×
10.07.2019
219.017.adbf

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ОКСИДА УГЛЕРОДА

Вид РИД

Изобретение

№ охранного документа
0002373146
Дата охранного документа
20.11.2009
Аннотация: Изобретение относится к области химической технологии и может быть использовано при получении оксида углерода или фосгена. Исходное сырье, содержащее водород, диоксид углерода и кислород, при соотношении Н:CO, равном 1,555÷1,663, и соотношении O:H, равном 0,175÷0,173, подвергают каталитической углекислотной конверсии при давлении на выходе из катализаторного слоя шахтного конвертора 0,05-0,5 ати. Конвертированный газ охлаждают с утилизацией тепла, очищают от диоксида углерода методом жидкостной абсорбции. Выделенный диоксид углерода возвращают на стадию конверсии. Из очищенной смеси выделяют водород. Полученный оксид углерода содержит ниже 0,1 об.% метана. Изобретение позволяет отказаться от природного газа как исходного сырья и сократить объемы отходящего водорода. 1 табл.

Изобретение относится к области химической технологии и может быть использовано, в частности, на заводах, производящих оксид углерода или фосген.

Известен способ производства чистого оксида углерода из угля (Отто процесс) с использованием кислорода, при котором в готовом продукте практически отсутствует водород, а содержание метана ниже 0.1% объемного (Ammonia, Methanol, Hydrogen, Carbon monoxide, Modern Production Technologies, Max Appl, 1997, CRU Publishing Ltd. Page 118).

Недостатком этого способа является значительное количество жидких и твердых отходов, загрязняющих окружающую среду, и низкая производительность труда.

Наиболее близким по технической сущности к заявляемому способу является способ (способ Lurgi), описанный в Ammonia, Methanol, Hydrogen, Carbon monoxide, Modern Production Technologies, Max Appl, 1997, CRU Publishing Ltd. Page 122, включающий конверсию природного газа в трубчатых печах под давлением до 35 атм. с паром и диоксидом углерода с получением конвертированного газа с содержанием метана на уровне 1-5 об. % и оксида углерода на уровне 20-24 об. %, с последующей очисткой конвертированного газа от диоксида углерода раствором аМДЭА и возвратом диоксида углерода на стадию конверсии, низкотемпературного разделения очищенного конвертированного газа за счет абсорбции оксида углерода при низкотемпературной конденсации метана, находящегося в исходной смеси и с последующей десорбцией оксида углерода при понижении давления метановой фракции, при которой содержание метана ниже 0.1 об. %.

К недостаткам указанного способа следует отнести:

- Значительный расход природного газа как технологического, так и топливного;

- Наличие значительного количества газовых отходов таких, как водород, который приходится иногда использовать как топливо в трубчатой печи;

- Наличие вредных выбросов оксида углерода и азота в дымовых газах трубчатой печи;

- Значительные энергетические затраты при производстве товарного оксида углерода с содержанием СН4 ниже 0.1 об. %.

Технической задачей данного изобретения является отказ от использования в качестве сырья для производства оксида углерода природного газа и сокращение объемов отходящего водорода при производстве товарной окиси углерода с содержанием CH4 ниже 0.1 об. %.

Решение поставленной задачи осуществляется за счет:

- использования в качестве технологического сырья таких отходов смежных производств как водород, диоксид углерода с производства окиси этилена и кислород;

- осуществления процесса каталитической водородной конверсии диоксида углерода при давлении конверсии ниже 0.1-0.5 ати.

Сущность изобретения в способе получения оксида углерода:

- Осуществление процесса шахтной водороднокислородной конверсии диоксида углерода при соотношении водород: диоксид углерода 1.557÷1.666:1 и кислорода к водороду в диапазоне 0.175÷0.193;

- Осуществление процесса водородокислородной конверсии на никелевом катализаторе с образованием в конвертированном газе СН4 ниже 0.02 об. %;

- Подачи технологического диоксида углерода, содержащего следы этилена в смеситель шахтного конвертора как разделительного газа;

- Очистки конвертированного газа от диоксида углерода раствором аМДЭА и возвратом диоксида углерода на стадию конверсии;

- Разделение очищенного конвертированного газа за счет селективной диффузии водорода и частично оксида углерода через полимерные мембраны с получением товарного влажного оксида углерода чистотой не менее 96% под давлением и с последующей осушкой оксида углерода на твердом адсорбенте с получением товарного продукта с точкой росы - 40°С.

