×
27.06.2019
219.017.98d5

СПОСОБ ДИСПЕРГИРОВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК УЛЬТРАЗВУКОМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к диспергированию углеродных нанотрубок (УНТ) и может быть использовано для получения стабильных дисперсий, содержащих углеродные наноматериалы, диспергированные в органических растворителях. Способ включает введение в жидкую среду нанотрубок в виде порошка и воздействие на нее ультразвуковыми колебаниями. Жидкую среду готовят смешиванием двух раздельно приготовленных растворов, один из которых получают путем синтеза водорастворимого бис-триэтаноламинтитаната, а другой - путем синтеза триэтаноламиновой соли жирной кислоты. Растворы загружают вместе с нанотрубками в охлаждаемый смеситель и производят смешивание с помощью мешалки с непрерывным пропусканием части раствора через ультразвуковой диспергатор, в котором осуществляют диспергирование с использованием энергии ультразвуковых колебаний в режиме акустической кавитации, и подачей в смеситель углекислого газа в течение 3 ч, после чего насыщенный раствор подают в накопительную емкость, в которой его выдерживают для протекания химических реакций. Полученную дисперсию подают в фильтр-сушилку, в которой продукт промывают деминерализованной водой, насыщенной углекислым газом, до достижения рН 4÷5 и сушат. Обеспечивается получение высококачественного нанопорошка УНТ для получения стабильных дисперсий. 2 з.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к способу диспергирования многостенных углеродных нанотрубок (УНТ) предназначено для получения стабильных дисперсий, содержащих углеродные наноматериалы, диспергированные в органических растворителях, которые применяются в производстве полимерных композитов и присадок в смазочные материалы. При создании таких материалов, содержащих УНТ, возникает проблема диспергирования УНТ в различных средах (органических растворителях, полимерах, смазках). Для того, чтобы после диспергирования свести к минимуму агрегирование нанотрубок, необходимо обеспечить их хорошую смачиваемость средой. Это достигается применением поверхностно-активных веществ (ПАВ), химической прививкой тех или иных функциональных групп к поверхности УНТ.

Известен способ получения пористого углеродного материала на основе терморасширенного оксида графита и материал (RU 2009140063 А; С04В 35/52, 10.05.2011), согласно которому частицы оксида графита используют в виде суспензии. При этом частицы оксида графита в суспензии до смешивания с солями и оксидами подвергают дезагрегированию путем воздействия ультразвуком, а затем смешивание суспензии с комплексной солью также осуществляют под воздействием ультразвука. Пористый углеродный композиционный материал на основе терморасширенного оксида графита содержит наночастицы переходных металлов с размером, не превышающим 30 нм.

Несмотря на наноразмеры полученных в результате диспергирования частиц графита, известный способ характеризуется недостаточной агрегативной устойчивостью суспензии.

Известен также состав и способ получения нанодисперсного противоизносного состава (НСПС) (RU 2008151517 А; С10М 177/00, В82В 1/00, 10.07.2010), причем НДПС представляет собой суспензию из жидкого смазочного материала и взвеси высокодисперсных минералов, при этом взвесь получается следующим образом, - набор природных минералов предварительно измельчают в мельнице до порошка, проводят его магнитную сепарацию до размера частиц минералов не более 1 мкм, полученную смесь отстаивают, а образовавшуюся над отстоем суспензию используют в качестве присадки к смазочному материалу, причем набор природных минералов имеет следующее соотношение компонентов, мас. %: серпентин (лизардит и хризотил) 80-87, хлорит 2-3, магнетит 1-2, амакинит 1-2, кальцит 0,5-1, рентгеноаморфная фаза 8,5-12, а непосредственно перед дезинтеграцией в жидкий смазочный материал вводят поверхностно-активные вещества, образующие с частицами минералов в процессе их диспергирования коллоидный раствор. Перед дезинтеграцией в жидком смазочном материале порошок помещают в технологическую жидкость и проводят обработку полученной суспензии порошка и технологической жидкости с помощью ультразвука при мощности излучения не менее 5 кВт при длительности не менее 10 мин, а затем производят удаление технологической жидкости, после чего проводят диспергирование в жидком смазочном материале. И в первом и во втором способе используется диспергирование ультразвуком. В состав предлагаемых материалов входят наноразмерные вещества.

Такое техническое решение связано с применением поверхностно - активных веществ (ПАВ), что недопустимо при получении многих видов композитов.

