×
29.06.2019
219.017.9afc

Результат интеллектуальной деятельности: СПОСОБ СОЕДИНЕНИЯ ТРУБЧАТЫХ ДЕТАЛЕЙ ИЗ РАЗНОРОДНЫХ МАТЕРИАЛОВ, ПРЕИМУЩЕСТВЕННО НАПРАВЛЯЮЩИХ КАНАЛОВ ТЕПЛОВЫДЕЛЯЮЩИХ СБОРОК ЯДЕРНОГО РЕАКТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии сборки деталей и узлов, в частности при соединении трубчатых деталей из разнородных материалов, и может быть использовано в различных областях техники. Способ заключается в том, что на наружную поверхность циркониевой трубы 2 устанавливают с натягом по спирали проволоку 3 из нержавеющей стали, предварительно навитую. Затем устанавливают трубу с проволочной навивкой внутрь внешней трубы 1 из нержавеющей стали. Осуществляют ротационное обжатие по наружной поверхности внешней трубы. Величину натяга выбирают в зависимости от отношения внутреннего диаметра D проволочной спирали в свободном состоянии к внутреннему диаметру D проволочной спирали в навитом состоянии. Данное отношение составляет от 0,73 до 0,84. Диаметр d проволоки из нержавеющей стали выбирают от 0,47•Δ до 0,53•Δ, где Δ - толщина стенки циркониевой трубы. В результате повышается степень фиксации проволоки на циркониевой трубе, уменьшается неравномерность внедрения проволоки в материалы трубчатых деталей, исключается образование в соединении зон с низкими механическими и коррозионными свойствами, повышается надежность соединения трубчатых деталей в условиях радиационного облучения. 4 ил.

Область техники, к которой относится изобретение.

Изобретение относится к технологии сборки деталей и узлов, в частности при соединении трубчатых деталей из разнородных материалов, и может быть использовано в различных областях техники: в химическом, авиационном энергетическом машиностроении и пр., особенно в атомном машиностроении при соединении изделий, которые эксплуатируются в условиях повышенных температур и подвергаются воздействию агрессивных сред и нейтронного потока.

Уровень техники
В самых различных областях машиностроения и в быту используется множество способов соединения деталей, в частности, трубчатой формы, выполненных как из однородных материалов, так и из разнородных материалов. Соединения выполняют с помощью клея, сварки трением, электронно-лучевой сварки, диффузионной сварки, при помощи муфт, резьбовых элементов, посредством промежуточных элементов и пр.

Известен способ соединения труб, заключающийся во введении между трубами герметизирующего клеевого состава (SU 1679124, F 16 L 13/04, 1986). Использование клеевого состава упрощает технологию соединения трубчатых деталей и позволяет соединять элементы из разнородных материалов. Однако использовать такое соединение в условиях высоких температур, тем более при значительных механических нагрузках, невозможно в связи с разрушением клеевого состава.

Известен способ холодной сварки разнородных металлов, заключающийся в том, что детали из разнородных металлов помещают между пуансонами сварочного аппарата и сжимают значительным давлением (SU 1727293, В 23 К 20/00, 1989). При повышенных давлениях частицы металлов проникают друг в друга, обеспечивая соединение деталей. Способ не обеспечивает достаточную прочность соединения.

Известен способ сварки трением деталей из разнородных материалов с применением промежуточной вставки из материала, более мягкого, чем свариваемые материалы (SU 1764901, В 23 К 20/12, 1989). Данный способ имеет высокую трудоемкость и не обеспечивает необходимую прочность при эксплуатации соединения в условиях высоких температур.

Способ диффузионной сварки нержавеющих сталей с несвариваемыми составами предполагает установку между соединяемыми поверхностями промежуточной трехслойной переходной прокладки, внешние слои которой свариваются с соединяемыми деталями (SU 1593849, В 23 К 20/16, 1988). Способ позволяет получить качественное соединение при работе в условиях высоких температур и нагрузок.

