×
10.07.2019
219.017.a9ec

Результат интеллектуальной деятельности: Устройство периодического действия для СВЧ-обработки материалов

Вид РИД

Изобретение

Аннотация: Изобретение относится к атомной энергетике, может быть использовано в радиохимической отрасли промышленности для получения порошка смешанных оксидов при переработке ядерного топлива. Устройство периодического действия для СВЧ-обработки материалов, состоящее из СВЧ-генератора, реакционной камеры, представляющей собой цилиндрический корпус, внутри которого установлено перемешивающее устройство с закрепленными лопатками, установленное с возможностью вращения и перемещения вдоль его оси, на корпусе размещены устройство подачи исходного раствора, устройство газоочистки. Реакционная камера зафиксирована с помощью лебедки и установлена на поворотном кронштейне, в нижней части реакционной камеры установлена керамическая вставка, выполненная из материала, обожженного при температуре 1200-1300°С, состоящего из смеси порошка оксида алюминия с СВЧ поглощающим порошком. На верхней части реакционной камеры установлен клапан пересыпной, внутри реакционной камеры установлен измельчитель, вал которого расположен соосно полому валу перемешивающего устройства. СВЧ-генератор герметично соединен с реакционной камерой волноводом СВЧ-энергии, который состоит из трех труб. Технический результат - возможность перемешивания обрабатываемого вещества в процессе СВЧ-нагрева; точное измерение температуры обрабатываемого вещества для определения момента завершения реакции денитрации. 1 з.п. ф-лы, 4 ил.

Изобретение относится к атомной энергетике, может быть использовано в радиохимической отрасли промышленности для получения порошка смешанных оксидов при переработке ядерного топлива.

Известен способ и устройство для денитрации с микроволновым нагревом (US 4727231, Н05В 6/64, 23.02.1988).

Изобретение относится к способу и устройству для нагрева СВЧ-излучением раствора нитрата, такого как раствор нитрата уранила, нитрата плутония, их смеси. Выпаривание, концентрацию и денитрацию раствора нитрата проводят для получения денитратированного продукта. Реакционная камера имеет цилиндрическую форму. Нижняя часть реакционной камеры используется в качестве сосуда с закрытым дном для приема в нем обрабатываемого вещества. На верхней стенке реакционной камеры установлен волновод и сдувка в устройство газоочистки. Волновод соединен с СВЧ-генератором. Сдувка служит для выхода отходящих газов. Отходящий газ образуются во время процесса нагревания / денитрации обрабатываемого вещества.

Недостатками известного технического решения являются:

- невозможно точно измерять температуру обрабатываемого вещества, что затрудняет определение момента завершения реакции денитрации;

- необходимость устанавливать дополнительное устройство детектор, для защиты СВЧ-генератора от отраженных волн, часть микроволн поглощается обрабатываемым веществом, а другая часть микроволн отражается от стенок реакционной камеры и возвращается через волновод обратно в СВЧ-генератор;

- при подготовке обрабатываемого вещества к выгрузке из реакционной камеры отсутствует механизм, который в определенном порядке выполняет операции перемешивания исходного раствора, очистку стенок реакционной камеры, деталей и узлов рыхления и дробления остаточной спекшейся массы для осуществления выгрузки.

Наиболее близким по технической сущности к заявляемой установке является устройство периодического действия для СВЧ-обработки жидких диэлектрических материалов (RU 139726, Н05В 6/64, 20.04.2014). Этот устройство принято в качестве прототипа.

Устройство, состоящее из СВЧ-генератора, реакционной камеры, представляющей собой цилиндрический корпус, внутри которого установлено перемешивающее устройство с закрепленными лопатками, установленное с возможностью вращения и перемещения вдоль его оси, на корпусе размещены устройство подачи исходного раствора, устройство газоочистки, к стенке реакционной камеры герметично пристыкован волновод СВЧ-энергии.

Недостатками прототипа являются:

- необходимость отключения СВЧ-энергии для осуществления периодического перемешивания обрабатываемого вещества;

- необходимость отключения СВЧ-генератора по окончанию процесса выпаривания;

- невозможность нагрева обрабатываемого вещества до требуемых технологией температур;

Технической задачей заявляемого изобретения является создание устройства периодического действия для СВЧ-обработки материалов, применяемого в составе модуля переработки смешанного уран-плутониевого нитридного (СНУП) облученного ядерного топлива (ОЯТ) РУ БРЕСТ-ОД-300, то есть получение порошка смешанных оксидов урана и плутония для дальнейшего получения из него топливных таблеток.

Техническим результатом является возможность перемешивания обрабатываемого вещества в процессе СВЧ-нагрева; точное измерение температуры обрабатываемого вещества для определения момента завершения реакции денитрации.