Известно техническое решение по заявке «Наноструктурные сырьевые материалы для термического напыления», поданной в России (RU 98111495 А; С23С 4/12, В82В 1/00, В82В 3/00, 10.06.2000; заявители: Юниверсити Коннектикут (US); Рутгерс, Стейт Юниверсити Нью-Джерси (US); авторы: Питер Р. Стратт (US), Бернард X. Кир (US), Росс Ф. Боуленд (US). Формула изобретения состоит из множества пунктов: 1. Способ получения агломерированных наноструктурных частиц, включающий: (а) диспергирование наноструктурного материала в жидкую среду посредством ультразвука; (б) добавление органического связующего к среде с получением раствора; и (в) сушку распылением раствора с получением, агломерированных наноструктурных частиц. Способ получения наноструктурных покрытий, включает: (а) ультразвуковое диспергирование наноструктурного порошка в жидкую среду; (б) добавление органического связующего к упомянутой среде с образованием раствора; (в) сушку распылением раствора, вследствие чего образуются агломерированные наноструктурные частицы; и (г) напыление покрытия из агломерированных наноструктурных частиц на изделие с образованием наноструктурного покрытия. Способ получения наноструктурного покрытия включает: (а) ультразвуковое диспергирование наноструктурного порошка в жидкую среду; (б) инжектирование упомянутого дисперсного раствора непосредственно в питание распылителя для термического напыления; и (в) напыление покрытия из агломерированных наноструктурных частиц на изделие с образованием наноструктурного покрытия. В последнем варианте используется ультразвук для диспергирования наноструктурного порошка в жидкую среду.

Этот способ связан с агрегатированием наночастиц для последующего их напыления, в способе не указываются: - устройства для проведения ультразвукового диспергирования и использование акустической кавитации для деагломерирования и дезагрегирования; - в качестве наноструктурного материала не используется УНТ.

Наиболее близким к заявленному изобретению относится техническое решение по пат. РФ №2508963, МПК B22F 9/08, С23С 4/10, B82Y 30/00 10.03, опубл. 2014 г. Способ диспергирования наноразмерного порошка диоксида кремния (SiO2) в жидкой среде, включающий введение в жидкость нанопорошка диоксида и воздействие на нее ультразвуковыми колебаниями, согласно которому в жидкость вводят нанопорошок диоксида кремния марки Таркосил Т05В 06, а воздействие ультразвуковыми колебаниями осуществляют в течение 3 мин с обеспечением в обрабатываемой среде режима акустической кавитации на резонансной частоте 23 кГц.

Такой способ обеспечивает диспергирование наноразмерного порошка диоксида кремния в жидкости с использованием энергии ультразвуковых колебаний в режиме акустической кавитации, однако непригоден для диспергирования УНТ, так как не обеспечивает предотвращения последующего агрегатирования суспензии, содержащихся углеродных нанотрубок.

Задачей изобретения является диспергирование нанотрубок в жидкой среде с исключением их последующего агрегатирования в суспензии.

Поставленная задача достигается способом диспергирования углеродных нанотрубок в жидкой среде, включающим введение в жидкость нанотрубок в виде порошка и воздействие на нее ультразвуковыми колебаниями с использованием энергии ультразвуковых колебаний в режиме акустической кавитации при резонансных частотах в диапазоне 22±10% кГц,, при котором жидкую среду готовят смешиванием двух раздельно приготовленных растворов, первый из которых получают путем синтеза водорастворимого бис-три-этаноламинтитаната, а второй - путем синтеза триэтаноламиновой соли жирной кислоты, которые загружают вместе с нанотрубками в охлаждаемый смеситель и производят смешивание с непрерывным пропусканием части раствора через ультразвуковой диспергатор, в котором осуществляют диспергирование с одновременной подачей в смеситель углекислого газа в течение 3 ч, после чего насыщенный раствор подают в накопительную емкость, в которой выдерживают, затем полученную дисперсию подают в фильтр-сушилку, в которой продукт промывают деминерализованной водой, насыщенной углекислым газом, до достижения рН 4÷5, после чего продукт подвергают сушке до заданной влажности.

При этом синтез водорастворимого бис-триэтаноламинтитаната осуществляют в реакторе с мешалкой путем смешивания дистиллированной воды с триэтаноламинтитанатом при нагреве до 25°С и непрерывном перемешивании до полного взаимного растворения в течение 1 ч, а синтез триэтаноламиновой соли жирной кислоты проводят в реакторе с мешалкой и обогревом, путем приготовления раствора, содержащего дистиллированную воду, триэтаноламин и стеариновую кислоту при непрерывном перемешивании до полного взаимного растворения при температуре 80°С в течение 1 ч.