Исходный технологический водород под давлением 0.4-0.7 ати смешивается с возвратными потоками диоксида углерода после стадии очистки конвертированного газа и водородным потоком после стадии разделения конвертированного газа с помощью полимерных мембран (смешанный газ). Технологическая смесь нагревается до 450°С за счет тепла, отходящего после шахтного конвертора конвертированного газа, и подается в смеситель шахтного конвертора. В смеситель подается кислород (О2) и исходный поток технологического диоксида углерода, содержащий следы этилена и воды, и в свободном пространстве шахтного конвертора над слоем катализатора происходит взаимодействие кислорода с водородом, в результате которого происходит повышение температуры смеси до 950-1050°С. Горячий газ подается на слой никелевого катализатора, на котором происходит процесс эндотермической конверсии диоксида углерода с образованием оксида углерода и воды и с одновременным понижением температуры - Tsh до 800-950°С.

После шахтного конвертора конвертированный газ проходит котел-утилизатор, в котором генерируется пар давлением 5-7 атм, используемый далее для регенерации аминового раствора на стадии очистки конвертированного газа от диоксида углерода. После котла - утилизатора конвертированный газ охлаждается в рекуперационном теплообменнике нагрева исходной на водородную конверсию технологической смеси и поступает в холодильник, где охлаждается до температуры 30-40°С, с которой и поступает на всас компрессора. Сжатый конвертированный газ проходит жидкостную абсорбционную очистку от диоксида углерода, после которой исходная для разделения смесь, содержащая водород, оксид углерода, азот, метан и пары воды проходит стадию разделения с использованием селективных полимерных мембран.

Примеры осуществления процесса:

Пример №1

Исходный технологический водород в количестве 5264.4 нм3/ч под давлением 0.27 ати смешивается с возвратными потоками диоксида углерода после стадии очистки конвертированного газа в количестве 3728.5 нм3/ч и водородным потоком после стадии разделения конвертированного газа с помощью полимерных мембран в количестве 5543.1 (смешанный газ).

Технологическая смесь нагревается до 450°С за счет тепла, отходящего после шахтного конвертора конвертированного газа, и подается в смеситель шахтного конвертора. В смеситель подается кислород (О2) в количестве 921.4 нм3/ч и исходный поток технологического диоксида углерода в количестве 3381.7 нм3/ч, содержащий следы этилена, и в свободном пространстве шахтного конвертора над слоем катализатора происходит взаимодействие кислорода с водородом, в результате которого происходит повышение температуры смеси до 958.0°С.

Образующийся горячий газ в количестве 16570.1 нм3/ч с соотношением пар: газ 0.112 и составом CO2 равно 42.91 об. %, СО равно 2.88 об. %, Н2 равно 54.15 об. %, N2 равно 0.05 об. %, подается на слой никелевого катализатора, на котором происходит процесс эндотермической конверсии диоксида углерода с образованием оксида углерода и воды и с одновременным понижением температуры до 799.7°С. Одновременно с эндотермической конверсией диоксида углерода протекает экзотермическая реакция метанирования, т.е. образования метана из окиси углерода и водорода. На выходе из зернистого слоя получается газ в количестве 13184.8 нм3/ч с соотношением пар: газ 0.397 и составом СО2 равно 28.31 об. %; СО равно 29.22 об. %; Н2 равно 42.38 об. %; N2 равно 0.07 об. %; CH4 равно 0.018 об. % под давлением 0.05 ати.

После шахтного конвертора конвертированный газ проходит котел-утилизатор, в котором генерируется пар давлением 5-7 атм, используемый далее для регенерации аминового раствора на стадии очистки конвертированного газа от диоксида углерода. После котла - утилизатора конвертированный газ охлаждается в рекуперационном теплообменнике, нагревая исходный газ на водородную конверсию технологической смеси, и поступает в холодильник, где охлаждается до температуры 30-40°С, с которой и поступает на всас компрессора. Сжатый конвертированный газ проходит жидкостную абсорбционную очистку от диоксида углерода, после которой исходная для разделения смесь, содержащая водород, оксид углерода, азот, метан и пары воды проходит стадию разделения с использованием селективных полимерных мембран. В результате получается товарная окись углерода с содержанием N2 равно 0.26%; СН4 равно 0.07%; СО2 равно 0.27%; Н2 равно 1.62%, т.е. 97.77% чистоты.

