×
10.07.2019
219.017.b01b

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ ДЕТАЛИ ИЗ КОМПОЗИЦИОННОГО МАТЕРИАЛА АЛМАЗ - КАРБИД КРЕМНИЯ - КРЕМНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам обработки поверхности деталей из композиционных материалов типа «алмаз - карбид кремния - кремний» и может быть использовано, в частности, при изготовлении инструмента и конструкционных деталей для машиностроения. Способ обработки характеризуется тем, что подвергаемую обработке поверхность детали из композиционного материала совмещают с аналогичной по форме поверхностью стальной пластины и осуществляют термообработку в вакууме в несколько стадий, заменяя на каждой стадии стальную пластину. Все термообработки, кроме последней, проводят при 1210-1250°С, а последнюю термообработку проводят при 1150-1190°. В качестве стальной пластины используют пластину, изготовленную из нелегированной стали с содержанием углерода менее 1,0 мас.%. При температурах 1210-1250°С происходит активное растворение в стали алмазных зерен и карбидокремниевой матрицы. Наиболее интенсивно процесс протекает в течение 1-2 минут, за которые происходит удаление 30-100 мкм материала. Последняя термообработка нужна для уменьшения шероховатости композита. Технический результат изобретения - удаление с поверхности алмаз-карбидокремниевого композита слоя определенной толщины. 1 з.п. ф-лы.

Изобретение относится к области машиностроения, а именно к методам обработки поверхности композиционных материалов, которые могут быть использованы в качестве конструкционных деталей машиностроения и в качестве инструмента.

Композиционные материалы алмаз - карбид кремния - кремний обладают хорошей комбинацией свойств: высокий модуль упругости, высокая твердость и высокая теплопроводность. Поэтому они представляют интерес для применения в различных областях машиностроения. Получение таких материалов описано в ряде патентов [1-3].

Однако высокая твердость композитов крайне затрудняет обработку изготовленных из них деталей традиционными методами: входящие в структуру материала алмаз и карбид кремния крайне негативно воздействуют на обрабатывающий инструмент, приводя к его быстрому износу. При этом сам композиционный материал практически не изнашивается (не обрабатывается). Поэтому весьма актуальным является поиск нетрадиционных методов обработки таких композитов.

Известен способ обработки самого твердого в природе материала - алмаза, описанный в патенте США №4339304 [1982 г., кл. COIB 31/00]. Способ включает в себя приведение алмаза в контакт с пластиной, изготовленной из металла или сплава, способного растворять углерод при температурах 600-1800°С, в вакууме или газовой атмосфере. При этом предпочтительно использовать такие металлы, как железо, никель, платина, или их сплавы. Сущность известного способа состоит в термодиффузионных процессах, протекающих на границе алмаз/металл. При высоких температурах происходит активное растворение углерода (из которого сформирован алмаз) в металле. За счет этого по окончании термообработки с поверхности алмаза удаляется слой определенной толщины.

Недостатком известного способа является то, что он не может быть использован для обработки поверхности композитов алмаз-карбид кремния-кремний, т.к. в отличие от алмаза, в его структуру входят другие фазы, а именно кремний и карбид кремния.

Задачей изобретения является устранение указанного недостатка и обеспечение обработки поверхности деталей из композиционных материалов алмаз - карбид кремния - кремний.

Указанный технический результат достигается тем, что при обработке композита его поверхность совмещают с поверхностью стальной пластины и осуществляют термообработку в вакууме при температуре 1150-1250°С. При этом процесс повторяют несколько раз. Все термообработки, кроме последней, проводят при температуре 1210-1250°С, а последнюю термообработку - при 1150-1190°С. При каждой термообработке используют новую стальную пластину.

Предпочтительно использование пластин, изготовленных из нелегированных сталей с содержанием углерода менее 1 мас.%.

