×
20.02.2019
219.016.c02e

СПОСОБ И УСТАНОВКА ДЛЯ МЕТАЛЛОТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ ЩЕЛОЧНО-ЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам и устройствам для получения щелочно-земельных металлов в процессе их восстановления, а конкретнее к способу и установке для металлотермического получения щелочно-земельных металлов. Способ включает загрузку в печь брикетов, полученных прессованием смеси из порошка оксида щелочно-земельного металла и металлического восстановителя, нагрев брикетов до температуры восстановления, восстановление оксида щелочно-земельного металла, охлаждение и выгрузку конденсата восстановленного металла и отработанных брикетов. Нагрев брикетов от температуры загрузки их в печь до температуры восстановления проводят в две стадии: на первой стадии - в воздушной или инертной атмосфере до температуры 400°С при вакууме 10-10 кПа с последующей выдержкой, на второй - до температуры восстановления при непрерывной откачке рабочего объема печи. Восстановление проводят при температуре до 1600°С и давлении не выше 10 Па. Охлаждение конденсата восстановленного металла и брикетов ведут в инертной атмосфере печи, сначала при охлаждении их до температуры не выше 1000°С, при достижении которой проводят выгрузку отработанных брикетов, а затем до температуры не выше 400°С для извлечения конденсата восстановленного металла. Перед извлечением конденсата в инертную атмосферу печи добавляют элегаз. Установка снабжена поворотным в горизонтальной плоскости устройством для выгрузки отработанных и загрузки исходных брикетов, имеющим возможность вертикального перемещения, и поворотной относительно горизонтальной оси заслонкой для перекрытия рабочего объема нагревательной камеры в момент выгрузки тигля. Нагревательная электропечь установлена вертикально и стационарно и снабжена разъемной нижней полусферической крышкой, в центральной разъемной части которой имеется загрузочный столик для установки на нем тигля. Внутри крышки концентрично столику размещена подвижная площадка для установки на ней внутренней теплоизоляции. При этом нагревательная камера печи снабжена размещенным между тиглем и конденсатором тепловым экраном с центральным отверстием для паров восстанавливаемого металла. Нагреватель, охватывающий тигель, закреплен на токовводах. Корпусы нагревательной камеры и крышек выполнены полыми, а установленный в верхней крышке электропечи водоохлаждаемый конденсатор оборудован извлекаемым вкладышем для конденсации на нем паров восстанавливаемого металла и выполнен съемным с разъемной охлаждаемой крышкой. Нагреватель, загрузочный столик под тигель и внутренняя теплоизоляция изготовлены из углерод-углеродных композиционных материалов, а тигель - из углеродного материала или карбида кремния. Техническим результатом является увеличение производительности. 2 н. и 12 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к способам и устройствам для получения щелочно-земельных металлов в процессе их восстановления, а конкретнее к области получения металлического кальция путем восстановления оксида кальция алюминием или кремнием.

Технология металлотермического получения щелочно-земельных металлов заключается в высокотемпературном восстановлении оксида щелочно-земельного металла металлическим восстановителем по схеме

МеО(тв)+М(жидк)⇒Me(пар)+хМеО·уМО(тв)

и включает три основных передела - подготовка порошковой смеси, прессование брикетов из порошковой смеси и высокотемпературное восстановление в вакууме при давлении не выше 10 Па. Исходным сырьем являются безводный оксид щелочно-земельного металла и алюминиевый или кремнийсодержащий восстановитель, конечными продуктами - конденсат восстановленного металла и шлаки - отработанные брикеты, содержащие смесь алюминатов или силикатов восстанавливаемых металлов.

Известны способы металлотермического получения щелочно-земельных металлов, в которых восстановление оксидов щелочно-земельных металлов стронция, бария, магния и кальция ведут при соответствующих температурах в диапазоне 1200-1350°С. Однако применение температур до 1350°С для получения кальция с использованием алюминиевого и, особенно, кремниевого восстановителя приводит к недостаточно высокой производительности процесса при заданном выходе металла. При этом известные устройства для осуществления этих способов получения кальция (индукционные печи и печи сопротивления) не обеспечивают снижения себестоимости получаемого продукта. Так, например, в электропечах сопротивления низкая производительность связана невысоким извлечением металла из брикетов из-за невозможности достижения в них температуры 1350°С или со значительными затратами электроэнергии вследствие 12-часовой продолжительности. При реализации способов металлотермического получения щелочно-земельных металлов в индукционных установках неизбежны потери энергии в генераторе и индукторе, снижающие КПД преобразования электроэнергии в тепло.

Решением упомянутых проблем является разработка способа металлотермического получения щелочно-земельных металлов и вакуумной электропечи для его осуществления, заметно удешевляющих производство этого металла.

Известны способ металлотермического получения щелочно-земельных металлов, например кальция, и установка для его осуществления (патент РФ №2205241, МКИ кл. с22в 20/26, з.15.03.2002).

Способ металлотермического получения щелочно-земельного металла - кальция - включает загрузку в вакуумную реторту брикетов, полученных прессованием смеси из порошков карбоната кальция и металлического востановителя - алюминия, установку реторты в нагревательную печь, обработку брикетов в режиме совмещения процессов диссоциации-восстановление-расплавление, выгрузку вакуумной реторты с полученным конденсатом кальция и отработанными брикетами и ее охлаждение на воздухе в течение 15 час, извлечение слитка кальция и брикетов при напуске воздуха в реторту.

При использовании в качестве составляющей исходной смеси оксида кальция и при отсутствии потребности в монолитном кальции исключают стадии диссоциации и расплавления, сразу проводя восстановление при температуре 1000-1200°С и остаточном давлении менее 10 Па в течение 8-12 часов. Процесс заканчивают при понижении давления до 2-5 Па.