Выделенный поток диоксида углерода после стадии очистки конвертированного газа в количестве 3728.5 нм3/ч возвращается на стадию конверсии для смешения с исходным водородным потоком в количестве 5264.4 нм3/ч и водородным потоком после стадии разделения в количестве 5543.1 нм3/ч.

Пример №2.

Исходный технологический водород в количестве 5337.7 нм3/ч под давлением 0.7 ати смешивается с возвратными потоками диоксида углерода после стадии очистки конвертированного газа в количестве 3399.2 нм3/ч и водородным потоком после стадии разделения конвертированного газа с помощью полимерных мембран в количестве 5511.9 (смешанный газ).

Технологическая смесь нагревается до 450°С за счет тепла, отходящего после шахтного конвертора конвертированного газа, и подается в смеситель шахтного конвертора. В смеситель подается кислород (О2) в количестве 958.4 нм3/ч и исходный поток технологического диоксида углерода в количестве 3381.8 нм3/ч, содержащий следы этилена, и в свободном пространстве шахтного конвертора над слоем катализатора происходит взаимодействие кислорода с водородом, в результате которого происходит повышение температуры смеси до 991.6°С.

Образующийся горячий газ в количестве 16209.5 нм3/ч с соотношением пар: газ 0.119 и составом CO2 равно 41.84 об. %, СО равно 2.95 об. %, H2 равно 55.16 об. %, N2 равно 0.06 об. % подается на слой никелевого катализатора, на котором происходит процесс эндотермической конверсии диоксида углерода с образованием оксида углерода и воды и с одновременным понижением температуры - Tsh 839°C. Одновременно с эндотермической конверсией диоксида углерода протекает экзотермическая реакция метанирования, т.е. образования метана из окиси углерода и водорода. На выходе из зернистого слоя получается газ в количестве 12825.7 нм3/ч с соотношением пар: газ 0.414 и составом СО2 равно 26.54 об. %, СО равно 30.04 об. %; Н2 равно 43.33 об. %; N2 равно 0.07 об. %; СН4 равно 0.018 об. % под давлением 0.05 ати.

После шахтного конвертора конвертированный газ проходит котел-утилизатор, в котором генерируется пар давлением 5-7 атм, используемый далее для регенерации аминового раствора на стадии очистки конвертированного газа от диоксида углерода. После котла-утилизатора конвертированный газ охлаждается в рекуперационном теплообменнике, нагревая исходный газ на водородную конверсию технологической смеси, и поступает в холодильник, где охлаждается до температуры 30-40°С, с которой и поступает на всас компрессора. Сжатый конвертированный газ проходит жидкостную абсорбционную очистку от диоксида углерода, после которой исходная для разделения смесь, содержащая водород, оксид углерода, азот, метан и пары воды проходит стадию разделения с использованием селективных полимерных мембран.

В результате получается товарная окись углерода с содержанием N2 равно 0.27 об. %, CH4 равно 0.07 об. %, СО2 равно 0.27 об. %, Н2 равно 1.61 об. %, т.е. 97.77% чистоты.

Выделенный поток диоксида углерода после стадии очистки конвертированного газа в количестве 3399.2 нм3/ч возвращается на стадию конверсии для смешения с исходным водородным потоком в количестве 5337.7 нм3/ч и водородным потоком после стадии разделения в количестве 5511.9 нм3/ч.

Пример №3 .

Исходный технологический водород в количестве 5387.6 нм3/ч под давлением 0.7 ати смешивается с возвратными потоками диоксида углерода после стадии очистки конвертированного газа в количестве 2645.8 нм3/ч и водородным потоком после стадии разделения конвертированного газа с помощью полимерных мембран в количестве 6644.4 (смешанный газ).