Технический результат достигается в устройстве периодического действия для СВЧ-обработки материалов, состоящем из СВЧ-генератора, реакционной камеры представляющей собой цилиндрический корпус, внутри которого установлено перемешивающее устройство с закрепленными лопатками, установленное с возможностью вращения и перемещения вдоль его оси, на корпусе размещены устройство подачи исходного раствора и устройство газоочистки, причем реакционная камера зафиксирована с помощью лебедки и установлена на поворотном кронштейне, в нижней части реакционной камеры установлена керамическая вставка, выполненная из материала, обожженного при температуре 1200-1300°С, состоящего из смеси порошка оксида алюминия с СВЧ поглощающим порошком, например карбидом кремния или диоксидом титана, на верхней части реакционной камеры установлен клапан пересыпной, внутри реакционной камеры установлен измельчитель, вал которого расположен соосно полому валу перемешивающего устройства.

СВЧ-генератор герметично соединен с реакционной камерой волноводом СВЧ-энергии, который состоит из трех труб.

Для подтверждения указанного выше представляем описание заявленного конструктивного выполнения устройства.

Заявляемое техническое решение иллюстрируется следующими чертежами. На фиг. 1 представлена схема устройства, на фиг. 2 общий вид устройства, на фиг. 3 реакционная камера в разрезе, на фиг. 4 реакционная камера в разрезе.

Устройство периодического действия для СВЧ-обработки материалов состоит из СВЧ-генератора 1, реакционной камеры 2 представляет собой цилиндрический корпус, внутри которого установлено перемешивающее устройство 3, установленное по оси реакционной камеры 2 на верхнем днище, с закрепленными лопатками, установленное с возможностью вращения и перемещения вдоль его оси. На корпусе размещены устройство 4 подачи, которое обеспечивает ввод исходного раствора и аргоно-водородной смеси газов через отверстие в верхнем днище реакционной камеры, и устройство 5 газоочистки.

К фланцу на стенке реакционной камеры, закрытому герметично перегородкой из СВЧ-прозрачного материала, закреплен волновод 6 СВЧ-энергии, который состоит из трех труб. СВЧ-энергия подводится к верхней части боковой поверхности реакционной камеры 2 тремя трубами волновода 6 через разъемный фланец. Внутри фланца установлено СВЧ-прозрачное кварцевое стекло 14, предотвращающее попадание брызг и пыли в волновод и наружу. Каждая из трех труб подает СВЧ-энергию двух магнетронов. Таким образом, система шести СВЧ-полей, смещенных в пространстве и имеющих разную поляризацию, обеспечивают равномерное распределение СВЧ-энергии в объеме реакционной камеры 2.

В нижней части реакционной камеры 2 установлена керамическая вставка 7, выполненная из материала, обожженного при температуре 1200-1300°С, состоящего из смеси порошка оксида алюминия с СВЧ поглощающим порошком, например карбидом кремния или диоксидом титана. На верхней части реакционной камеры 2 установлен клапан 8 пересыпной. В свободном положении клапан 8 закрыт пружиной и может быть открыт при пересыпании порошка присоединением к нему контейнера.

По оси реакционной камеры 2 на верхнем днище установлены устройство перемешивающее 3 и измельчитель 9. Вал измельчителя 9 расположен соосно полому валу перемешивающего устройства 3. Валы имеют разные регулируемые скорости вращения. Вал измельчителя 9 имеет возможность вертикального перемещения относительно вала перемешивающего устройства 3. Все это позволяет производить эффективное перемешивание жидкого и твердого продукта, а также измельчать твердый продукт до требуемого однородного состояния.

В верхнем положении реакционной камеры 2 фланец прижат к неподвижному фланцу волновода 6 усилием лебедки 10, закрепленной на раме 11.

В верхней части реакционной камеры 2 установлен инфракрасный датчик температуры 12, который измеряет температуру поверхности продукта в керамической вставке 7. Корпус датчика температуры установлен с возможностью его поворота на узле крепления. На верхней части реакционной камеры установлен патрубок 13 отсоса паров и газов.

В нижней части реакционной камеры 2 на наружной поверхности установлен контактный температурный датчик (на фигурах не указан), контролирующий температуру дна реакционной камеры 2. Снаружи реакционная камера 2 теплоизолирована минеральной плитой и облицована кожухом из тонкой нержавеющей стали.

В верхней части установлено смотровое окно из кварцевого стекла закрытое защитной сеткой, не пропускающей излучение наружу.

Заявляемое устройство работает следующим образом:

Исходный раствор через устройство 4 подачи переливается в керамическую вставку 7 реакционной камеры 2. Включается СВЧ-генератор 1 на полную мощность. По мере разогревания при интенсивном выделении паров и уменьшении перепада давления менее 200 мм водяного столба оператор вручную уменьшает мощность СВЧ нагрева путем отключения части магнетронов в СВЧ-генераторе 1.

