×
10.07.2019
219.017.ac03

СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ФТОРОРГАНИЧЕСКОГО МАТЕРИАЛА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002341536
Дата охранного документа
20.12.2008
Краткое описание РИД Свернуть Развернуть
Аннотация: Описан способ получения нанодисперсного фторорганического материала путем термодеструкции политетрафтоэтилена в атмосфере воздуха с последующим охлаждением, причем термодеструкцию проводят в плазме электрического разряда в переменном электрическом поле при амплитуде переменного напряжения не менее 2 кВ. Изобретение может найти применение для создания фторполимерных присадок и наполнителей, получения жидких реагентов для фторорганического синтеза, для создания фторорганических микрокристаллов, пленочных покрытий, а также фторполимерных квантовых точек. 5 ил.
Реферат Свернуть Развернуть

Изобретение относится к технологии получения нанодисперсных, растворимых в спиртах и ацетоне, полимерных материалов из фторопластов, в частности из отходов фторопластов, и может найти применение для создания фторполимерных присадок и наполнителей, получения жидких реагентов для фторорганического синтеза, для создания фторорганических микрокристаллов, пленочных покрытий, а также фторполимерных квантовых точек.

Известен способ получения субмикронного политетрафторэтиленового порошка и продуктов из него [пат. США №6881784, опубл. 19.04.2005 г.], в котором исходный материал, тонкодисперсный порошок политетрафторэтилена (ПТФЭ) либо сополимера ПТФЭ, облучают (5-120 Мрад, преимущественно 20-90 Мрад), помещают облученный материал в жидкость, механически измельчают эту смесь, затем извлекают твердый измельченный продукт, содержащий частицы размером от менее 1 до 100 мкм, высушивают. Из полученного продукта выделяют часть, состоящую из субмикронных частиц (до 50%), и готовят из него различного вида дисперсии. Недостатком известного способа является необходимость предварительного получения исходного тонкодисперсного порошка ПТФЭ, что усложняет способ. Кроме того, размер получаемых частиц приводит к тому, что дисперсные системы, содержащие эти распределенные в жидкостях частицы, в лучшем случае представляют собой коллоидные растворы, стабильность которых зависит от различных факторов и не всегда является удовлетворительной.

Известен способ получения тонкодисперсного порошка фторорганического материала (политетрафторэтилена) из отходов фторопласта, описанный в патенте РФ №2133196, опубл. 20.07.99 г., включающий продувку установки сухим азотом, подачу измельченных отходов фторопласта в реактор равномерными порциями, их нагрев через тело расплава до 520-530°С, перемещение продуктов деструкции фторопластов охлажденным газом-носителем в охлажденную трубу, в которой они осаждаются на стенке в холодильнике и собираются в сборниках в виде порошковой массы, а газообразные продукты термодеструкции фторопластов после отделения от порошкообразных продуктов поступают в дожигатель, а затем на дальнейшую переработку. Недостатком известного способа является недостаточно малый размер частиц получаемого с его помощью порошка (свыше 0,5 мкм, см. статью В.Г.Курявый, А.К.Цветников, В.М.Бузник. Особенности иерархического и морфологического строения частиц ультрадисперсного политетрафторэтилена по данным просвечивающей электронной и атомно-силовой микроскопии. Перспективные материалы 2005, №3, с.86-90), что обусловливает недостаточную устойчивость к седиментации водных, органических и масляных дисперсий, содержащих указанные частицы.

Наиболее близким к заявляемому является способ получения ультрадисперсного фторорганического материала (политетрафторэтилена), описанный в патенте РФ №2212418, опубл. 20.09.2003 г., который включает термодеструкцию политетрафторэтилена (ПТФЭ) при 480-540°С в среде выделяющихся газов термодеструкции в присутствии термодинамически пригодных для окисления ПТФЭ кислородсодержащих соединений, в частности воздуха, в количестве 3-15 мас.% в пересчете на кислород с последующим охлаждением и конденсацией продуктов термодеструкции путем их пропускания через растворитель.