Недостаток способа металлотермического получения кальция связан с жаропрочностью и жаростойкостью материалов нагревателей печи и реторты, что делает невозможным получение кальция при температурах до 1350°С, обеспечивающих высокий выход по кальцию, вследствие резкого снижения срока службы нагревателей и интенсивного окисления ретортной стали. При получении кальция в реторте нецелесообразно использовать дешевый восстановитель - кремний. При температурах 1100-1200°С (предельные температуры для реторт из нержавеющих жаропрочных сталей) в вакууме менее 10 Па восстановление оксида кальция алюминием может протекать с достаточной скоростью. Восстановление же кремнием в этих условиях только начинается.

Кроме того, введение операции диссоциации карбоната увеличивает продолжительность процесса, а применение оксида кальция, характеризующего высокой гигроскопичностью и заметным содержанием углекислого газа, потребует при непрерывном нагреве в вакууме до температуры восстановления длительное использование мощной вакуумной системы, что повышает затраты на проведение процесса восстановления.

Установка для осущевления этого способа содержит печь с горизонтально или вертикально размещенной в ней ретортой, имеющей зону нагрева и конденсации, установленные внутри или снаружи зоны конденсации теплоэлектронагреватель и емкость для сбора металла, размещенную внутри зоны нагрева загрузочную корзину, а также вакуумную и водоохлаждающую системы. Загрузочная корзина снабжена перфорированной трубой, улучшающей прогрев брикетов.

Установка позволяет получить слитки кальция, выращенные из газовой фазы, и монолитные слитки, полученные переплавкой первых.

Конструкция установки по сути представляет собой вакуумную печь сопротивления с косвенным нагревом брикетов, сопровождаемым необоснованно высоким расходом электроэнергии, связанным с значительными потерями тепла на нагрев печи (реторты). Кроме того, процесс восстановления будет сопровождаться большими потерями тепла из реакционной зоны из-за излучения на водоохлаждаемый конденсатор при отсутствии теплового экрана.

Наиболее близкими по технической сущности являются способ металлотермического получения щелочно-земельных металлов, например кальция, и установка для его осуществления, описанные в патенте Франции №2800097, МКИ С22В 26/20, С22В 5/04, 5/16, з. 26.10.99 г.

Способ металлотермического получения щелочно-земельных металлов, например кальция, включает загрузку в нагревательную электропечь брикетов, полученных прессованием смеси из порошков металлического восстановителя - алюминия или кремния и оксида кальция с минимально возможным содержанием карбонатов, непрерывный прогрев в вакууме брикетов до температуры восстановления, восстановление оксида кальция алюминием или кремнием, охлаждение конденсата кальция и отработанных брикетов, извлечение кальция и отработанных брикетов.

Полный цикл процесса, описанный в примере выполнения устройства, составляет 12 часов. Непрерывный прогрев брикетов до температуры восстановления 1350°С обеспечивается в течение 4-х часов при постоянной откачке рабочего пространства печи.

Процесс восстановления продолжается в течение 6 часов при непрерывном вакуумировании печи. По окончании процесса конденсат кальция и отработанные брикеты охлаждаются в печи под вакуумом до 250°С в течение 1,45 часа для исключения окисления графитовых стержней - нагревателей кислородом воздуха. Извлечение конденсата кальция проводят после напуска воздуха или аргона в печь. Извлечение отработанных брикетов осуществляют при повороте печи в вертикальной плоскости.

Недостатком данного способа является значительная продолжительность процесса, что увеличивает себестоимость получаемого продукта.

Кроме того, реализация способа сдерживается жесткими требованиями к известковому сырью, в частности, по содержанию в нем карбонатов и влаги. Так, например, заметное содержание влаги и углекислого газа в исходных брикетах при нагреве от комнатной до рабочей температуры в вакууме (1,33-13,30 Па) потребует применения неоправданно мощной вакуумной системы (сверх 4-х часов), что в связи с небольшой теплопроводностью исходной смеси снижает производительность процесса.

Процесс восстановления оксида кальция алюминием проводят при температурах до 1350°С, при этом не образуется легкоплавкой эвтектики в системе СаО - Al2О3, что снижает выход кальция, а восстановление кремнием проводят при температурах выше 1350°С, достижение которых проблематично в установке для осуществления этого способа. По данным графического анализа равновесий на примере восстановления оксида кальция алюминием и кремнием (Пазухин В.А., Фишер А.Я. «Вакуум в металлургии»: М., 1956 г.) при остаточных давлениях в системе меньше 10 Па температуры восстановления оксида кальция кремнием на 400-500°С выше температур (1000-1200°С) его восстановления алюминием. Поэтому применяемая для этого способа установка должна иметь возможность подъема температуры, по крайней мере, до 1400°С при использовании в качестве восстановителя ферросилиция и до 1600°С - при использовании кремния.

Установка для металлотермического получения щелочно-земельных металлов, в которой реализуется описанный выше способ, состоит из горизонтально установленной нагревательной электропечи, вакуумно-газовой, водоохлаждающей и автоматической систем.

Вакуумная электропечь состоит из разъемных крышки с водохлаждаемым конденсатором и нагревательной камеры, включающей тигель и нагреватель с графитовыми токовводами, заключенные в корпус с внутренней теплоизоляцией.

Тигель выполнен в виде прямоугольного короба из жаропрочного бетона с высоким содержанием глинозема, открытая верхняя часть которого накрыта графитовыми пластинами. На наружной поверхности короба выполнены пазы для размещения в них нагревателей.

Нагреватели выполнены в виде 6 графитовых стержней, связанных перемычками, имеющих квадратное сечение 120×120 мм. Общее сопротивление нагревателей составляет 8 мОм, которое увеличивается до 10 мОм по мере окисления стержней. Регулирование мощности производится путем регулирования напряжения источника тока.