В процессе выпаривания раствора перемешивающее устройство 3 опускается в нижнее положение и медленно (6 об/мин) перемешивает раствор, обеспечивая выравнивание температурного поля по объему раствора. При образовании корки на поверхности густеющего раствора, перемешивающее устройство 3 ломает ее своим инструментом и продолжает перемешивать уже крупные фрагменты твердого.

Далее происходит нагрев сухого содержимого до температуры 150-200°С.

Во все время проведения процесса происходит перемешивание содержимого. После завершения процесса денитрации, производится отключение СВЧ-генератора 1 и охлаждение реакционной камеры 2 путем продувки сжатого воздуха через теплообменник 15, находящийся под теплоизоляцией, на корпусе керамической вставки 7.

После охлаждения керамической вставки 7 производится измельчение содержимого. Для этого измельчитель 9 опускается сверху до самого дна керамической вставки 7. Измельчитель 9 подхватывает фрагменты продукта и отбрасывает их на стенки. При этом фрагменты измельчаются и очищают стенки и перемешивающее устройство 3 от присохших частиц. В процессе измельчения включается перемешивающее устройство 3 для подачи измельчаемого продукта на измельчитель 9. В процессе измельчения возможен наклон реакционной камеры 2, при необходимости, для более эффективного измельчения. Процесс ведется до получения порошка, в котором частицы не превышают размер 0,4 мм.

После измельчения производится нагрев порошка до температуры восстановления оксидов. При этом через реакционную камеру 2 прокачивается аргоно-водородная смесь с расходом 0,44 л/с и производится перемешивание порошка устройством 3 перемешивающим, обеспечивая химическое взаимодействие всего объема порошка с газом. Контроль за процессом осуществляется визуально по изображению на мониторе видеосистемы(на фигурах не указан), и показаниям инфракрасного датчика температуры 12.

Для ускорения охлаждения продукта после его нагрева нижняя часть вставки 7 охлаждается теплообменником 15, через который пропускается сжатый охлаждающий воздух.

После охлаждения полученного продукта производится его пересыпание в контейнер 16. С помощью лебедки 10 реакционная камера 2 поворачивается на поворотном кронштейне в положение, когда клапан пересыпной находится внизу, напротив клапана контейнера 16, установленного на полу. Контейнер 16 стыкуется с клапаном 8 реакционной камеры 2. На время пересыпания включается измельчитель 9, который своей вибрацией способствует пересыпанию порошка. При затруднении с пересыпанием возможно переворачивание реакционной камеры 2 в вертикальное положение и обратно вниз, с помощью лебедки 10. Полное пересыпание контролируется взвешиванием контейнера 16 или визуально после переворачивания реакционной камеры 2 в вертикальное положение.

Регулировка мощности СВЧ энергии производится путем отключения или включения отдельных магнетронов, ориентируясь на показания манометра, перепада давления, на текущее видеоизображение состояния среды в реакционной камере 2 и на показания инфракрасного датчика температуры 12.

Таким образом, обеспечивается выпаривание влаги из исходного раствора (получение плава) в течение 180-200 минут, денитрация (разложение плава) в течение 40-45 минут, и последующий нагрев сухого содержимого в среде аргоно-водородной смеси до температур 700-800°С в течение 100-120 минут для восстановления оксидов, за счет поглощения микроволн в реакционной камере; перемешивания обрабатываемого вещества в процессе СВЧ-нагрева; точного измерения температуры обрабатываемого вещества для определения момента завершения реакции денитрации.


Устройство периодического действия для СВЧ-обработки материалов
Устройство периодического действия для СВЧ-обработки материалов
Устройство периодического действия для СВЧ-обработки материалов
Устройство периодического действия для СВЧ-обработки материалов
Устройство периодического действия для СВЧ-обработки материалов
Источник поступления информации: Роспатент

Showing 21-30 of 554 items.
10.05.2013
№216.012.3e76

Способ навигации движущихся объектов

Изобретение относится к области навигации движущихся объектов (ДО) и может быть использовано при построении различных систем локации, предназначенных для уточнения местоположения любых ДО и управления их движением. Сущность: используют эталонную карту местности. Выбирают в ее пределах реперный...
Тип: Изобретение
Номер охранного документа: 0002481557
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3ea5

Устройство для ограничения интенсивности лазерного излучения

Изобретение относится к области оптической техники, а именно к ограничителям мощности приемников лазерного излучения, и может найти применение для защиты глаз, оптических систем и приемников лазерного излучения от разрушающего действия входного излучения высокой мощности. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002481604
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3eb4