Наиболее близким по технической сущности к описываемому изобретению является способ соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора, заключающийся в том, что на наружную поверхность циркониевой трубы навивают по спирали проволоку из нержавеющей стали, устанавливают циркониевую трубу с проволочной навивкой внутрь внешней трубы из нержавеющей стали и осуществляют ротационное обжатие по наружной поверхности внешней трубы (RU 2127178, В 23 К 20/16, 1999). В известном способе после навивки проволоки из нержавеющей стали на поверхность циркониевой трубы осуществляют фиксацию проволочной спирали путем сварки ее концов с наружной поверхностью циркониевой трубы. Однако фиксация спирали посредством сварки может привести к негативному воздействию в процессе соединения труб при ротационном обжатии и при эксплуатации в условиях высоких нагрузок, особенно в условиях радиационного облучения по следующим причинам. Во-первых, несмотря на приварку концов проволоки к наружной поверхности циркониевой трубы, витки проволоки могут перемещаться вдоль оси циркониевой трубы под действием сил, воздействующих на проволоку в процессе ротационного обжатия. В результате витки проволоки будут внедрены в материалы труб с неравномерным шагом, что снижает прочность соединения. Во-вторых, неравномерный шаг витков проволоки приведет к тому, что при внедрении проволоки в материалы труб будет иметь место неоднородная деформация в различных поперечных сечениях проволоки, что также снизит надежность и прочность соединения. В-третьих, при сварке концов проволоки с наружной поверхностью циркониевой трубы в зоне сварки образуется эвтектика с низкими механическими и коррозионными свойствами, что недопустимо. Кроме того, негативные вышеотмеченные факторы будут усилены в условиях радиационного облучения, а сварка концов проволоки с поверхностью циркониевой трубы увеличивает трудоемкость технологического процесса в целом.

Сущность изобретения
Задачей настоящего изобретения является разработка и создание способа соединения трубчатых деталей из разнородных материалов, упрощающего технологию изготовления и обеспечивающего повышение прочности соединения в условиях высоких температур и силовых нагрузок, особенно в агрессивных средах, под действием давлений и радиационного облучения.

В результате решения данной задачи могут быть получены новые технические результаты, заключающиеся в повышении степени фиксации проволоки на циркониевой трубе, уменьшении неравномерности внедрения проволоки в материалы трубчатых деталей и в исключении образования в соединении зон с низкими механическими и коррозионными свойствами, а также в повышении надежности соединения трубчатых деталей в условиях радиационного облучения.

Данные технические результаты достигаются тем, что в способе соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора, заключающемся в том, что циркониевую трубу с проволочной навивкой устанавливают внутрь внешней трубы из нержавеющей стали и осуществляют ротационное обжатие по наружной поверхности внешней трубы, проволоку предварительно навивают, затем устанавливают на поверхность циркониевой трубы с натягом, характеризующимся тем, что отношение внутреннего диаметра Dспс проволочной спирали из нержавеющей стали в свободном состоянии к внутреннему диаметру Dспс проволочной спирали из нержавеющей стали в навитом состоянии составляет от 0,73 до 0,84, причем диаметр d проволоки из нержавеющей стали выбирают от 0,47•Δ до 0,53•Δ, где Δ - толщина стенки циркониевой трубы.

Отличительная особенность настоящего изобретения состоит в следующем. Осуществление установки проволоки на наружную поверхность с натягом позволяет, с одной стороны, повысить надежность фиксации всех витков проволоки на циркониевой трубе и исключить смещение витков проволоки в процессе ротационного обжатия. С другой стороны, установка проволоки на циркониевую трубу с натягом исключает необходимость проведения операции приварки концов проволоки к наружной поверхности циркониевой трубы, что исключает образование на циркониевой трубе зон с низкими механическими и коррозионными свойствами. Усилие натяга выбрано экспериментально. Величина натяга характеризуется отношением внутреннего диаметра Dспс проволочной спирали в свободном состоянии к внутреннему диаметру Dспс проволочной спирали в навитом состоянии и составляет от 0,73 до 0,84. Очевидно, что при установке проволоки с натягом на циркониевую трубу после снятия проволочной спирали с трубы ее диаметр уменьшится за счет упругих свойств материала проволоки. Если внутренний диаметр Dспс проволочной спирали в свободном состоянии после установки с натягом и снятии с циркониевой трубы больше 0,84•Dспс, то величина натяга мала для надежной фиксации спирали. Если внутренний диаметр Dспс проволочной спирали в свободном состоянии после установки с натягом и снятии с циркониевой трубы будет меньше 0,73•Dспс, то возможна существенная пластическая деформация проволоки, а также формоизменение циркониевой трубы при установке проволоки на циркониевую трубу с натягом. Естественно, что внутренний диаметр Dспс проволочной спирали в навитом состоянии равен наружному диаметру Dцт циркониевой трубы. При фиксации проволоки за счет натяга существенным является не только величина натяга, но и диаметр d проволоки в зависимости от толщины Δ стенки циркониевой трубы. Если диаметр проволоки меньше, чем 0,47•Δ, проволока в меньшей степени внедряется в циркониевую трубу при ротационном обжатии и не создает требуемой прочности соединения. Если диаметр проволоки больше 0,53•Δ, то возможно формоизменение циркониевой трубы в процессе ротационного обжатия, поскольку навивка проволоки на трубу осуществляется с натягом, при котором циркониевая труба подвергается механическому нагружению.