Токовводы выполнены в виде двух графитовых наконечников, навинченных на штыри двух металлических водоохлаждаемых подводов тока. Оптимальный электрический контакт наконечников и перемычек графитовыми стержнями обеспечивается двумя парами герметичных вакуумных металлических сильфонов.

Короб фиксируется в корпусе с помощью 2-слойных теплоизоляционных элементов, а на графитовые пластины укладывается легкий волокнистый материал. Плоское дно корпуса герметично крепится к корпусу с помощью фланца, обжимающего кольцевую прокладку. Другой фланец приварен к передней части корпуса для герметичной стыковки с крышкой-конденсатором.

Нагревательная камера выполнена с возможностью поворота на шарнирной опоре в вертикальной плоскости. При подъеме ее с помощью домкратов и т.п. устройств обеспечивается загрузка брикетов под действием силы тяжести, а при его опускании на 35 градусов ниже горизонтали - разгрузка отработанных брикетов.

Внутренняя полость крышки-конденсатора охлаждается водой и имеет форму цилиндра или усеченного конуса. Отверстие в торце конденсатора соединено с двухступенчатым насосом через канал откачки, который снабжен пылезащитными фильтрами. Крышка-конденсатор снабжена механизмом горизонтального перемещения.

Конструкция данной установки имеет ряд недостатков.

Отсутствие нагревателей на верхней грани бетонного короба, а также выполнение нагревателей в виде цепочки графитовых стержней и перемычек, окисляющихся с неизбежным утонением сечения, приводят, соответственно, к неравномерности прогрева брикетов вследствие неравномерности температурного поля по периметру тигля, и к увеличению сопротивления нагревателей, и снижению выделяющейся мощности, и, как следствие, к увеличению продолжительности процесса, и снижению производительности, в том числе и за счет увеличения межремонтного цикла.

Увеличение расхода электроэнергии на единицу продукции связано со свободным излучением из реакционного объема нагревательной камеры печи на холодную поверхность конденсатора вследствие отсутствия теплового экрана, выполняющего роль теплоизоляции реакционной зоны камеры.

Использование жаропрочного бетона в качестве материала тигля нагревательной камеры предопределяет возможность испарения или сублимации связующих в бетоне, что не только "загрязнит" атмосферу вакуумируемого объема, но и определит ресурс его работы. Применение пластин из графита, окисление которого начинается при температуре 250°С, не позволяет проводить разгрузку печи при более высоких температурах.

При этом обеспечение электрического контакта нагревателя и токовводов с помощью металлических сильфонов вблизи горячего корпуса печи, лишенного внешней теплоизоляции, проблематично.

Кроме того, выгрузка брикетов при повороте нагревательной камеры, т.е на рабочей площадке, потребует ручной зачистки тигля вследствие спекания отработанных брикетов, что будет увеличивать продолжительность процесса.

Задача настоящего изобретения состоит в разработке способа металлотермического получения щелочно-земельных металлов и установки для его осуществления, позволяющих снизить энергозатраты, и уменьшить продолжительность процесса, и тем самым увеличить производительность.

Поставленная задача достигается тем, что в способе металлотермического получения щелочно-земельных металлов, включающем загрузку брикетов, полученных прессованием смеси из порошков оксида щелочно-земельного металла и металлического восстановителя, нагрев брикетов до температуры восстановления, восстановление оксида щелочно-земельного металла, охлаждение и выгрузку конденсата восстановленного металла и отработанных брикетов, согласно изобретению нагрев брикетов от температуры загрузки их в печь до температуры восстановления проводят в две стадии: на первой стадии - в воздушной или инертной атмосфере до температуры 400°С при вакууме 101-102 кПа, с последующей выдержкой, на второй - до температуры восстановления при непрерывной откачке рабочего объема печи, восстановление оксида щелочно-земельного металла проводят при температуре до 1600°С и давлении не выше 10 Па, охлаждение конденсата восстановленного металла и брикетов проводят в инертной атмосфере печи, сначала при охлаждении их до температуры не выше 1000°С, при достижении которой проводят выгрузку отработанных брикетов, а затем до температуры не выше 400°С для извлечения конденсата восстановленного металла, перед извлечением которого в инертную атмосферу печи добавляют элегаз.

Кроме того, при восстановлении щелочно-земельного металла - кальция - брикеты прессуют, например, из смеси порошков оксида кальция и алюминия в объемном соотношении 3,5:1, а оксид кальция содержит влагу, например, до 5%. Причем в качестве восстановителя применяют ферросилиций или кремний или смесь порошков из алюминия и кремния.

При этом на первой стадии нагрева брикетов температуру 400°С поддерживают в течение 1-2 часов, восстановление оксида щелочно-земельного металла осуществляют в течение 3-5 часов, а в инертную атмосферу печи элегаз добавляют в объемном отношении (80-90):(20-10) при давлении смеси паров 80-100 кПа.