Приготовление жидкой среды смешиванием двух раздельно приготовленных растворов, первый из которых получают путем синтеза водорастворимого бис-триэтаноламинтитаната, а второй - путем синтеза триэтаноламиновой соли жирной кислоты, которые загружают вместе с нанотрубками в охлаждаемый смеситель и производят смешивание с непрерывным пропусканием части раствора через ультразвуковой диспергатор, в котором осуществляют диспергирование с использованием энергии ультразвуковых колебаний в режиме акустической кавитации при резонансных частотах в диапазоне 22±10% кГц, и подачей в охлаждаемый смеситель углекислого газа в течение 3 ч, после чего насыщенный раствор подают в накопительную емкость, в которой его выдерживают, затем полученную дисперсию подают в фильтр-сушилку, в которой продукт промывают деминерализованной водой, насыщенной углекислым газом, до6 достижения рН 4÷5, после чего продукт подвергают сушке до заданной влажности обеспечивает:

- равномерное диспергирование УНТ по всему объему реакционной

смеси;

- при обработке насыщенной смеси углекислым газом происходит понижение рН, вследствие чего аминогруппы протонируются, устойчивость комплекса триэтаноламина с титаном падает и происходит взаимодействие соединений титана с анионами жирной кислоты, вследствие чего ионы титана связываются с гидроксильными и/или карбоксильными группами на поверхности УНТ и с жирнокислотными группами, образуя гидрофобное покрытие;

- функционализацию УНТ, исключающую агрегирование УНТ при последующем их введении в состав полимерных композитов и присадок в смазочные материалы.

Для осуществления изобретения применялись следующие исходные реагенты:

Триэтаноламинтитанат (ТЭАТ-1), ТУ 6-09-11-2119-19 представляет собой смесь продуктов 1-(н-бутокси) триэтаноламинтитаната и 1-(бис-(2-окси-этил)-1-амимноэтокси) триэтаноламинтитаната и др. Гигроскопичен. Внешний вид - прозрачная, густая вязкая жидкость от коричного до бурого цвета.

Основные технические характеристики

Триэтаноламин (нитрилотриэтанол) - бесцветная вязкая гигроскопическая жидкость со специфическим аминным запахом неограниченно смешивается с водой, хорошо растворим в этаноле, бензоле, хлороформе, плохо - в предельных углеводородах. CAS: 102-71-6.

Стеариновая кислота - марка Т-32 ГОСТ 6484-96 -представляет собой бесцветные кристаллы или порошок, чаще всего имеет запах воска. Физические свойства плавится при температуре +70°С, хорошо горит (вспышка образуется при +196°С). Химические свойства: нерастворима в воде, плохо растворяется в спиртах (этаноле), бензине, хлороформе, хорошо - в жирах и маслах

Диоксид углерода - бесцветный газ, плотность 1,9768 кг/м3, выпускается по ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая».

Углеродный наноматериал (УНМ) «Таунит» представляет собой одномерные наномасштабные нитевидные образования поликристаллического графита длиной более 2 мкм с наружными диаметрами от 15 до 40 нм в виде сыпучего порошка черного цвета. Гранулы УНМ микрометрических размеров имеют структуру спутанных пучков многостенных трубок (MWNT). Согласно формирующейся классификации, «Таунит» представляет собой многослойные пакетированные нанотрубки с преимущественно конической формой графеновых слоев.

Вода дистиллированная по ГОСТ 6709 «Вода дистиллированная». Заявляемый способ реализован в технологической линии, блок-схема и продукционные потоки которой представлены на фиг 1. Перечень позиций:

1. Фильтр - сушилка;

2. Реактор обработки углекислотой;

3. Реактор приготовления раствора стеарата триэтаноламина;

4. Реактор обработки триэтаноламинтитаната;

5. Емкость для реакционной смеси;

6. Емкость воды насыщенной углекислотой;

7. Газовый баллон с диоксидом углерода;

8. Диспергатор ультразвуковой. Потоки:

0.1 - Триэтаноламин;

0.2 - Стеариновая кислота;

0.3 - Вода дистиллированная;

0.4 - Триэтаноламинтитанат;

0.5 - Углеродные нанотрубки;

0.6 - Углекислый газ;

0.7 - Вода деминерализованная.