К недостаткам известного способа следует отнести то, что получаемые с его помощью частицы политетрафторэтилена имеют средний размер около 1 микрона (1,0±0,5 мкм), что на практике является недостаточным для образования в жидких средах дисперсии, устойчивой к седиментации. Кроме того, известный способ сложен в аппаратурном оснащении, а полученный с его помощью продукт нуждается в отмывании от щелочи и образовавшихся фторидов либо, при использовании продукта вместе с растворителем, служащим средой конденсации, практически во всех случаях требует отфильтровывания избытка растворителя, что приводит к усложнению способа.

Задачей изобретения является разработка способа, обеспечивающего получение фторорганического материала с частицами размером менее 0,1 микрон, устойчивыми к седиментации в жидких средах за счет образования истинных и коллоидных растворов, при этом более простого в осуществлении и аппаратурном оснащении.

Поставленная задача решается способом получения нанодисперсного фторорганического материала путем термодеструкции политетрафторэтилена в атмосфере воздуха с последующим охлаждением, в котором, в отличие от известного, термодеструкцию проводят в плазме электрического разряда в переменном электрическом поле при амплитуде переменного напряжения не менее 2 кВ.

Способ осуществляют следующим образом.

Исходное сырье, например кусковой политетрафторэтилен (тефлон, фторопласт), помещают в реактор с постоянным доступом воздуха, выполненный предпочтительно из огнеупорного материала, обладающего изолирующими свойствами, и снабженный встроенными электродами и приемником-собирателем готового продукта, при этом сборником могут служить стенки реактора.

К электродам подводят переменное импульсное либо синусоидальное электрическое напряжение. Расстояние между электродами устанавливают таким образом, что при подаче напряжения между ними возникает электрический разряд и образуется постоянная плазма из ионизированных частиц газовой среды, в которой происходит разряд.

Экспериментально установлено, что при амплитуде переменного напряжения менее 2 кВ электрический разряд способен возникать только при расстоянии между электродами менее 4 мм. Это расстояние является недостаточным для размещения в плазме исходного материала и поддержания его непрерывной деструкции. При амплитуде напряжения более 2 кВ деструкция материала осуществляется непрерывным образом.

Исходный политетрафторэтилен, находясь в объеме плазмы, претерпевает термодеструкцию, при этом твердый продукт термодеструкции выходит из зоны плазмы в виде дыма, оседающего на приемнике-собирателе. Электрический разряд поддерживают до полной деструкции исходного политетрафторэтилена.

Твердые продукты термодеструкции политетрафторэтилена, оседающие на приемнике-собирателе (либо на стенках реактора), представляют собой агломераты частиц, которые по своим размерам, не превышающим 0,1 микрона, могут быть отнесены к нанодисперсным материалам. Вид осажденных твердых продуктов термодеструкции показан на фиг.1, который представляет собой снимок, полученный с помощью атомно-силового микроскопа (АСМ). (Площадь снимка 1,8×1,8 мкм).

Избыток газообразных продуктов термодеструкции ПТФЭ отводят из реактора в ходе процесса с соблюдением стандартных мер безопасности.

Твердые продукты термодеструкции ПТФЭ в виде порошкообразной массы, в зависимости от их дальнейшего использования, либо механическим способом удаляют с приемника-собирателя (соскребают) и используют в виде нанодисперсного материала, либо смывают растворителем, например спиртом или ацетоном, при этом осажденное вещество частично растворяется в них, частично образует взвесь, а частично выпадает в осадок.

Наличие фторорганических групп в растворе подтверждается методом ЯМР. На фиг.2 приведен ЯМР-спектр спиртового раствора вещества, полученного деструкцией фторопласта в плазме электрического разряда. Спектр ЯМР содержит узкие линии со значениями химического сдвига, равными 15,864 м.д. (миллионных долей) и 13,590 м.д., которые находятся в областях, характерных для связей фтор-углерод, а также широкую фоновую линию от ядер фтора. Первое указывает на присутствие в растворе индивидуальных фторорганических молекул, то есть на то, что мы имеем дело с истинным раствором фторорганических соединений, второе на присутствие в растворе фторорганических соединений в твердом виде.

При отстаивании раствора в течение проверенных 4 месяцев спектры ЯМР не изменяются. Это указывает на то, что раствор является истинным, при этом твердая часть, находящаяся в растворителе в виде взвеси наночастиц, по-видимому, образует стабильный коллоидный раствор.

