118
Дата охранного документа: 31.05.2018
31.05.2019
№219.017.7019

Способ определения интенсивности и количества дождевых осадков

Изобретение относится к области метеорологии и может быть использовано для определения интенсивности и количества дождевых осадков в приземном слое атмосферы. Сущность: в период выпадения дождевых осадков производят непрерывные измерения плотности потока бета-излучения на некоторой высоте от...
Тип: Изобретение
Номер охранного документа: 0002689839
Дата охранного документа: 29.05.2019
31.07.2019
№219.017.ba41

Способ определения влагозапаса в снежном покрове

Изобретение относится к области метеорологии и может быть использовано для определения влагозапаса снежного покрова. Сущность: проводят три измерения мощности дозы гамма-излучения в приземной атмосфере. Первое измерение производят до начала установления снежного покрова, второе - при толщине...
Тип: Изобретение
Номер охранного документа: 0002695949
Дата охранного документа: 29.07.2019
+ добавить свой РИД