В установке для металлотермического получения щелочно-земельных металлов, содержащей нагревательную электропечь, состоящую из крышки с водоохлаждаемым конденсатором, нагревательной камеры с тиглем и нагревателем с токовводами, заключенными в корпус с внутренней теплоизоляцией, вакуумную, водоохлаждаемую и автоматическую системы, согласно изобретению установка снабжена поворотным в горизонтальной плоскости устройством для выгрузки отработанных и загрузки исходных брикетов, имеющим возможность вертикального перемещения, и поворотной относительно горизонтальной оси заслонкой для перекрытия рабочего объема нагревательной камеры в момент выгрузки тигля, а нагревательная электропечь установлена вертикально и стационарно и снабжена разъемной нижней полусферической крышкой, в центральной разъемной части которой имеется загрузочный столик для установки на нем тигля, а внутри крышки концентрично столику размещена подвижная площадка для установки на ней внутренней теплоизоляции, при этом нагревательная камера печи снабжена размещенным между тиглем и конденсатором тепловым экраном с центральным отверстием для паров восстанавливаемого металла, а нагреватель, охватывающий тигель, закреплен на токовводах, при этом корпуса нагревательной камеры и крышек выполнены полыми, а установленный в верхней крышке водоохлаждаемый конденсатор оборудован извлекаемым вкладышем для конденсации на нем паров восстанавливаемого металла и выполнен съемным с разъемной охлаждаемой крышкой, при этом нагреватель, загрузочный столик под тигель и внутренняя теплоизоляция изготовлены из углерод-углеродных композиционных материалов, а тигель - из углеродного материала или карбида кремния.

Кроме того, тепловой экран выполнен в виде двухслойного кольца с верхним слоем со стороны конденсатора из нержавеющей стали и нижним, обращенным в сторону нагревательной камеры из углеродного материала, а центральное пропускное отверстие экрана в случае металлотермического получения кальция выполнено диаметром 100-300 мм. При этом нагреватель и внутренняя теплоизоляция выполнены в виде полых правильных восьмигранных призм, составленных из пластин углерод-углеродных композиционных материалов, причем нагреватель изготовлен из углерод-углеродного композиционного материала с плотностью 1,25-1,4 г/см3, загрузочный столик и внутренняя теплоизоляция - углерод-углеродных композиционных материалов с плотностью 0,3-0,5 г/см3.

Сущность способа металлотермического получения щелочно-земельных металлов и конструктивное выполнение установки для его осуществления обеспечивают оптимальные условия проведения процесса (температуры до 1600°С в зависимости от восстанавливаемого металла и используемого восстановителя и продолжительность процесса в течение 8 часов) при снижении затрат на проведение процесса за счет:

1) сокращения потерь тепла из реакционной зоны и предотвращения оплавления конденсирующегося металла в результате наличия теплового экрана. При этом, например, при металлотермическом получении кальция размеры пропускного отверстия экрана способствуют созданию оптимальной проводимости кальциевого паропровода. Нижнее значение диаметра отверстия 100 мм обусловлено проводимостью кальциевого паропровода, а его верхнее значение 300 мм - необходимостью минимизации электроэнергии. Кроме того, тепловой экран, установленный между конденсатором и тиглем, служит уплотнителем, что способствует увеличению выхода металла за счет уменьшения диссипации восстанавливаемого металла по корпусу нагревательной камеры;

2) сокращения времени прогрева брикетов вследствие переноса на 1-й стадии прогрева тепла от нагревателя к загрузке не только излучением, но и конвекцией. Условия эффективной теплопередачи конвенцией определены величиной давления газов 101-102 кПа и низкой температурой прогрева. Ограничение по температуре (400°С) связано с началом окисления материала нагревателя. Кроме того, время прогрева брикетов 1-2 часа достаточно для удаления абсорбционной влаги в зависимости от ее содержания в исходных брикетах, что позволит расширить технологические возможности способа, смягчив требования к сырью, в частности, по содержанию в нем влаги;

3) сокращения времени восстановления, например, оксида кальция вследствие возможности проведения восстановления при более высоких температурах 1350-1600°С по сравнению с прототипом (1350°С). При использовании восстановителя алюминия рабочей температурой восстановления можно считать температуру 1390°С, температуру образования легкоплавкой эвтектики в системе СаО - Al2О3, обеспечивающий максимальный выход. При использовании в качестве восстановителя ферросилиция или кремния соответственно температуры 1400 и 1600°С. Время выдержки брикетов при рабочей температуре составляет 3-5 часов, что обусловлено наилучшим соотношением выхода кальция и расхода электроэнергии;

4) сокращения времени охлаждения печи:

во-первых, за счет увеличения эффективности теплообмена между горячей загрузкой и стенками печи в результате выполнения корпусов камеры и крышек полыми, а также вследствие напуска инертного (нейтрального) газа в рабочее пространство печи во время охлаждения;

во-вторых, за счет осуществления извлечения отработанных брикетов и полученного кальция при более высоких температурах, соответственно при не выше 1000 и 400°С по сравнению с прототипом (250°С);

в-третьих, вследствие извлечения отработанных и загрузки новых брикетов вне рабочей площадки, а также упрощения операции съема сконденсированного металла в результате возможности рассоединения крышки и конденсатора;

5) увеличения срока службы элементов устройства в результате изготовления их из жаростойких материалов. Например, изготовление нагревателя и загрузочного столика, внутренней теплоизоляции из углерод-углеродных композиционных материалов соответственно с плотностью 1,25-1,4 и 0,3-0,4 г/см3, а тигля - из карбида кремния или углеродного материала, обладающих высокими эксплуатационными свойствами.

Для пояснения изобретения приводится базисный принцип выполнения способа и установки металлотермического получения щелочно-земельных металлов на примере получения кальция при использовании восстановителя - алюминия, со ссылкой на прилагаемые чертежи, на которых:

на фиг.1 изображена нагревательная печь установки, общий вид;

на фиг.2 - то же, продольный разрез, во время работы печи;

на фиг.3 - то же, продольный разрез, в момент разгрузки тигля с отработанными брикетами;

на фиг.4 - то же, поперечный разрез на фиг.2.

Установка для металлотермического получения щелочно-земельных металлов состоит из вертикальной стационарно установленной на раме 1 вакуумной электропечи 2, устройства 3 для выгрузки отработанных и загрузки новых брикетов, поворотной вокруг горизонтальной оси заслонки 4, вакуумной, водоохлаждаемой, автоматической систем.