Технологическая смесь нагревается до 450°С за счет тепла, отходящего после шахтного конвертора конвертированного газа, и подается в смеситель шахтного конвертора. В смеситель подается кислород (О2) в количестве 983.9 нм3/ч и исходный поток технологического диоксида углерода в количестве 3370.2 нм3/ч, содержащий следы этилена, и в свободном пространстве шахтного конвертора над слоем катализатора происходит взаимодействие кислорода с водородом, в результате которого происходит повышение температуры смеси до 1011.4°С.

Образующийся горячий газ в количестве 16573.9 нм3/ч с соотношением пар: газ 0.120 и составом СО2 равно 36.30 об. %, СО равно 2.87 об. %, Н2 равно 60.78 об. %, N2 равно 0.06 об. % подается на слой никелевого катализатора, на котором происходит процесс эндотермической конверсии диоксида углерода с образованием оксида углерода и воды и с одновременным понижением температуры - Tsh до 852.5°С. Одновременно с эндотермической конверсией диоксида углерода протекает экзотермическая реакция метанирования, т.е. образования метана из окиси углерода и водорода. На выходе из зернистого слоя получается газ в количестве 13200.9 нм3/ч с соотношением пар: газ 0.406 и составом СО2 равно 20.08 об. %; СО равно 29.08 об. %; Н2 равно 50.75 об. %; N2 равно 0.07 об. %; СН4 равно 0.018 об. % под давлением 0.51 ати.

После шахтного конвертора конвертированный газ проходит котел-утилизатор, в котором генерируется пар давлением 5-7 атм, используемый далее для регенерации аминового раствора на стадии очистки конвертированного газа от диоксида углерода. После котла-утилизатора конвертированный газ охлаждается в рекуперационном теплообменнике, нагревая исходный газ на водородную конверсию технологической смеси, и поступает в холодильник, где охлаждается до температуры 30-40°С, с которой и поступает на всас компрессора. Сжатый конвертированный газ проходит жидкостную абсорбционную очистку от диоксида углерода, после которой исходная для разделения смесь, содержащая водород, оксид углерода, азот, метан и пары воды проходит стадию разделения с использованием селективных полимерных мембран.

В результате получается товарная окись углерода с содержанием N2 равно 0.27 об. %; СН4 равно 0.07 об. %; СО2 равно 0.31 об. %; Н2 равно 1.94 об. %, т.е. 97.40% чистоты.

Выделенный поток диоксида углерода после стадии очистки конвертированного газа в количестве 2645.8 нм3/ч возвращается на стадию конверсии для смешения с исходным водородным потоком в количестве 5387.6 нм3/ч и водородным потоком после стадии разделения в количестве 6644.4 нм3/ч.

Пример №4.

Исходный технологический водород в количестве 5481.1 нм3/ч под давлением 0.7 ати смешивается с возвратными потоками диоксида углерода после стадии очистки конвертированного газа в количестве 2044.1 нм3/ч и водородным потоком после стадии разделения конвертированного газа с помощью полимерных мембран в количестве 8019.2 нм3/ч (смешанный газ).

Технологическая смесь нагревается до 450°С за счет тепла, отходящего после шахтного конвертора конвертированного газа, и подается в смеситель шахтного конвертора. В смеситель подается кислород (О2) в количестве 1032.0 нм3/ч и исходный поток технологического диоксида углерода в количестве 3356.0 нм3/ч, содержащий следы этилена, и в свободном пространстве шахтного конвертора над слоем катализатора происходит взаимодействие кислорода с водородом, в результате которого происходит повышение температуры смеси до 1030.6°С.

Образующийся горячий газ в количестве 17329.4 нм3/ч с соотношением пар: газ 0.120 и составом СО2 равно 31.16 об. %, СО равно 2.73 об. %, Н2 равно 66,05 об. %, N2 равно 0.06 об. % подается на слой никелевого катализатора, на котором происходит процесс эндотермической конверсии диоксида углерода с образованием оксида углерода и воды и с одновременным понижением температуры - Tsh до 878.0°С. Одновременно с эндотермической конверсией диоксида углерода протекает экзотермическая реакция метанирования, т.е. образования метана из окиси углерода и водорода. На выходе из зернистого слоя получается газ в количестве 13976.4 нм3/ч с соотношением пар: газ - 0.389 и составом СО2 равно 14.70 об. %; СО равно 27.31 об. %; Н2 равно 57.90 об. %; N2 равно 0.07 об. %; СН4 равно 0.016 об. % под давлением 0.5 ати.