Полученный нанодисперсный фторорганический материал может быть использован, например, в качестве присадки, наполнителя и т.п., при этом размеры частиц обеспечивают свободную циркуляцию жидкости с такой присадкой в различных системах, поскольку частицы не оседают на фильтрах, а лакокрасочные материалы на их основе оставляют при высыхании равномерное покрытие.

Кроме того, используя в качестве приемника-собирателя определенные детали или изделия можно непосредственно на их поверхности получать покрытие из фторорганических нанодисперсных частиц.

При смачивании полученного покрытия спиртом последнее наноструктурируется в виде плотно прилегающих друг к друг ассоциатов размерами приблизительно 1,5 мкм, образованных частицами размерами около 100 нм, как видно на фиг.3 (а и б).

На фиг.3а и фиг.3б показаны полученные с помощью атомно-силового микроскопа (АСМ) изображения вещества покрытия, смоченного малым количеством спирта и затем подсушенного. Площадь изображения на фиг.3а равна 4,8×4,8 мкм, на фиг.3б 2,2×2,2 мкм.

Раствор полученного нанодисперсного фторорганического материала в соответствующем растворителе (спирт, ацетон) может быть использован в качестве химического реагента в химии фторорганических веществ. Это применение представляет большой интерес в связи трудностями растворения ПТФЭ в любых растворителях.

Было обнаружено, что этот раствор продуктов термодеструкции ПТФЭ при нанесении его на соответствующую поверхность после высушивания образует на поверхности пленку, включающую в свой состав россыпи изолированных друг от друга наночастиц, которые по своим размерам, составляющим менее 100 нм, могут быть отнесены к квантовым точкам [Ч.Пул, Ф.Оуэнс, Мир материалов и нанотехнологий. Нанотехнологии. Техносфера, Москва, 2005], в принципе обладающим рядом интересных физических свойств, например нелинейными оптическими свойствами.

Квантовые точки образуются при оседании на поверхности взвешенных в растворителе частиц после высушивания раствора, при этом некоторые частицы представлены в виде микрокристаллов.

На фиг.4 показано АСМ изображение включающего изолированные наночастицы покрытия, образовавшегося после нанесения на поверхность спиртового раствора продуктов термодеструкции ПТФЭ и последующего испарения спирта. Площадь изображения 0,6×0,6 мкм.

На фиг.5 показано АСМ изображение микрокристалла, образовавшегося после высыхания спиртового раствора продуктов термодеструкции ПТФЭ. Площадь изображения 1,5×1,5 мкм.

Таким образом, технический результат предлагаемого способа заключается в получении растворимого в спирте и ацетоне фторорганического материала с частицами размером менее 0,1 микрона, устойчивыми к седиментации в жидких средах за счет образования истинных и/или стабильных коллоидных растворов, при этом способ является более простым в осуществлении и аппаратурном оснащении.

Примеры конкретного осуществления способа

Кусок фторопласта общей массой 200 мг помещают в реактор, выполненный из огнеупорного стекла с вмонтированными электродами. Фторопласт удерживается с помощью стандартного приспособления типа зажима, выполненного из непроводящего материала.

Источником тока служит генератор высоковольтных импульсов с защитой от короткого замыкания.

Напряжение на электродах изменяется в импульсном режиме с амплитудой 2,5 кВ.

Полученный в результате термодеструкции твердый продукт в виде нанодисперсного фторорганического материала, осажденного на стенках реактора, оставляют для самопроизвольного охлаждения в течение 1-2 минут после окончания процесса.

При подводимой мощности 120 Вт в течение 10 сек происходит деструкция примерно 50 мг фторопласта, при этом выход твердого продукта составляет примерно 45 мг.

Способполучениянанодисперсногофторорганическогоматериалапутемтермодеструкцииполитетрафтоэтиленаватмосферевоздухаспоследующимохлаждением,отличающийсятем,чтотермодеструкциюпроводятвплазмеэлектрическогоразрядавпеременномэлектрическомполеприамплитудепеременногонапряжениянеменее2кВ.
Источник поступления информации: Роспатент

Showing 1-10 of 22 items.
17.02.2019
№219.016.bc05

Аппарат для металлотермического восстановления шламов гальванических производств

Изобретение относится к восстановительной металлургии, в частности к аппаратам для металлотермического получения металлов и сплавов, и может найти применение для алюминотермического восстановления шламов гальванических производств. Аппарат содержит цилиндрический корпус с крышкой, снабженный...
Тип: Изобретение
Номер охранного документа: 0002419659
Дата охранного документа: 27.05.2011
17.02.2019
№219.016.bc09