На фиг. 1 показан общий вид соединения, получаемого при реализации описываемого способа.

На фиг. 2 изображена часть проволочной спирали, установленной с натягом на поверхность циркониевой трубы.

На фиг.3 изображена проволочная спираль в свободном состоянии.

На фиг.4 приведена картина внедрения в металл трубчатых деталей.

Сведения, подтверждающие возможность осуществления изобретения.

Соединение состоит из внешней трубы 1, выполненной из нержавеющей стали, в которую установлена циркониевая труба 2. На наружной поверхности циркониевой трубы установлена по спирали проволока 3 из нержавеющей стали. Проволоку из нержавеющей стали устанавливают на поверхность циркониевой трубы с натягом. Величину натяга определяют несложными экспериментами исходя из получаемых отношений внутреннего диаметра Dспс проволочной спирали из нержавеющей стали в свободном состоянии к внутреннему диаметру Dспн проволочной спирали из нержавеющей стали в навитом состоянии в зависимости от усилия натяга. Усилие натяга выбирают таким образом, чтобы указанное отношение составляло от 0,73 до 0,84. При изготовлении трубчатых деталей из нержавеющей стали и цирконийсодержащих материалов путем установки проволоки с натягом необходимо использовать проволоку с диаметром d, величина которого зависит от толщины Δ стенки циркониевой трубы. Диаметр d проволоки из нержавеющей стали выбирают от 0,47•Δ до 0,53•Δ. Предварительно навитую проволоку 3 устанавливают на поверхность циркониевой трубы с натягом на стандартном оборудовании.

Способ осуществляют следующим образом. Предварительно навитую проволоку 3 устанавливают на наружную поверхность циркониевой трубы 2 с натягом, количество витков которой, а следовательно, шаг навивки выбирают путем проведения несложных экспериментов в зависимости от требуемой прочности соединения. Затем циркониевую трубу 2 с установленной на ней проволокой 3 вставляют в трубу 1 из нержавеющей стали и производят окончательную операцию - ротационное обжатие на любом известном оборудовании. В результате происходит деформация проволоки 3 и ее внедрение в стенку трубы 1 из нержавеющей стали и стенку циркониевой трубы 2 (фиг.4).

Надежность фиксации внутренней циркониевой трубы 2 в трубе 1 из нержавеющей стали с промежуточным элементом - проволокой 3, установленной по спирали, подтверждена при нагреве соединения до температуры 350oС с механическим нагружением до требуемой величины.

Таким образом, использование описываемого способа позволяет за счет простой технологии с использованием стандартного известного оборудования получить надежное соединение трубчатых деталей при обеспечении прочности, надежности и герметичности. Особенно способ рекомендуется использовать при изготовлении направляющих каналов для тепловыделяющих сборок ядерных реакторов, поскольку соединение надежно функционирует в условиях радиационного облучения.

Способсоединениятрубчатыхдеталейизразнородныхматериалов,преимущественнонаправляющихканаловтепловыделяющихсборокядерногореактора,заключающийсявтом,чтоциркониевуютрубуспроволочнойнавивкойустанавливаютвнутрьвнешнейтрубыизнержавеющейсталииосуществляютротационноеобжатиепонаружнойповерхностивнешнейтрубы,отличающийсятем,чтопроволокупредварительнонавивают,затемустанавливаютнаповерхностьциркониевойтрубыснатягом,характеризующимсятем,чтоотношениевнутреннегодиаметраDпроволочнойспиралиизнержавеющейсталивсвободномсостоянииквнутреннемудиаметруDпроволочнойспиралиизнержавеющейсталивнавитомсостояниисоставляетот0,73до0,84,причемдиаметрdпроволокиизнержавеющейсталивыбираютот0,47•Δдо0,53•Δ,гдеΔ-толщинастенкициркониевойтрубы.
Источник поступления информации: Роспатент

Showing 11-20 of 44 items.
10.06.2014
№216.012.cc3f

Дистанционирующая решетка тепловыделяющей сборки ядерного реактора (варианты)

Изобретение относится к атомной энергетике, а именно к конструктивным элементам тепловыделяющих сборок (ТВС) ядерных реакторов типа ВВЭР. Дистанционирующая решетка (ДР) содержит группы взаимно пересекающихся параллельных пластин, расположенных в один ярус и образующих шестиугольные ячейки для...
Тип: Изобретение
Номер охранного документа: 0002518058
Дата охранного документа: 10.06.2014
20.08.2014
№216.012.ea74

Способ получения таблеток ядерного керамического топлива с регулируемой микроструктурой