После шахтного конвертора конвертированный газ проходит котел-утилизатор, в котором генерируется пар давлением 5-7 атм, используемый далее для регенерации аминового раствора на стадии очистки конвертированного газа от диоксида углерода. После котла-утилизатора конвертированный газ охлаждается в рекуперационном теплообменнике, нагревая исходный газ на водородную конверсию технологической смеси, и поступает в холодильник, где охлаждается до температуры 30-40°С, с которой и поступает на всас компрессора. Сжатый конвертированный газ проходит жидкостную абсорбционную очистку от диоксида углерода, после которой исходная для разделения смесь, содержащая водород, оксид углерода, азот, метан и пары воды проходит стадию разделения с использованием селективных полимерных мембран.

В результате получается товарная окись углерода с содержанием N2 равно 0.28 об. %, СН4 равно 0.07 об. %, СО2 равно 0.35 об. %, Н2 равно 2.35 об. %, т.е. 96.96% чистоты.

Выделенный поток диоксида углерода после стадии очистки конвертированного газа в количестве 2044.1 нм3/ч возвращается на стадию конверсии для смешения с исходным водородным потоком в количестве 5481.1 нм3/ч и водородным потоком после стадии разделения в количестве 8019.2 нм3/ч.

Пример №5 .

Исходный технологический водород в количестве 5565.5 нм3/ч под давлением 0.7 ати смешивается с возвратными потоками диоксида углерода после стадии очистки конвертированного газа в количестве 1675.7 нм3/ч и водородным потоком после стадии разделения конвертированного газа с помощью полимерных мембран адсорбции в количестве 9484.6 нм3/ч (смешанный газ).

Технологическая смесь нагревается до 450°С за счет тепла, отходящего после шахтного конвертора конвертированного газа, и подается в смеситель шахтного конвертора. В смеситель подается кислород (О2) в количестве 1074.8 им3/ч и исходный поток технологического диоксида углерода в количестве 3341.0 нм3/ч, содержащий следы этилена, и в свободном пространстве шахтного конвертора над слоем катализатора происходит взаимодействие кислорода с водородом, в результате которого происходит повышение температуры смеси до 1038.6°С.

Образующийся горячий газ в количестве 18408.2 нм3/ч с соотношением пар: газ 0.118 и составом СО2 равно 27.25 об. %, СО равно 2.56 об. %, Н2 равно 70.13 об. %, N2 равно 0.05 об. % подается на слой никелевого катализатора, на котором происходит процесс эндотермической конверсии диоксида углерода с образованием оксида углерода и воды и с одновременным понижением температуры - Tsh до 893.4°С. Одновременно с эндотермической конверсией диоксида углерода протекает экзотермическая реакция метанирования, т.е. образования метана из окиси углерода и водорода. На выходе из зернистого слоя получается газ в количестве 15065.2 нм3/ч с соотношением пар: газ 0.366 и составом СО2 равно 11.16 об. %; СО равно 25.25 об. %; Н2 равно 63.50 об. %; N2 равно 0.07 об. %; CH4 равно 0.016 об. % под давлением 0.5 ати.

После шахтного конвертора конвертированный газ проходит котел-утилизатор, в котором генерируется пар давлением 5-7 атм, используемый далее для регенерации аминового раствора на стадии очистки конвертированного газа от диоксида углерода. После котла-утилизатора конвертированный газ охлаждается в рекуперационном теплообменнике, нагревая исходный газ на водородную конверсию технологической смеси, и поступает в холодильник, где охлаждается до температуры 30-40°С, с которой и поступает на всас компрессора. Сжатый конвертированный газ проходит жидкостную абсорбционную очистку от диоксида углерода, после которой исходная для разделения смесь, содержащая водород, оксид углерода, азот, метан и пары воды проходит стадию разделения с использованием селективных полимерных мембран.

В результате получается товарная окись углерода с содержанием N2 равно 0.29 об. %; СН4 равно 0.08 об. %; СО2 равно 0.39 об. %; Н2 равно 2.78 об. %, т.е. 96.47% чистоты.