Способ переработки шламов гальванических производств

Изобретение относится к способу переработки шламов гальванических производств для извлечения тяжелых металлов. Способ включает термообработку шламов на воздухе и последующее получение реакционной массы с использованием порошка алюминия. При этом термообработку шламов проводят в две ступени, на...
Тип: Изобретение
Номер охранного документа: 0002408739
Дата охранного документа: 10.01.2011
11.03.2019
№219.016.d834

Способ получения антикоррозионных покрытий на стали

Изобретение относится к области гальванотехники и может быть использовано в судовом машиностроении, конструкциях различного назначения прибрежной морской зоны. Способ включает плазменно-электролитическое оксидирование в биполярном режиме в щелочном электролите, содержащем жидкое стекло, при...
Тип: Изобретение
Номер охранного документа: 0002392360
Дата охранного документа: 20.06.2010
11.03.2019
№219.016.d87f

Аддукты додекагидро-клозо-додекабората хитозания с хлорной кислотой или перхлоратом аммония

Изобретение относится к аддуктам додекагидро-клозо-додекабората хитозания с хлорной кислотой или перхлоратом аммония состава (COHNH)BH×nMClO где n - целое число, равное 1÷8, а М - Н, NH , которые могут найти применение в качестве энергоемких компонентов различных составов, например...
Тип: Изобретение
Номер охранного документа: 0002394840
Дата охранного документа: 20.07.2010
11.03.2019
№219.016.db78

Способ формирования наноразмерных структур

Изобретение относится к способам получения наноразмерных структур и может найти применение, в частности, в микроэлектронике, а также при изготовлении модулей памяти со сверхвысокой плотностью записи, наносенсоров, молекулярных сит, игл-зондов сканирующих туннельных микроскопов. Технический...
Тип: Изобретение
Номер охранного документа: 0002426190
Дата охранного документа: 10.08.2011
10.04.2019
№219.017.0288

Измельчитель

Изобретение относится к устройствам для измельчения материалов и может быть использовано в различных отраслях промышленности, в частности в пищевой, рыбной, химической, перерабатывающей, сельском хозяйстве и др. для переработки трудно измельчаемых материалов и продуктов. Измельчитель содержит...
Тип: Изобретение
Номер охранного документа: 0002397019
Дата охранного документа: 20.08.2010
10.04.2019
№219.017.02c7

Способ получения диоксида кремния

Изобретение может быть использовано для переработки рисовой шелухи и рисовой соломы в диоксид кремния. Рисовую шелуху или рисовую солому обрабатывают 20-60% раствором гидроксида натрия при 70-95°С. Нерастворившийся осадок отделяют от полученного раствора, из которого минеральной кислотой...
Тип: Изобретение
Номер охранного документа: 0002394764
Дата охранного документа: 20.07.2010
10.04.2019
№219.017.043b

Способ получения тонких слоев пирофосфата циркония

Изобретение может быть использовано при получении катализаторов, носителей катализаторов, сорбентов. Подложку из титана либо его сплава подвергают плазменно-электрохимической обработке в гальваностатическом режиме однополярным постоянным или импульсным током при эффективной плотности 5-15 А/дм...
Тип: Изобретение
Номер охранного документа: 0002371390
Дата охранного документа: 27.10.2009
10.04.2019
№219.017.07fb

Способ получения металлической сурьмы из сурьмяного сырья

Изобретение относится к способу получения металлической сурьмы из сурьмяного сырья. Способ включает получение раствора трифторида из сурьмяного сырья. При этом к полученному раствору трифторида сурьмы (SbF) добавляют валин (CHON) до достижения мольного соотношения трифторид сурьмы : валин,...
Тип: Изобретение
Номер охранного документа: 0002409686
Дата охранного документа: 20.01.2011
09.05.2019
№219.017.4acb