Технологическая линия содержит фильтр - сушилку 1, конструкция которой содержит фильтрующую решетку, мешалку с приводом и паровую рубашку. Фильтр - сушилка 1 соединена с охлаждаемым смесителем 2, выполненным в виде аппарата, снабженного мешалкой и рубашкой термостатирования и соединенным на входе с реактором синтеза триэтаноламиновой соли жирной кислоты 3 и реактором синтеза водорастворимого бис-триэтаноламин-титаната 4. Вход фильтр - сушилки 19 соединен с емкостью накопительной 5 и емкостью воды, насыщенной углекислым газом 6, как показано на фиг. 1. Охлаждаемый смеситель 2 соединен на входе с газовым баллоном с углекислым газом 7 через дозирующую аппаратуру (не показана), и вход и выход его соединены между собой через диспергатор ультразвуковой 8.

Для диспергирования углеродных нанотрубок в жидкой среде, включающей введение в среду нанотрубок в виде порошка и воздействие на нее ультразвуковыми колебаниями, при этом жидкую среду готовят смешиванием двух раздельно приготовленных растворов, первый из которых получают путем синтеза водорастворимого бис-триэтаноламинтитаната, а второй - путем синтеза триэтаноламиновой соли жирной кислоты. Синтез водорастворимого бис-триэтаноламинтитаната осуществляют в реакторе с мешалкой путем смешивания дистиллированной воды с триэтаноламинтитанатом при нагреве до 25°С и непрерывном перемешивании до полного взаимного растворения в течение 1 ч.

Синтез водорастворимого бис-триэтаноламинтитаната осуществляют в реакторе с мешалкой 4, где производится смешивание дистиллированной воды с триэтаноламинтитанатом при нагреве и непрерывном перемешивании до полного взаимного растворения Синтез триэтаноламиновой соли жирной кислоты проводят в реакторе с мешалкой и обогревом, путем приготовления раствора, содержащего дистиллированную воду, триэтаноламин и стеариновую кислоту при непрерывном перемешивании до полного взаимного растворения при температуре 80°С в течение 1 ч. Синтез триэтаноламиновой соли жирной кислоты производили в реакторе с мешалкой и обогревом 3, в котором осуществляют приготовление раствора. Стадия диспергирования заключается в загрузке в охлаждаемый смеситель полученных в реакторах синтеза 3 и 4 растворов, которые загружают вместе с нанотрубками в охлаждаемый смеситель и производят смешивание с непрерывным пропусканием части раствора через 10 ультразвуковой диспергатор 8, в котором осуществляют диспергирование с использованием энергии ультразвуковых колебаний в режиме акустической кавитации при резонансных частотах в диапазоне 22±10% кГц, и подачей в смеситель углекислого газа из газового баллона в течение 3 ч. Реакционный объем охлаждают теплоносителем (проточная техническая вода) до температуры окружающей среды. Ультразвуковое диспергирование углеродных нанотрубок в водном растворе, содержащем триэтаноламиновую соль жирной кислоты и бис-триэтаноламинтитанат проводят в охлаждаемом смесителе с мешалкой и рубашкой 2, где смешивают УНТ с растворами, полученными в 2х реакторах синтеза. Полученную смесь диспергируют под действием ультразвука в ультразвуковом диспергаторе 8 с каскадной обработкой среды модели И 100-6/9 (ООО «Ультразвуковая техника - Инлаб» г. Санкт-Петербург). В комплект диспергатора входят: ультразвуковой генератор из коррозионно-стойкого металла; ультразвуковой генератор И10-4.0; магнитострикционный преобразователь соответствующей мощности, рабочая частота, 22±10% кГц. При непосредственном вводе волновода - концентратора в жидкую среду размеры рабочей камеры выбираются такими, чтобы создавался резонансный режим самой обрабатываемой жидкости в этих полостях и увеличивалась разветвленность кавитации. Акустическая кавитация представляет собой мощное средство преобразования энергии звуковой волны низкой плотности в высокую плотность энергии, связанную с пульсациями и захлопыванием кавитационных пузырьков. Ультразвуковой диспергатор 8, используемый на данной стадии производства, базируется на типовой конструкции, подобранной по необходимой мощности и доработанный конструктивно для удобства монтажа. Диспергатор обеспечивает равномерное диспергирование УНТ по всему объему реакционной смеси. В результате получается устойчивое к расслоению состояние смеси жидкости с УНТ. Одновременно производят обработку дисперсии углекислым газом путем насыщения реакционной смеси в жидкой 11 среде, полученной на предыдущей стадии, углекислым газом из газовых баллонов 7 при непрерывном перемешивании. Затем насыщенный раствор из охлаждаемого смесителя 2 подают в накопительную емкость 5, в которой его выдерживают для протекания химических реакций. Для проведения заключительной стадии дисперсию из накопительной емкости 5 подают в фильтр-сушилку 1, в которой продукт промывают деминерализованной водой, насыщенной углекислым газом из емкости 6, до достижения рН 4÷5, после чего отфильтровывают жидкость, а продукт подвергают сушке до заданной влажности.