Выделенный поток диоксида углерода после стадии очистки конвертированного газа в количестве 1675.7 нм3/ч возвращается на стадию конверсии для смешения с исходным водородным потоком в количестве 5565.5 нм3/ч и водородным потоком после стадии разделения в количестве 9484.6 нм3/ч.

Параметры рассмотренных примеров приведены в соответствующих строках таблицы.

Таблица
P ати, под слоем O2, нм3 Tsh, °C Об. % CO2 Состав продукта, % Н2/СО2 в исходном газе Н2/СО2 в смешанном газе
CH4 СО2 СО N2 Н2
0.05 921 800 28.32 0.07 0.27 97.77 0.26 1.62 1.555 1.52
0.5 958 832 26.55 0.07 0.27 97.77 0.26 1.61 1.578 1.6
0.5 984 852 20.10 0.07 0.31 97.40 0.27 1.94 1.599 2.0
0.5 1032 878 14.70 0.07 0.35 96.96 0.28 2.35 1.633 2.5
0.5 1075 890 11.20 0.08 0.39 96.47 0.29 2.78 1.666 3.0

Способ производства оксида углерода с содержанием метана ниже 0,1 об.% с применением углекислотой каталитической конверсии исходного сырья, охлаждения конвертированного газа после стадии конверсии с утилизацией тепла, очистки конвертированного газа от диоксида углерода методом жидкостной абсорбции с возвратом его на стадию конверсии и последующее выделение водорода из очищенной смеси, отличающийся тем, что в качестве исходного сырья используют водород, диоксид углерода и кислород при соотношении H:СО, равном 1,555÷1,663, соотношении О:Н, равном 0,175÷0,193, и конверсию осуществляют при давлении на выходе из катализаторного слоя шахтного конвертора 0,05-0,5 ати.
Источник поступления информации: Роспатент

Showing 1-10 of 13 items.
10.07.2013
№216.012.541e

Способ получения разветвленных функционализированных диеновых (со)полимеров

Изобретение относится к области получения синтетических каучуков, в частности диеновых (со)полимеров, таких как полибутадиен, полиизопрен и бутадиен-стирольный каучук (БСК), применяемых при производстве шин, резинотехнических изделий, модификации битумов, в электротехнической и других областях....
Тип: Изобретение
Номер охранного документа: 0002487137
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d11

Способ выделения синтетических каучуков эмульсионной полимеризации из латексов

Изобретение относится к промышленности синтетического каучука, к выделению синтетических каучуков эмульсионной полимеризации из соответствующих латексов. Способ выделения каучуков эмульсионной полимеризации включает коагуляцию каучукового латекса в кислой среде в присутствии коагулянта -...
Тип: Изобретение
Номер охранного документа: 0002489446
Дата охранного документа: 10.08.2013
27.10.2013
№216.012.799e

Модифицированный латекс сополимера бутадиена со звеньями алкил (мет) акрилата или бутилакрилата

Изобретение относится к латексам, применяемым в пропиточных составах для крепления армирующих текстильных материалов к резинам при изготовлении шин и других резиновых изделий, и может быть использовано в промышленности синтетического каучука. Латекс сополимера бутадиена со звеньями метил (мет)...
Тип: Изобретение
Номер охранного документа: 0002496796
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7c96

Газожидкостный реактор

Газожидкостный реактор относится к области технологического оборудования для осуществления газожидкостных процессов и может быть использован в химической, нефтехимической и других областях промышленности. Газожидкостный реактор содержит корпус с патрубками ввода реагентов и вывода продуктов...
Тип: Изобретение
Номер охранного документа: 0002497567
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7d9f

Способ получения бромбутилкаучука

Изобретение относится к способу получения бромированного бутилкаучука и может быть использовано в нефтехимической и химической промышленности. Бромирование бутилкаучука включает обработку 10-25%-ного раствора бутилкаучука в C-C углеводородном растворителе бромной водой с последующей...
Тип: Изобретение
Номер охранного документа: 0002497832
Дата охранного документа: 10.11.2013
10.12.2013
№216.012.88c0