Вакуумная электропечь состоит из нагревательной камеры 5, включающей тигель 6 с тепловым экраном 7 и нагреватель 8 с токовводами 9, заключенными в цилиндрический металлический полый корпус 10 с внутренней теплоизоляцией 11, герметичные верхнюю 12 и нижнюю 13 крышки, разъемные с камерой по стыковычным фланцам 14 и выполненные в виде полусфер с полыми корпусами. Подвод к вакуумной системе оборудован, например, в цилиндрической поверхности корпуса.

Верхняя крышка 12 нагревательной камеры выполнена со съемным конденсатором 16 в виде, например, водоохлаждаемого цилиндра с водоохлаждаемой крышкой 17, внутри которого находится извлекаемый вкладыш 18, на котором конденсируются пары кальция.

Нижняя крышка 13 выполнена с разъемной герметичной центральной частью 19, несущей загрузочный столик 20 для установки на нем тигля 6 из углеродного материала или карбида кремния. Внутри нижней крышки концентрично столику 20 размещена площадка 21 в виде кольца для установки на ней внутренней теплоизоляции, имеющая возможность вертикального перемещения, например, от пневмопривода 22. При этом загрузочный столик и внутренняя теплоизоляция изготовлены из углеродного композиционного материала с плотностью 0,3-0,45 г/см3.

Тепловой экран 7 размещен, например, в расточках корпуса нагревательной камеры между тиглем и конденсатором и представляет собой кольцо с центральным отверстием диаметром 100-300 мм для пропуска паров кальция. Кольцо выполнено двухслойным: верхний слой - из нержавеющей стали, нижний - из углеродного материала.

Нагреватель 8, охватывающий тигель, закреплен в верхней части на токовводах 9. Токовводы имеют водоохлаждаемые токоподводы 23 и установлены, например, диаметрально противоположно в герметичных отверстиях корпуса нагревательной камеры. При этом нагреватель и внутренняя теплоизоляция выполнены, например, в виде полых правильных восьмигранных призм, составленных из пластин углерод-углеродного композиционных материалов. Плотность материала нагревателя составляет 1,25-1,4 г/см3.

Устройство 3 для выгрузки отработанных и загрузки новых брикетов представляет собой подвижный в вертикальной и горизонтальной плоскостях кронштейн 24 с вогнутой поверхностью на конце под центральную часть нижней крышки.

Заслонка 4 неподвижно закреплена на поворотном вокруг горизонтальной оси рычаге 25 с возможностью установки на место центральной части нижней крышки после выгрузки тигля с отработанными брикетами.

Вакуумная система состоит из мембранного и вакуумного агрегата - насоса Рутса с пластинчато-роторным насосом, а также средств измерения вакуума и клапанов напуска инертного газа, воздуха и элегаза.

Водоохлаждающая система предназначена для циркуляции воды в конденсаторе 16 и его крышке 17, токоподводах 22, в корпусах нагревательной камеры и крышек печи 10, 12, 13, стыкуемых фланцах 14 камеры и крышек. На чертежах показаны патрубки для подвода и отвода воды к упомянутым элементам установки.

Система автоматики представляет собой шкаф управления, в котором размещены основные электрические элементы (автоматы, пускатели, блокираторы и т.д.), а также пульт управления, в состав которого входит компьютер с программным обеспечением. Компьютерная программа обеспечивает управление и контроль механизмами установки и технологическими параметрами (температуры, давления, расхода воды и.т.п.) способа, а также безопасность работы установки.

Для измерения температуры предусмотрен термопарный ввод с регулирующей термопарой.

Способ металлотермического получения кальция с помощью описанной выше установки осуществляют следующим образом.

При запуске печи заслонка 4 и кронштейн 24 загрузочного устройства 3 с центральной частью 19 нижней крышки 13, несущей загрузочный столик 20, занимают положение, параллельное продольной оси нагревательной печи, при этом кронштейн находится в крайнем нижнем положении. С помощью цехового механизма тигель 6 с исходными брикетами переносят на загрузочный столик. Брикеты получены прессованием смеси порошков оксида кальция и алюминия в весовом соотношении 3,5:1.

Затем поворотом и подъемом кронштейна центральную часть нижней крышки с тиглем перемещают в печь (рабочее положение) до упора с тепловым экраном 7, обеспечивая плотное прижатие центральной части с нижней крышкой прижимными винтами.

При этом токоподводы 23, корпусы нагревательной камеры и крышек 10, 12, 13, а также их стыкуемые фланцы 14 подключены к системе охлаждения для постоянной подачи на них воды.

В верхнюю крышку 12 устанавливают подготовленный конденсатор 16 с крышкой 17 и вкладышем 18 и закрепляют его прижимными винтами. Подсоединяют и открывают вентили водяного охлаждения конденсатора и его крышки, затем подают на них подают воду.

Сначала задают температуру печи 400°С, включают печь и мембранный насос. Прогревают брикеты от комнатной температуры до 400°С в течение 1-2 часов в условиях низкого вакуума при давлении газов 101-102 кПа. В таких условиях прогрева обеспечивается перенос тепла от нагревателя к загрузке не только излучением, но и конвекцией. При достижении температуры 400°С выключают мембранный насос и включают высоковакуумный агрегат. Поднимают температуру печи до температуры восстановления 1390°С и ведут прогрев брикетов до температуры восстановления при постоянной откачке рабочего пространства печи.

При достижении давления не выше 10 Па и температуры 1390°С проводят восстановление оксида кальция алюминием в течение 5 часов. После чего отключают нагрев печи и напускают в печь аргон до атмосферного давления.