Таким образом, техническим результатом можно считать получение с помощью заявляемого способа диспергирования высококачественного нано-порошка УНТ для получения стабильных дисперсий. Изобретение характеризуется высокой эффективностью, отсутствием токсичных продуктов окисления, малым расходом реагентов по сравнению с известными способами, легко масштабируется.


СПОСОБ ДИСПЕРГИРОВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК УЛЬТРАЗВУКОМ
СПОСОБ ДИСПЕРГИРОВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК УЛЬТРАЗВУКОМ
Источник поступления информации: Роспатент

Showing 1-10 of 13 items.
10.06.2014
№216.012.cf9d

Электротеплоаккумулирующий нагреватель

Изобретение относится к энергетике и может быть использовано для отопления и терморегулирования. Изобретение позволит снизить энергетические потери и повысить эффективность регулирования мощности нагрева. Электротеплоаккумулирующий нагреватель содержит корпус, теплоаккумулирующее вещество и...
Тип: Изобретение
Номер охранного документа: 0002518920
Дата охранного документа: 10.06.2014
27.09.2014
№216.012.f794

Способ функционализации углеродных наноматериалов

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в...
Тип: Изобретение
Номер охранного документа: 0002529217
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ff23

Дисперсия углеродных нанотрубок

Изобретение может быть использовано при изготовлении композитов, содержащих органические полимеры. Дисперсия углеродных нанотрубок содержит 1 мас.ч. окисленных углеродных нанотрубок и 0,25-10 мас.ч. продукта взаимодействия органического амина, содержащего в молекуле по крайней мере одну...
Тип: Изобретение
Номер охранного документа: 0002531171
Дата охранного документа: 20.10.2014
10.04.2015
№216.013.40d3

Способ модифицирования углеродных наноматериалов

Изобретение относится к химической промышленности и может быть использовано при получении стабильных дисперсий в органических растворителях и изготовлении полимерных композитов. Углеродные наноматериалы - нанотрубки или графен, частицы которых содержат на поверхности гидроксильные и/или...
Тип: Изобретение
Номер охранного документа: 0002548083
Дата охранного документа: 10.04.2015
20.11.2015
№216.013.9268

Способ озонирования углеродных наноматериалов

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность. Трёхокись серы или азотную кислоту подают в...
Тип: Изобретение
Номер охранного документа: 0002569096
Дата охранного документа: 20.11.2015
25.08.2017
№217.015.cbe2

Способ получения мезопористого углерода

Изобретение направлено на получение углеродных материалов с развитой поверхностью и пористостью. Согласно изобретению исходное вещество, представляющее собой смесь водорастворимой фенолформальдегидной смолы, углевода и графеновых нанопластинок, подвергают термообработке при температуре до...
Тип: Изобретение
Номер охранного документа: 0002620404
Дата охранного документа: 25.05.2017
16.06.2018
№218.016.62bb

Способ получения графена

Изобретение относится к химической промышленности и нанотехнологии. Кристаллический графит обрабатывают раствором персульфата аммония в серной кислоте, не содержащей свободной воды. Полученное интеркалированное соединение графит выдерживают до его расширения. Затем гидролизуют, промывают водой...
Тип: Изобретение
Номер охранного документа: 0002657504
Дата охранного документа: 14.06.2018
21.07.2018
№218.016.73ac

Кумуленовое вещество, способ его получения и применение

Изобретение относится к новому кумуленовому веществу, содержащему цепочку кумулированных двойных углерод-углеродных связей и аминогруппы в качестве «концевых групп», а также возможно гидроксильные группы, полученному новым способом, указанным ниже. Кумуленовое вещество может быть использовано...
Тип: Изобретение
Номер охранного документа: 0002661876
Дата охранного документа: 20.07.2018
23.11.2018
№218.016.a06d