Изобретение относится к ядерной технике, в частности к изготовлению таблетированного топлива для тепловыделяющих элементов, и с наибольшей эффективностью может быть использовано при изготовлении из диоксида урана крупнозернистых топливных таблеток высокой ядерной чистоты с улучшенной и...
Тип: Изобретение
Номер охранного документа: 0002525828
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.06e7

Опорная решетка-фильтр для тепловыделяющей сборки ядерного реактора

Изобретение относится к атомной энергетике, а именно к тепловыделяющим сборкам ядерных реакторов типа ВВЭР, в которых твэлы не закрепляются в несущих решетках, а опираются на них. Опорная решетка-фильтр для тепловыделяющей сборки выполнена в виде перфорированной пластины 1, имеющей в плане...
Тип: Изобретение
Номер охранного документа: 0002533168
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0ba7

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющих сборок (ТВС), используемых, преимущественно, для реакторов РБМК-1000, а также ВВЭР-440 и ВВЭР-1000. Конструкция крепления твэлов в несущей концевой (опорной) решетке (HP) имеет цилиндрическую часть из циркониевого...
Тип: Изобретение
Номер охранного документа: 0002534391
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.197b

Способ нанесения лакового покрытия на поверхность тепловыделяющих элементов (твэлов) с оболочками из циркониевых сплавов перед снаряжением их в каркас тепловыделяющей сборки (твс) и устройство для его осуществления

Заявленная группа изобретений относится к атомной энергетике и может быть использована при изготовлении тепловыделяющих элементов (твэлов) и снаряжении их в тепловыделяющую сборку (ТВС) преимущественно для водо-водяных энергетических реакторов. В способе нанесения лакового покрытия на...
Тип: Изобретение
Номер охранного документа: 0002537951
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2538

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющих сборок (ТВС) ядерных реакторов типа ВВЭР. ТВС содержит дистанцирующую решетку с ободами. На каждой из решеток, на верхней кромке каждой грани обода, а также под уголками посредине между периферийными твэлами...
Тип: Изобретение
Номер охранного документа: 0002540981
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a73

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющей сборки (ТВС) ядерного реактора типа ВВЭР-440. Чехол ТВС соединяется с хвостовиком с помощью 6-ти специальных винтов, имеющих коническую форму головки снизу. На гранях посадочного места концевой детали в средней...
Тип: Изобретение
Номер охранного документа: 0002542324
Дата охранного документа: 20.02.2015
20.04.2015
№216.013.4231

Аппарат для гидролиза гексафторида урана

Изобретение может быть использовано при получении чистых солей и окислов из гексафторида урана (ГФУ). Аппарат для гидролиза гексафторида урана содержит корпус, в верхней части которого установлены средства для подачи гексафторида урана и орошающего раствора. В корпусе расположено устройство для...
Тип: Изобретение
Номер охранного документа: 0002548443
Дата охранного документа: 20.04.2015
20.02.2019
№219.016.c02e

Способ и установка для металлотермического получения щелочно-земельных металлов

Изобретение относится к способам и устройствам для получения щелочно-земельных металлов в процессе их восстановления, а конкретнее к способу и установке для металлотермического получения щелочно-земельных металлов. Способ включает загрузку в печь брикетов, полученных прессованием смеси из...
Тип: Изобретение
Номер охранного документа: 0002339716
Дата охранного документа: 27.11.2008
20.02.2019
№219.016.c18a

Опорная решетка для тепловыделяющей сборки ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам ТВС (тепловыделяющей сборки), и используется в реакторах ВВЭР-440, ВВЭР-1000. Опорная решетка для тепловыделяющей сборки ядерного реактора выполнена в виде перфорированной пластины с круглыми отверстиями. Круглые отверстия...
Тип: Изобретение
Номер охранного документа: 0002419898
Дата охранного документа: 27.05.2011
Showing 1-2 of 2 items.
10.04.2019
№219.017.004f

Тепловыделяющий элемент ядерного реактора на быстрых нейтронах

Изобретение относится к ядерной технике, в частности к конструкциям тепловыделяющих элементов для реакторов на быстрых нейтронах с жидкометаллическим теплоносителем. Наружный диаметр оболочки выбран от 5,9 мм до 7,5 мм, толщина стенки оболочки выбрана следующего состава, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 02241266
Дата охранного документа: 27.11.2004
29.05.2019
№219.017.6457

Отстойник для разделения эмульсии

Изобретение относится к нефтедобывающей промышленности, в частности к установкам для сбора и подготовки нефти и воды, и может быть использовано для разделения эмульсий. Отстойник содержит вертикальную цилиндрическую емкость, распределитель эмульсии в виде горизонтального патрубка и набора...
Тип: Изобретение
Номер охранного документа: 02242265
Дата охранного документа: 20.12.2004
+ добавить свой РИД