Выполненные эксперименты показали, что проведение термообработок (кроме последней) при температуре ниже 1210°С обеспечивает низкую производительность процесса за счет малой скорости растворения в металле карбида кремния и кремния в этих условиях. Проведение термообработки при температурах выше 1250°С нецелесообразно, т.к. повышение температуры не приводит к интенсификации процесса, но усложняет технологический процесс. Последняя термообработка, как будет показано ниже, ставит своей целью удаление с поверхности выступов, сформированных алмазными зернами. Поэтому в этом случае термообработку осуществляют при температуре не ниже 1150°С, т.к. при более низких температурах процесс протекает медленно и неустойчиво. При температуре выше 1190°С не удается добиться требуемого качества поверхности. Предпочтительно использовать стальные пластины из нелегированных сталей с содержанием углерода менее 1 мас.%, т.к. при большем содержании углерода в стали процесс происходит с заметно меньшими скоростями.

Сущность предлагаемого технического решения состоит в следующем. Композит алмаз - карбид кремния - кремний сформирован из алмазных зерен, связанных между собой матрицей, состоящей из карбида кремния и кремния. Соотношение фаз в материале может быть различным, но в большинстве случаев содержание алмаза 40-70%об., карбида кремния 25-50%об., кремния 5-15%об. Таким образом, состав материала сформирован двумя химическими элементами: кремнием и углеродом. Предлагаемый способ основан на термодиффузионном растворении в металле (стали) кремния и углерода. Хорошо известно, что железо активно образует твердые растворы и химические соединения с кремнием и углеродом. Именно эти процессы были положены в основу создания широкой номенклатуры сталей и чугунов. В ходе выполненных экспериментов было установлено, что при термообработке композиционного материала алмаз - карбид кремния - кремний, находящегося в контакте со сталью (например, две пластины, одна из которых представляет собой обрабатываемую деталь из композиционного материала, а другая - из стали, наложенные друг на друга) при температуре выше 1150°С происходит уменьшение размеров композита (высоты пластины) и уменьшение шероховатости поверхности за счет растворения поверхностного слоя в металле. Однако в этих условиях травление алмазных зерен происходит более интенсивно, чем карбидокремниевой матрицы композита. Было установлено, что процесс травления активизируется при температурах выше 1210°С. Отмечено, что в этом случае происходит активное растворение в стали не только алмазных зерен, но и карбидокремниевой матрицы. Причем скорость травления матрицы даже превышает скорость травления алмазных зерен.

Было установлено, что скорость термодиффузионного растворения компонентов композита в стали значительно снижается во времени: наиболее интенсивно процесс протекает в течение 1-2 минут, за которые происходит удаление 30-100 мкм материала. Поэтому для более глубокой обработки композита стадию термодиффузионной обработки повторяют несколько раз, используя в каждом случае новые стальные пластины. Как уже отмечалось, особенность термообработки при температурах 1210-1250°С состоит в том, что скорость травления карбидокремниевой матрицы выше скорости травления алмаза. Поэтому поверхность композита после такой обработки имеет относительно высокую шероховатость, сформированную выступающими алмазными зернами. Для уменьшения шероховатости уже обработанного в нужный размер композита осуществляют дополнительную стадию термообработки, проводимую при температуре 1150-1190°С. Активное растворение алмазных зерен в стали при этих условиях позволяет удалить выступы на поверхности и уменьшить шероховатость поверхности композита.

Следующий пример подтверждает сущность предлагаемого технического решения.

Пример. Обработке подвергают пластину 9×9 мм и толщиной 3,02 мм из композиционного материала состава: алмаз 59%об., карбид кремния 34%об., кремний 7%об. Для проведения обработки пластину из композита укладывают на пластину из стали марки Ст10 (содержание углерода в стали 0,1 мас.%) размером 20×20×3 мм, отшлифованной до Rz=2 мкм. Собранные вместе пластины помещают в трубную ламповую печь, обеспечивающую нагрев обрабатываемых материалов галогеновыми лампами. Термообработку проводят в вакууме 0,1 мм рт.ст. при температуре 1240°С в течение 2 минут. После термообработки стальную пластину удаляют. Толщина пластины из композита после термообработки 2,94 мм. Повторную термообработку осуществляют тем же образом, что и первую, при этом используют новую (нетермообработанную) стальную пластину. Толщина пластины из композита после второй термообработки 2,88 мм. После двух проведенных термообработок поверхность пластины образована выступающими из карбидокремниевой матрицы зернами алмаза. Третью - окончательную обработку осуществляют аналогично первым двум, но при температуре 1160°С в течение 1 минуты. После окончательной обработки происходит выравнивание поверхности: отсутствует выступание зерен алмаза над карбидокремниевой матрицей композита. Толщина пластины композита 2,84 мм. Тем самым за счет проведения трех термообработок пластина из композиционного материала обработана по толщине на 0,18 мм.