Охлаждают печь до температуры извлечения тигля с отработанными брикетами не выше 1000°С. При достижении, например, 900°С извлекают горячий тигель. Для этого кронштейн 24 загрузочного устройства 3 подводят под центральную часть нижней крышки, отжимают ее винты. Осуществляют перемещение кронштейна с тиглем вниз и поворот его в положение, параллельное оси печи. Заслонка 4 устанавливается на место центральной части нижней крышки, выполняя роль газового затвора. Тем самым предотвращается натекание воздуха в рабочее пространство печи, где в инертной атмосфере еще охлаждается конденсатор. Для ускорения охлаждения конденсатора площадку 21 нижней крышки с теплоизоляцией 11 сдвигают вниз на 200 мм и продолжают охлаждать печь вместе с полученным слитком кальция до температуры выгрузки слитка 400°С. По достижении 400°С включают мембранный насос и откачивают печь до остаточного давления 80 кПа. Затем проводят напуск элегаза для пассивации кальциевого слитка до давления смеси газов аргона и элегаза 80-100 кПа и выключают мембранный насос. Состав смеси должен соответствовать объемным отношениям (80-90):(20-10). Охлаждают печь в смеси аргона и элегаза в течение 15-30 минут.

После этого из печи откачивают газовую смесь и напускают в нее воздух. Закрывают и разъединяют вентили водяного охлаждения конденсатора, снимают его прижимные винты и извлекают конденсатор со слитком из верхней крышки печи с помощью известного грузоподъемного механизма. Конденсатор со слитком направляют на участок разгрузки слитков и подготовки конденсаторов.

Для проведения следующего процесса внутреннюю теплоизоляцию сдвигают вверх на 200 мм. Тигель с исходными брикетами устанавливают на загрузочный столик, а в верхней крышке устанавливают новый конденсатор с крышкой и вкладышем и подсоединяют его к водоохлаждаемой системе. Заслонку отводят от печи, поворотом вокруг вертикальной оси кронштейн с тиглем устанавливают соосно с печью, а затем перемещают вверх до стыковки центральной части нижней крышки с корпусом последней, обеспечивая плотное прижатие центральной части с нижней крышкой прижимными винтами.

Предложенный способ металлотермического получения щелочно-земельных металлов и установка для его осуществления по сравнению с известными позволяет повысить производительность благодаря достижению оптимальных условий проведения процесса восстановления (температуры до 1600°С и продолжительность процесса в течение 8 часов) при снижении затрат на проведение процесса.

1.Способметаллотермическогополучениящелочно-земельныхметаллов,включающийзагрузкувпечьбрикетов,полученныхпрессованиемсмесиизпорошкаоксидащелочно-земельногометаллаиметаллическоговосстановителя,нагревбрикетовдотемпературывосстановления,восстановлениеоксидащелочно-земельногометалла,охлаждениеивыгрузкуконденсатавосстановленногометаллаиотработанныхбрикетов,отличающийсятем,чтонагревбрикетовоттемпературызагрузкиихвпечьдотемпературывосстановленияпроводятвдвестадии:напервойстадии-ввоздушнойилиинертнойатмосфередотемпературы400°Спривакууме10-10кПа,споследующейвыдержкой,навторой-дотемпературывосстановленияпринепрерывнойоткачкерабочегообъемапечи,восстановлениеоксидащелочно-земельногометаллапроводятпритемпературедо1600°Сидавленииневыше10Па,охлаждениеконденсатавосстановленногометаллаибрикетовпроводятвинертнойатмосферепечи,сначалаприохлажденииихдотемпературыневыше1000°С,придостижениикоторойпроводятвыгрузкуотработанныхбрикетов,азатем-дотемпературыневыше400°Сдляизвлеченияконденсатавосстановленногометалла,передизвлечениемкотороговинертнуюатмосферупечидобавляютэлегаз.12.Способпоп.1,отличающийсятем,чтопривосстановлениикальциябрикетыпрессуютизсмесипорошковоксидакальцияиалюминиявобъемномсоотношении3,5:1.23.Способпоп.2,отличающийсятем,чтооксидкальциясодержитдо5%влаги.34.Способпоп.1,отличающийсятем,чтовкачествевосстановителяиспользуютферросилиций.45.Способпоп.1,отличающийсятем,чтовкачествевосстановителяиспользуютсмесьпорошковалюминияикремния.56.Способпоп.1,отличающийсятем,чтонапервойстадиинагревабрикетовдотемпературы400°Спроводятвыдержкувтечение1-2ч.67.Способпоп.1,отличающийсятем,чтовосстановлениеоксидащелочно-земельногометаллапроводятвтечение3-5ч.78.Способпоп.1,отличающийсятем,чтовинертнуюатмосферупечиэлегаздобавляютвобъемномотношении(80-90):(20-10),придавлениисмесипаров80-100кПа.89.Установкадляметаллотермическогополучениящелочно-земельныхметаллов,включающаянагревательнуюэлектропечь,состоящуюизкрышкисводоохлаждаемымконденсатором,нагревательнойкамерыстигелеминагревателемстоковводами,заключеннымивкорпуссвнутреннейтеплоизоляцией,вакуумную,водоохлаждаемуюиавтоматическуюсистемы,отличающаясятем,чтоонаснабженаповоротнымвгоризонтальнойплоскостиустройствомдлявыгрузкиотработанныхизагрузкиисходныхбрикетов,имеющимвозможностьвертикальногоперемещения,иповоротнойотносительногоризонтальнойосизаслонкойдляперекрытиярабочегообъеманагревательнойкамерывмоментвыгрузкитигля,анагревательнаяэлектропечьустановленавертикальноистационарноиснабженаразъемнойнижнейполусферическойкрышкой,вцентральнойразъемнойчастикоторойимеетсязагрузочныйстоликдляустановкинанемтигля,авнутрикрышкиконцентричностоликуразмещенаподвижнаяплощадкадляустановкинанейвнутреннейтеплоизоляции,приэтомнагревательнаякамерапечиснабженаразмещенныммеждутиглемиконденсаторомтепловымэкраномсцентральнымотверстиемдляпароввосстанавливаемогометалла,анагреватель,охватывающийтигель,закрепленнатоковводах,приэтомкорпусанагревательнойкамерыикрышеквыполненыполыми,аустановленныйвверхнейкрышкеводоохлаждаемыйконденсатороборудованизвлекаемымвкладышемдляконденсациинанемпароввосстанавливаемогометаллаивыполненсъемнымсразъемнойохлаждаемойкрышкой,приэтомнагреватель,загрузочныйстоликподтигельивнутренняятеплоизоляцияизготовленыизуглерод-углеродныхкомпозиционныхматериалов,атигель-изуглеродногоматериалаиликарбидакремния.910.Установкапоп.9,отличающаясятем,чтонагревательнаяэлектропечьоборудованапоменьшеймереоднимтиглемдлянагреваивосстановлениябрикетовипоменьшеймереоднимконденсаторомдляконденсациипароввосстанавливаемогометалла.1011.Установкапоп.9,отличающаясятем,чтотепловойэкранвыполненввидедвухслойногокольцасверхнимслоемсостороныконденсатораизнержавеющейсталиинижним,обращеннымвсторонунагревательнойкамерыизуглеродногоматериала.1112.Установкапоп.9,отличающаясятем,чтоприметаллотермическомполучениикальцияцентральноеотверстиетепловогоэкранавыполненодиаметром100-300мм.1213.Установкапоп.9,отличающаясятем,чтонагревательивнутренняятеплоизоляциявыполненыввидеполыхправильныхвосьмигранныхпризм,составленныхизпластинуглерод-углеродныхкомпозиционныхматериалов.1314.Установкапоп.9,отличающаясятем,чтонагревательизготовленизуглерод-углеродногокомпозиционногоматериаласплотностью1,25-1,4г/см,азагрузочныйстоликивнутренняятеплоизоляция-углерод-углеродныхкомпозиционныхматериаловсплотностью0,3-0,5г/см.14
Источник поступления информации: Роспатент

