×
20.11.2015
216.013.9268

СПОСОБ ОЗОНИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002569096
Дата охранного документа
20.11.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность. Трёхокись серы или азотную кислоту подают в сосуд с нанотрубками перед подачей озонированного воздуха. В альтернативном варианте через проточный сосуд пропускают озонированный воздух с добавкой паров трёхокиси серы или азотной кислоты со скоростью 1 м/ч в течение 1-8 ч. Технический результат: увеличение концентрации поверхностных кислородсодержащих групп. 5 ил., 3 пр.
Основные результаты: Способ озонирования углеродных нанотрубок (УНТ) путем окислительной обработки воздействием на них озоном, отличающийся тем, что воздействие ведут в присутствии вещества, ускоряющего воздействие озона с их поверхностью, в качестве которого используют трехокись серы или азотную кислоту, в проточном сосуде, причем трехокись серы или азотную кислоту подают в сосуд, содержащий УНТ, перед подачей озонированного воздуха, или же пропускают через проточный сосуд озонированный воздух с добавкой паров трехокиси серы или азотной кислоты со скоростью 1 м/ч в течение 1-8 ч.
Реферат Свернуть Развернуть

Изобретение относится к технологии углеродных наноматериалов, конкретно к технологии получения углеродных наноматериалов, на поверхности которых имеются кислородсодержащие функциональные группы.

Для обеспечения химической совместимости и распределения частиц углеродных наноматериалов (УНМ), в частности углеродных нанотрубок (УНТ), углеродных нановолокон (УНВ), графена, в полярных растворителях и полимерных матрицах на поверхности частиц УНМ формируют полярные группы - гидроксильные, карбоксильные, карбонильные, лактонные и другие. Обычно это достигается путем окисления УНМ различными реагентами, например азотной кислотой, перекисью водорода, персульфатом аммония, перманганатом калия, гипохлоритом натрия, озоном и другими сильными окислителями. Окислительная обработка УНМ может проводиться как в жидкой фазе растворами окислителей, так и газообразными окислителями. При этом газофазная функционализация УНМ полярными группами в ряде случаев оказывается наиболее выгодной по расходу реагентов и экологической чистоте процесса. Одним из наиболее сильных окислителей является озон, который, обычно в смеси в кислородом или воздухом, в ряде работ применяли для функционализации углеродных нанотрубок.

Так, в патенте ЕР 1817447, МПК С01В 31/00; С07С 27/06, 2007, окислительную функционализацию УНТ проводили путем многочасовой обработки озонированным воздухом при комнатной температуре (хотя заявляется диапазон температур от 0 до 100°C). Полученные функционализованные УНТ по концентрации поверхностных групп сравнимы с УНТ, обработанными кипячением в азотной кислоте. Однако в отличие от обработки азотной кислотой, которая приводит к потере массы УНТ, при обработке озоном происходит некоторый прирост массы за счет присоединения кислородсодержащих групп.

Общими существенными признаками рассмотренного и заявляемого способа является обработка УНТ озоном в газовой фазе. Недостатком рассмотренного способа является то, что простая обработка УНТ озоном в отсутствие веществ, ускоряющих взаимодействие УНТ с озоном, недостаточно эффективна и требует большого времени.

В ряде публикаций для повышения эффективности обработку озоном проводили в присутствии веществ или физических полей, активирующих молекулу озона и таким образом ускоряющих функционализацию поверхности УНМ. Так, в работе Najafi Е., Kim J.-Y., Han S.-H., Shin K. UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion // Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, vol.284-285, p.373-378, навеску УНТ помещали в ультрафиолетовый генератор озона, в котором при действии жесткого УФ-излучения происходило образование озона из кислорода воздуха и одновременно диссоциация молекул кислорода и озона с отщеплением атомарного кислорода. Периодически порошок УНТ перемешивали для обеспечения равномерной экспозиции. Обработку УНТ в ультрафиолетовом озонаторе проводили в течение от 30 мин до 3 часов при комнатной температуре. В результате получили многократное увеличение растворимости обработанных УНТ в различных полярных органических растворителях. Активация УФ-излучением существенно повысила эффективность озонирования УНТ. Общими существенными признаками рассмотренного и заявляемого способа является обработка УНТ озоном в газовой фазе при наличии фактора, активирующего озон.