Таким образом, реализация предлагаемого способа позволяет обрабатывать композиты алмаз - карбид кремния с довольно высокой производительностью, обеспечивая при этом большой съем материала высокой твердости.

Источники информации

1. Патент РФ №2131805, кл. B24D 3/16.

2. Патент РФ №2151126, кл. С04В 35/52.

3. Патент РФ №2206502, кл. С01В 31/06.

Источник поступления информации: Роспатент

Showing 101-110 of 251 items.
10.04.2015
№216.013.3e10

Лигатура для титановых сплавов

Изобретение относится к области цветной металлургии и может быть использовано при производстве сплавов титана. Лигатура содержит, мас.%: ванадий 40-50, титан 5-20, углерод 3-5, алюминий - остальное. Изобретение позволяет улучшить свариваемость и механические характеристики в зоне термического...
Тип: Изобретение
Номер охранного документа: 0002547376
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4c43

Способ получения износо-коррозионностойкого градиентного покрытия

Изобретение относится к области получения покрытий со специальными свойствами, в частности к покрытиям с высокой стойкостью к коррозионным повреждениям и износу. Способ холодного газодинамического напыления износо-коррозионностойкого градиентного покрытия включает подачу металлического порошка...
Тип: Изобретение
Номер охранного документа: 0002551037
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d69

Способ получения многослойного градиентного покрытия методом магнетронного напыления

Изобретение относится к способу нанесения градиентных покрытий магнетронным напылением, в частности к нанесению покрытий на основе тугоплавких металлов, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками, а также с оптимальным сочетанием...
Тип: Изобретение
Номер охранного документа: 0002551331
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4da5

Устройство для измерения подводного шума плавсредства и система для проверки его рабочего состояния

Изобретения относятся к области гидроакустики и могут быть использованы для контроля уровня шумоизлучения подводного объекта в натурном водоеме. Техническим результатом, получаемым от внедрения изобретений, является получение возможности измерений уровня шума подводного плавсредства...
Тип: Изобретение
Номер охранного документа: 0002551391
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4daa

Способ бесконтактных измерений геометрических параметров объекта в пространстве и устройство для его осуществления

Изобретение относится к способу бесконтактных измерений геометрических параметров объекта в пространстве. При реализации способа на поверхности объекта выделяют одну и/или более обособленную зону, для которой можно заранее составить несколько разных упрощенных математических параметрических...
Тип: Изобретение
Номер охранного документа: 0002551396
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5189

Способ изготовления конусных изделий из стеклообразного материала

Изобретение относится к технологии получения изделий из кварцсодержащих материалов и может быть использовано в стекольной промышленности, кварцевом производстве. Способ получения изделий конусной формы наплавом из кристаллического исходного сырья осуществляют путем подачи сырья во вращаемую...
Тип: Изобретение
Номер охранного документа: 0002552394
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.51cf

Способ получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали

Изобретение относится к металлургической промышленности и касается способа получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали. Способ включает: зачистку контактных поверхностей заготовок из стали и алюминия механическим способом,...
Тип: Изобретение
Номер охранного документа: 0002552464
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5265

Способ получения сталеалюминиевого соединения сваркой плавлением

Изобретение относится к области сварочного производства, в частности к способу получения сварного сталеалюминиевого соединения, и может быть использовано в судостроении, при строительстве железнодорожного транспорта и автомобилестроении. Сталеалюминиевое соединение получают сваркой плавлением...
Тип: Изобретение
Номер охранного документа: 0002552614
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55e2