Способ бромирования бутилкаучука и способ получения бромбутилкаучука

Изобретение относится к производству галогенированных полимеров, в частности бромированных бутилкаучуков, и может быть использовано в нефтехимической и химической промышленности. Способ включает приготовление сырья для получения бромной воды, электрохимическое получение бромной воды, получение...
Тип: Изобретение
Номер охранного документа: 0002500690
Дата охранного документа: 10.12.2013
29.03.2019
№219.016.f2d9

Центробежный сепарационный элемент

Изобретение относится к технике разделения газожидкостных потоков. Центробежный сепарационный элемент включает обечайку с завихрителем потока и размещенной над кромкой обечайки ловушкой отделенной жидкости, выполненной в виде кольца с вертикальными бортовыми поверхностями, образующими с внешней...
Тип: Изобретение
Номер охранного документа: 0002370305
Дата охранного документа: 20.10.2009
29.03.2019
№219.016.f49b

Способ получения блок-сополимера пропилена и этилена

Изобретение относится к способу получения органических высокомолекулярных соединений, в частности к способам получения блоксополимеров пропилена с этиленом (БСПЭ), используемых в технике для изготовления различных изделий конструкционного назначения методами экструзии и литья. Описан способ...
Тип: Изобретение
Номер охранного документа: 0002411253
Дата охранного документа: 10.02.2011
29.03.2019
№219.016.f561

Способ гидрирования бутадиен-нитрильного каучука

Изобретение относится к производству гидрированных каучуков, в частности к способу селективного гидрирования двойных углерод-углеродных связей бутадиен-нитрильного каучука. В латекс бутадиен-нитрильного каучука добавляют гидразин-гидрат и соединение, содержащее пероксидную группу. Гидрирование...
Тип: Изобретение
Номер охранного документа: 0002470942
Дата охранного документа: 27.12.2012
10.07.2019
№219.017.ad7c

Способ получения нефтеполимерной смолы

Настоящее изобретение относится к технологии производства нефтеполимерных смол (НПС). Описан способ получения нефтеполимерной смолы путем катионной соолигомеризации непредельных углеводородов в составе жидких побочных фракций пиролиза и их блоксоолигомеризацией с маслообразным продуктом...
Тип: Изобретение
Номер охранного документа: 0002356914
Дата охранного документа: 27.05.2009
Showing 1-4 of 4 items.
10.04.2019
№219.017.06c5

Способ получения жидких углеводородов из синтез-газа

Изобретение может быть использовано в химической промышленности. Описан способ получения жидких углеводородов из синтез-газа, заключающийся в осуществлении синтеза по Фищеру-Тропшу синтез-газа, по крайней мере, в двух последовательно установленных блоках синтеза, каждый из которых состоит из...
Тип: Изобретение
Номер охранного документа: 0002422491
Дата охранного документа: 27.06.2011
30.05.2020
№220.018.2273

Гетерогенный катализатор окисления пара-ксилола до терефталевой кислоты

Изобретение относится к гетерогенному катализатору окисления пара-ксилола до терефталевой кислоты, состоящий из носителя, содержащего, % масс.: упорядоченный мезопористый оксид кремния типа МСМ-41 20,0-70,0; алюмосиликатные нанотрубки 30,0-80,0, и оксида металла, выбранного из ряда,...
Тип: Изобретение
Номер охранного документа: 0002722302
Дата охранного документа: 28.05.2020
01.06.2023
№223.018.74b4

Способ транспортирования метано-водородной смеси

Изобретение относится к газовой промышленности и может быть использовано при транспортировке газообразных энергоносителей на дальние расстояния. Метано-водородную смесь с содержанием водорода не менее 70% транспортируют по трубопроводу. На каждой газоперекачивающей станции отбирают посредством...
Тип: Изобретение
Номер охранного документа: 0002766951
Дата охранного документа: 16.03.2022
03.06.2023
№223.018.7667

Способ получения аммиака

Изобретение может быть использовано в химической промышленности. Для получения аммиака проводят очистку исходного природного газа – метана от сернистых соединений и подвергают его двухступенчатой конверсии: паровой конверсии метана в трубчатой печи, затем паровоздушной конверсии в шахтном...
Тип: Изобретение
Номер охранного документа: 0002796561
Дата охранного документа: 25.05.2023
+ добавить свой РИД