Устройство резервирования

Изобретение относится к вычислительной технике и может быть использовано при построении надежных вычислительно-управляющих систем. Технический результат заключается в расширении функциональных возможностей, упрощении и повышении надежности устройства резервирования. Такой результат достигается...
Тип: Изобретение
Номер охранного документа: 0002481619
Дата охранного документа: 10.05.2013
10.06.2013
№216.012.4806

Способ переработки фосфатного редкоземельного концентрата, выделенного из апатита

Изобретение относится к способам выделения дезактивированных редкоземельных элементов (РЗЭ) при азотно-кислотной переработке апатитового концентрата из азотно-фосфорнокислых растворов. Способ переработки фосфатного редкоземельного концентрата, выделенного из апатита, включает разложение...
Тип: Изобретение
Номер охранного документа: 0002484018
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4a15

Система для пневматической транспортировки тритийвоспроизводящих детекторов в канале наработки трития бланкета термоядерного реактора

Изобретение относится к области управляемого ядерного синтеза и может быть применено в системах для пневматической транспортировки тритийвоспроизводящих детекторов в канале наработки трития бланкета термоядерного реактора. Заявленное устройство состоит из замкнутого контура пневматической...
Тип: Изобретение
Номер охранного документа: 0002484545
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4c7e

Способ предотвращения воспламенения, горения и взрыва водородовоздушных смесей

Изобретение относится к обеспечению пожарной безопасности и взрывобезопасности, может быть использовано при получении, хранении, транспортировке водорода, в производствах, связанных с образованием водорода в качестве основного и/или побочного продукта. Способ предотвращения воспламенения,...
Тип: Изобретение
Номер охранного документа: 0002485164
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e64

Высокотемпературный коаксиальный кабельный разъем

Изобретение относится к радиотехнике и может быть использовано в кабельных соединениях аппаратуры, подвергающейся воздействию повышенных температур. Разъем содержит узел подключения к прибору, промежуточный коаксиальный узел, узел присоединения кабеля, внутренний проводник и внешний проводник,...
Тип: Изобретение
Номер охранного документа: 0002485650
Дата охранного документа: 20.06.2013
20.07.2013
№216.012.57cd

Способ формирования цуга воздушных ударных волн и ударная труба для его реализации

Группа изобретений относится к испытательной технике и может быть использована для создания цуга воздушных ударных волн (ВУВ) для исследования воздействия ВУВ на различные объекты. Способ заключается в генерировании перемещающейся по волноводу ударной трубы ударной волны и повторении с...
Тип: Изобретение
Номер охранного документа: 0002488085
Дата охранного документа: 20.07.2013
20.08.2013
№216.012.6185

Способ измерения расхода жидкого металла через проточную часть циркуляционного контура

Изобретение относится к области измерительной техники. Способ измерения расхода жидкого металла через проточную часть циркуляционного контура включает измерение электрического сопротивления рабочего канала между токоподводящими шинами при нулевом расходе и рабочей температуре жидкого металла,...
Тип: Изобретение
Номер охранного документа: 0002490597
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.61e2

Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов

Область использования: область средств регулирования и контроля газовоздушной среды, может быть использовано в системах управления технологическими процессами, в частности, для поддержания стабильной равновесной влажности в герметизированных контейнерах с гигроскопичными материалами....
Тип: Изобретение
Номер охранного документа: 0002490690
Дата охранного документа: 20.08.2013
Showing 21-23 of 23 items.
10.07.2019
№219.017.ae72

Способ переработки облученного ядерного топлива

Изобретение относится к области радиохимической технологии и может быть использовано для переработки облученного ядерного топлива. Способ переработки ОЯТ включает растворение топлива, экстракцию нитратов урана и актинидов нейтральными фосфорорганическими соединениями, растворенными в...
Тип: Изобретение
Номер охранного документа: 0002366012
Дата охранного документа: 27.08.2009
12.07.2020
№220.018.321d

Способ концентрирования жидких радиоактивных отходов

Изобретение относится к области ядерно-химических, в частности радиохимических, технологий на различных стадиях ядерного топливного цикла (ЯТЦ). Способ концентрирования жидких радиоактивных отходов от экстракционной переработки высоковыгоревшего ядерного топлива АЭС включает частичное...
Тип: Изобретение
Номер охранного документа: 0002726224
Дата охранного документа: 10.07.2020
15.05.2023
№223.018.5af2

Способ разделения нептуния и плутония в азотнокислых растворах (варианты)

Изобретение относится к радиохимической технологии, в частности к способам разделения нептуния и плутония экстракционными методами при переработке отработавшего ядерного топлива. Способ включает обработку исходного раствора, содержащего плутоний, нептуний реагентом-восстановителем, который...
Тип: Изобретение
Номер охранного документа: 0002765790
Дата охранного документа: 03.02.2022
+ добавить свой РИД