Способ разрушения ледяного покрова

Изобретение относится к технологиям разрушения ледяного покрова для вскрытия прохода через ледовое поле. Способ разрушения ледяного покрова основан на использовании двух видов воздействия на ледяное поле: облучение мощным лазерным излучением и нагружение льда корпусом ледокола. На ледоколе...
Тип: Изобретение
Номер охранного документа: 0002553516
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56d9

Композиционный наноструктурированный порошок для нанесения покрытий

Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН). Композиционный наноструктурированный порошок для...
Тип: Изобретение
Номер охранного документа: 0002553763
Дата охранного документа: 20.06.2015
Showing 41-47 of 47 items.
29.03.2019
№219.016.ed52

Пластинчатый теплообменник для гидрогенизационных установок вторичной переработки нефти

Изобретение относится к устройствам для проведения теплообменных процессов между двумя средами через стенку и может быть использовано в нефтеперерабатывающей промышленности. В пластинчатом теплообменнике для гидрогенизационных установок вторичной переработки нефти, имеющем вертикальный...
Тип: Изобретение
Номер охранного документа: 0002683007
Дата охранного документа: 25.03.2019
29.03.2019
№219.016.ef37

Металлизированная пластина алмаза и способ ее изготовления

Изобретения могут быть использованы для монтажа элементов электронной техники. Техническим результатом изобретения является обеспечение высоких электрофизических параметров путем исключения деградации свойств пластины алмаза, при сохранении высокой адгезии металла к алмазу. Сущность...
Тип: Изобретение
Номер охранного документа: 0002285977
Дата охранного документа: 20.10.2006
19.06.2019
№219.017.8a9a

Металлизированная пластина алмаза для изделий электронной техники

Изобретение относится к электронной технике и может быть использовано для монтажа и одновременно для отвода тепла от активных элементов как отдельных изделий электронной техники, так и радиоэлектронных устройств различного назначения. Сущность изобретения: металлизированная пластина алмаза для...
Тип: Изобретение
Номер охранного документа: 0002436189
Дата охранного документа: 10.12.2011
29.06.2019
№219.017.9e8b

Способ радиоэкологического мониторинга промышленного региона

Изобретение относится к охране окружающей среды, в частности к радиоэкологическому мониторингу промышленного региона при оценке радиационной обстановки в регионе и влияния специализированных предприятий на радиоактивное загрязнение окружающей среды, оценке доз облучения населения. Технический...
Тип: Изобретение
Номер охранного документа: 0002362186
Дата охранного документа: 20.07.2009
02.07.2019
№219.017.a2f3

Способ изготовления подложки зеркала из карбидокремниевой керамики

Изобретение относится к области оптического машиностроения, к области изготовления оптических зеркал, и может быть использовано в области лазерной техники, оптоэлектроники, информационной и силовой оптики, в системах оптической локации и поиска. Способ изготовления подложки зеркала из...
Тип: Изобретение
Номер охранного документа: 0002692921
Дата охранного документа: 28.06.2019
25.03.2020
№220.018.0fa6

Способ изготовления пористых нанокомпозитных кремниевых гранул

Изобретение относится к композиционным материалам для сохранения окружающей среды, для медицины и для фармакологии. При изготовления пористых нанокомпозитных кремниевых гранул используют нанопорошок кремния, а его суспензию приготавливают путем смешивания этого порошка с кремнезолем, полученным...
Тип: Изобретение
Номер охранного документа: 0002717521
Дата охранного документа: 23.03.2020
24.04.2020
№220.018.184d

Способ хирургического лечения первичных и метастатических опухолей позвоночника

Изобретение относится к медицине, а именно к онкологии, травматологии и ортопедии, и может быть использовано для лечения больных с онкологическими поражениями позвоночника. Способ включает хирургический доступ к пораженной области позвоночника, стабилизацию позвоночника транспедикулярной...
Тип: Изобретение
Номер охранного документа: 0002719648
Дата охранного документа: 21.04.2020
+ добавить свой РИД