Showing 1-10 of 44 items.
27.01.2013
№216.012.2127

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам ТВС (тепловыделяющих сборок), используемых преимущественно для реакторов РБМК-1000, а также ВВЭР-440 и ВВЭР-1000. Тепловыделяющая сборка ядерного реактора содержит тепловыделяющие элементы, соединенные с концевой решеткой...
Тип: Изобретение
Номер охранного документа: 0002473988
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2128

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к тепловыделяющим сборкам (ТВС) ядерных реакторов типа ВВЭР и РБМК. Тепловыделяющая сборка ядерного реактора содержит пучок твэлов, закрепленных в концевой несущей решетке и соединенных между собой дистанционирующими решетками, закрепленными...
Тип: Изобретение
Номер охранного документа: 0002473989
Дата охранного документа: 27.01.2013
10.03.2013
№216.012.2ee6

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющей сборки (ТВС) ядерного реактора типа ВВЭР (ВВЭР-440, ВВЭР-1000 и т.п.). Техническим результатом изобретения является повышение эффективности выравнивания температуры теплоносителя по поперечному сечению ТВС.ТВС...
Тип: Изобретение
Номер охранного документа: 0002477537
Дата охранного документа: 10.03.2013
20.06.2013
№216.012.4dc8

Способ определения содержания примесей в газе под оболочкой тепловыделяющих элементов (твэл) ядерных реакторов

Изобретение относится к атомной энергетике, а именно к тепловыделяющим элементам (ТВЭЛ) ядерных реакторов. Способ определения содержания примесей в газе под оболочкой тепловыделяющих элементов (твэл) ядерных реакторов, заключается в том, что нарушают целостность оболочки ТВЭЛ внутри вакуумной...
Тип: Изобретение
Номер охранного документа: 0002485494
Дата охранного документа: 20.06.2013
20.11.2013
№216.012.81f1

Реакционная камера для получения порошка диоксида урана методом пирогидролиза из гексафторида урана (варианты)

Изобретение относится к области металлургии, а именно к получению порошка диоксида урана методом пирогидролиза. Реакционная камера для получения порошка диоксида урана из гексафторида урана выполнена в виде емкости, имеющей фильтровальную зону, первую реакционную зону для превращения...
Тип: Изобретение
Номер охранного документа: 0002498941
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8265

Ядерно-безопасный химический реактор

Предлагаемое изобретение относится к области химического аффинажа в цикле производства ядерного топлива и может найти применение в области получения чистых солей и окислов ядерно-активных химических элементов из концентратов. Ядерно-безопасный циркуляционный химический реактор для проведения...
Тип: Изобретение
Номер охранного документа: 0002499057
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.835c

Способ изготовления таблеток ядерного топлива

Изобретение относится к ядерной технике, а именно к технологии изготовления таблеток ядерного топлива из порошков на основе оксидов ядерных делящихся материалов, в частности к изготовлению таблеток с минимальными припусками на шлифование или в размер. Способ изготовления таблеток ядерного...
Тип: Изобретение
Номер охранного документа: 0002499304
Дата охранного документа: 20.11.2013
10.02.2014
№216.012.9ff5

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной технике, в частности к конструкциям бесчехловых тепловыделяющих сборок ядерного реактора. Тепловыделяющая сборка ядерного реактора содержит пучок тепловыделяющих элементов (твэлов) и направляющих каналов, размещенных в дистанционирующих решетках, головку,...
Тип: Изобретение
Номер охранного документа: 0002506657
Дата охранного документа: 10.02.2014
20.03.2014
№216.012.ab76