Теплоаккумулирующее устройство

Теплоаккумулирующее устройство относится к области теплотехники, более конкретно к теплоаккумулирующим устройствам, использующим скрытую теплоту фазовых переходов рабочего вещества для обеспечения комфортных условий дыхания при использовании изолирующих дыхательных аппаратов на химически...
Тип: Изобретение
Номер охранного документа: 0002673037
Дата охранного документа: 21.11.2018
31.01.2019
№219.016.b596

Применение композиции, включающей минеральное моторное масло или индустриальное масло, суспензию наноматериала (унм) и поверхностно-активное вещество (пав) для маркировки нефтепродукта, и способ идентификации продукта

Изобретение раскрывает применение композиции, включающей минеральное моторное масло или индустриальное масло, суспензию углеродного наноматериала (УНМ), представляющего собой «Таунит-М», и поверхностно-активное вещество (ПАВ) для маркировки нефтепродуктов, представляющих собой горюче-смазочные...
Тип: Изобретение
Номер охранного документа: 0002678457
Дата охранного документа: 29.01.2019
Showing 1-10 of 51 items.
20.02.2013
№216.012.26c5

Способ получения объемного наноструктурированного материала

Изобретение относится к нанотехнологии. Сущность изобретения: в способе получения объемного наноструктурированного материала на подложке электроосаждением металла из электролита на подложку из электропроводного материала, индифферентного по отношению к осаждаемому металлу, на катоде образуют...
Тип: Изобретение
Номер охранного документа: 0002475445
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.27da

Способ идентификации материала в насыпном виде и устройство для его осуществления

Изобретение относится к нанотехнологическому оборудованию и предназначено для идентификации материалов в насыпном виде и экспресс-контроля микромеханических, реологических и микро-электромеханических характеристик продукции, их стабильности на разных стадиях производства продукта и отклонений...
Тип: Изобретение
Номер охранного документа: 0002475722
Дата охранного документа: 20.02.2013
27.09.2013
№216.012.6f48

Многофункциональная добавка к автомобильному бензину и содержащая ее топливная композиция

Изобретение относится к многофункциональной добавке к автомобильному бензину, содержащей антидетонационные и другие компоненты, а также модифицирующую добавку. В качестве модифицирующей добавки используются углеродные наноматериалы (УНМ), предпочтительно в виде многослойных нанотрубок (УНТ) в...
Тип: Изобретение
Номер охранного документа: 0002494139
Дата охранного документа: 27.09.2013
10.12.2013
№216.012.88d0

Способ диспергирования наночастиц в эпоксидной смоле

Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в...
Тип: Изобретение
Номер охранного документа: 0002500706
Дата охранного документа: 10.12.2013
10.06.2014
№216.012.cf9d

Электротеплоаккумулирующий нагреватель

Изобретение относится к энергетике и может быть использовано для отопления и терморегулирования. Изобретение позволит снизить энергетические потери и повысить эффективность регулирования мощности нагрева. Электротеплоаккумулирующий нагреватель содержит корпус, теплоаккумулирующее вещество и...
Тип: Изобретение
Номер охранного документа: 0002518920
Дата охранного документа: 10.06.2014
27.09.2014
№216.012.f794

Способ функционализации углеродных наноматериалов

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в...
Тип: Изобретение
Номер охранного документа: 0002529217
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ff23

Дисперсия углеродных нанотрубок

Изобретение может быть использовано при изготовлении композитов, содержащих органические полимеры. Дисперсия углеродных нанотрубок содержит 1 мас.ч. окисленных углеродных нанотрубок и 0,25-10 мас.ч. продукта взаимодействия органического амина, содержащего в молекуле по крайней мере одну...
Тип: Изобретение
Номер охранного документа: 0002531171
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.40d3

Способ модифицирования углеродных наноматериалов

Изобретение относится к химической промышленности и может быть использовано при получении стабильных дисперсий в органических растворителях и изготовлении полимерных композитов. Углеродные наноматериалы - нанотрубки или графен, частицы которых содержат на поверхности гидроксильные и/или...
Тип: Изобретение
Номер охранного документа: 0002548083
Дата охранного документа: 10.04.2015
20.11.2015
№216.013.9268

Способ озонирования углеродных наноматериалов

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность. Трёхокись серы или азотную кислоту подают в...
Тип: Изобретение
Номер охранного документа: 0002569096
Дата охранного документа: 20.11.2015
+ добавить свой РИД