Способ выделения моногалактозилдиацилглицеринов из растительного сырья

Изобретение относится к биохимии. Проводят экстракцию общих липидов из отходов переработки зерна риса. Разделение липидов осуществляют с использованием метода двумерной тонкослойной хроматографии с использованием смеси растворителей: по первому направлению - хлороформ, ацетон, метанол,...
Тип: Изобретение
Номер охранного документа: 0002280454
Дата охранного документа: 27.07.2006
Showing 1-10 of 29 items.
20.12.2013
№216.012.8d24

Способ получения нанодисперсного фторопласта

Изобретение относится к получению нанодисперсного фторорганического материала, который может быть использован в качестве твердой смазки, а также в составе композиций для приборов, устройств, машин и механизмов, в том числе, масляных композиций для двигателей и трансмиссий автомобилей. Способ...
Тип: Изобретение
Номер охранного документа: 0002501815
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.906f

Способ получения углеродного наноматериала и углеродный наноматериал

Изобретение может быть использовано в производстве катализаторов, электродов, токопроводящих элементов, фильтров. Твердый политетрафторэтилен (ПТФЭ) подвергают пиролизу без доступа воздуха в плазме импульсного высоковольтного электрического разряда при атмосферном давлении с амплитудой...
Тип: Изобретение
Номер охранного документа: 0002502668
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e44

Способ получения металл-полимерного композитного материала для радиотехнической аппаратуры

Изобретение относится к получению металл-полимерных композиционных материалов, предназначенных для применения в радиотехнической аппаратуре в качестве радиопоглощающих и экранирующих материалов. Способ включает высокоскоростное термическое разложение металлсодержащих соединений с образованием...
Тип: Изобретение
Номер охранного документа: 0002506224
Дата охранного документа: 10.02.2014
20.05.2014
№216.012.c64f

Способ получения препрега для композиционных материалов

Изобретение относится к области получения препрегов для создания композиционных материалов на основе непрерывных высокопрочных высокомодульных полиэтиленовых волокон из сверхвысокомолекулярного полиэтилена, которые могут быть использованы в различных областях техники, например, в...
Тип: Изобретение
Номер охранного документа: 0002516526
Дата охранного документа: 20.05.2014
10.07.2014
№216.012.dcf0

Способ получения синтетических нитей

Изобретение относится к технологии получения синтетических нитей с высокими хемостойкостью и гидрофобностью и низким коэффициентом трения. Способ заключается в формовании нитей из расплава полимера, нанесении авиважного препарата, ориентационном вытягивании и термофиксации. Авиважный препарат...
Тип: Изобретение
Номер охранного документа: 0002522338
Дата охранного документа: 10.07.2014
27.11.2014
№216.013.0a9b

Способ получения защитных покрытий на вентильных металлах и их сплавах

Изобретение относится к области получения защитных антифрикционных износостойких и обладающих высокой коррозионной стойкостью покрытий на вентильных металлах и их сплавах, преимущественно на титане и его сплавах, алюминии и его сплавах, сплавах магния, и может найти применение для защиты от...
Тип: Изобретение
Номер охранного документа: 0002534123
Дата охранного документа: 27.11.2014
10.07.2015
№216.013.5ffa

Способ получения антифрикционного материала

Изобретение относится к области получения антифрикционных материалов с покрытиями на основе фтортеломеров алкилкетонов, которые могут быть использованы в узлах трения и в составах смазочных композиций для тяжелонагруженных узлов машин и механизмов. Для получения антифрикционного материала...
Тип: Изобретение
Номер охранного документа: 0002556111
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6327

Додекагидро-клозо-додекаборат полиэтиленимина и способ его получения

Изобретение относится к химии полиэдрических боргидридных соединений и полиэтиленимина. Способ получения додекагидро-клозо-додекабората полиэтиленимина состава CHNH×0,4HBH включает взаимодействие водных растворов полиэтиленимина (ПЭИ) и додекагидро-клозо-додекаборной кислоты (HBH), взятых в...
Тип: Изобретение
Номер охранного документа: 0002556930
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.7365

Способ переработки политетрафторэтилена

Изобретение относится к области переработки политетрафторэтилена (ПТФЭ) и утилизации его отходов и может найти применение для получения растворов, содержащих ионы фтора (электролитов) и используемых для проведения электролиза и химических реакций в растворах с участием ионов фтора с выделением...
Тип: Изобретение
Номер охранного документа: 0002561111
Дата охранного документа: 20.08.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
+ добавить свой РИД