Устройство для вихревого пылеулавливания

Изобретение предназначено для очистки газов от пыли в различных отраслях промышленности (химической, горной, пищевой, текстильной и др.) и в энергетике и основано на применении закрученных или вихревых потоков. Устройство для вихревого пылеулавливания содержит сепарационную камеру, в верхней...
Тип: Изобретение
Номер охранного документа: 0002509609
Дата охранного документа: 20.03.2014
27.03.2014
№216.012.af17

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющей сборки (ТВС) ядерного реактора типа ВВЭР-440, и направлено на обеспечение возможности увеличения мощности и энерговыработки ТВС ВВЭР-440. Тепловыделяющая сборка ядерного реактора содержит головку, хвостовик,...
Тип: Изобретение
Номер охранного документа: 0002510538
Дата охранного документа: 27.03.2014
Showing 1-10 of 42 items.
27.09.2013
№216.012.7094

Устройство шифрования данных по стандартам гост 28147-89 и aes

Изобретение относится к шифровальным устройствам на основе стандарта шифрования данных, более конкретно к шифрованию данных по стандарту ГОСТ 28147-89 и AES. Техническим результатом предлагаемого изобретения является сокращение объема памяти, необходимой для шифрования данных по стандартам ГОСТ...
Тип: Изобретение
Номер охранного документа: 0002494471
Дата охранного документа: 27.09.2013
10.11.2013
№216.012.7fe7

Устройство шифрования данных по стандарту гост 28147-89

Изобретение относится к шифровальным устройствам на основе стандарта шифрования данных. Техническим результатом является повышение тактовой частоты устройства шифрования данных. Устройство раунда, реализующее последовательность действий для каждого раунда шифрования данных, содержит блок...
Тип: Изобретение
Номер охранного документа: 0002498416
Дата охранного документа: 10.11.2013
20.05.2014
№216.012.c5d6

Углеродный материал с покрытием из карбида тугоплавкого металла и способ его получения

Изобретение относится к области получения на углеродных материалах защитных покрытий и может быть использовано при изготовлении элементов (нагревателей, держателей) высокотемпературных печей для реализации процессов карбо- или металлотермического восстановления металлов из их окислов. Согласно...
Тип: Изобретение
Номер охранного документа: 0002516405
Дата охранного документа: 20.05.2014
20.09.2014
№216.012.f5bc

Применение пептида актг (4-7)-пгп гепатопротекторного воздействия

Изобретение относится к биотехнологии, конкретно к терапевтическим пептидам, и может быть использовано в медицине. В качестве гепатопротектора применяют пептид АКТГ (4-7)-ПГП (Семакс), имеющий формулу Met-Glu-His-Phe-Pro-Gly-Pro. Применения указанного пептида с целью гепатопротекции в условиях...
Тип: Изобретение
Номер охранного документа: 0002528741
Дата охранного документа: 20.09.2014
10.01.2015
№216.013.197b

Способ нанесения лакового покрытия на поверхность тепловыделяющих элементов (твэлов) с оболочками из циркониевых сплавов перед снаряжением их в каркас тепловыделяющей сборки (твс) и устройство для его осуществления

Заявленная группа изобретений относится к атомной энергетике и может быть использована при изготовлении тепловыделяющих элементов (твэлов) и снаряжении их в тепловыделяющую сборку (ТВС) преимущественно для водо-водяных энергетических реакторов. В способе нанесения лакового покрытия на...
Тип: Изобретение
Номер охранного документа: 0002537951
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a54

Наборы олигонуклеотидов-праймеров и зондов, биологический микрочип и тест-система для идентификации и типирования вируса гриппа а и в с их использованием

Представлены наборы олигонуклеотидных зондов и праймеров, биологический микрочип и тест-система для идентификации и типирования вируса гриппа А и В. Охарактеризованная тест-система содержит: набор реагентов для выделения РНК вируса гриппа из биологического материала человека; набор реагентов...
Тип: Изобретение
Номер охранного документа: 0002538168
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3792

Способ получения адъюванта для вирусных вакцин

Изобретение относится к биотехнологии и иммунологии и представляет собой способ получения адъюванта для вакцин. Способ включает растворение смеси тритерпеноидов бересты в тетрагидрофуране с получением раствора с концентрацией 5-10 г/л. Растворяют олеиновую кислоту в количестве 5-10% от массы...
Тип: Изобретение
Номер охранного документа: 0002545714
Дата охранного документа: 10.04.2015
20.07.2015
№216.013.62dc

Способ замещения циркулярных дефектов трахеи

Изобретение относится к медицине, а именно к реконструктивно-восстановительной хирургии, и может быть использовано при замещении циркулярных дефектов трахеи. Дефектный участок трахеи оборачивают полипропиленовой биосовместимой гибкой разделительной пленочной мембраной. Мембрану накладывают с...
Тип: Изобретение
Номер охранного документа: 0002556855
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.646b

Дистанционирующая решетка тепловыделяющей сборки ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющих сборок (ТВС) ядерных реакторов типа ВВЭР. Технической задачей изобретения является создание дистанционирующей решетки (ДР) с высокой технологичностью, жесткостью и прочностью. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002557254
Дата охранного документа: 20.07.2015
20.01.2016
№216.013.a041

Установка для металлотермического восстановления щелочно-земельных металлов

Изобретение относится к металлургии. Установка включает реакционную камеру, с противоположных сторон которой расположены камера загрузки сырьевых брикетов и камера разгрузки обработанных брикетов. Теплоизоляционный корпус реакционной камеры соединен с первым механизмом вертикального перемещения...
Тип: Изобретение
Номер охранного документа: 0002572667
Дата охранного документа: 20.01.2016
+ добавить свой РИД