Недостатком рассмотренного способа является то, что применение УФ-излучения для активации озона плохо масштабируется, поскольку атомарный кислород является короткоживущей частицей, а УФ-излучение не проходит вглубь слоя УНТ. В результате реакция происходит только в поверхностном слое УНТ. Даже при перемешивании слоя УНТ эффективность использования энергии УФ-излучения будет уменьшаться по мере увеличения масштаба (количества обрабатываемых УНМ). Таким образом, данный способ малопригоден для масштабного производства.

В работе Lia M., Boggs M., Beebe T.P., Huang C.P. Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound // Carbon, 2008, vol.46, p.466-475, углеродные нанотрубки обрабатывали озоном, пропуская его через водную дисперсию УНТ с массовой концентрацией до 0,02%, с одновременной обработкой ультразвуком или без нее. В результате получили УНТ, образующие устойчивые коллоидные растворы в воде. Общими существенными признаками рассмотренного и заявляемого способа является обработка УНТ озоном.

Недостатком рассмотренного способа является то, что углеродные нанотрубки занимают очень большой кажущийся объем и их водную суспензию можно приготовить только с очень малой массовой концентрацией, как правило, не более 0,2-0,5%. При большей концентрации система становится слишком густой и работать с ней сложно. Это затрудняет масштабирование данного процесса. Кроме того, реакция озона с поверхностью УНТ в водном растворе недостаточно эффективна и не позволяет получить функционализованные УНТ с достаточно высокой концентрацией поверхностных окисных групп.

В работе Naeimi H., Mohajeri A., Moradi L., Rashidi A.M. Efficient and facile one pot carboxylation of multiwalled carbon nanotubes by using oxidation with ozone under mild conditions // Applied Surface Science, 2009, vol.256, p.631-635, обработку УНТ озоном проводили в растворе перекиси водорода, барботируя кислород, обогащенный озоном, через суспензию УНТ (1 г) в 30% перекиси водорода (150 мл). Эффективная окислительная функционализация поверхности УНТ достигалась за счет реакции с гидроксильными радикалами, которые образовывались при реакции озона с перекисью водорода. Обработанные УНТ хорошо растворялись в полярных органических растворителях. Общими существенными признаками рассмотренного и заявляемого способа является обработка УНТ озоном.

Недостатком рассмотренного способа является то, что в данном процессе применяется очень большое количество перекиси водорода в расчете на грамм УНТ, что делает этот процесс слишком затратным.

Наиболее близким к заявляемому изобретению является способ, описанный в заявке США №20120041226, МПК B82Y 30/00, C07C 51/255, C07C 65/00, B82Y 40/00, 2012 г., (прототип). Согласно этому способу функционализацию УНТ проводили путем их обработки газовой смесью кислорода и озона, увлажненной парами воды. Было показано, что добавка в систему паров воды значительно увеличивает эффективность окисления поверхности нанотрубок и содержание поверхностных кислородсодержащих групп за счет реакции образования гидроксильных радикалов при взаимодействии озона с водой. Функционализованные таким способом УНТ при введении в эпоксидную композицию давали материал со значительно лучшими механическими характеристиками, чем исходные нефункционализированные УНТ. Общими существенными признаками способа-прототипа и заявляемого способа является обработка углеродных нанотрубок газовой смесью, содержащей озон, в присутствии вещества, ускоряющего окисление поверхности УНТ озоном.

Недостатками рассмотренного способа является недостаточная эффективность окисления поверхности УНТ озоном и увеличения концентрации образующихся кислородсодержащих поверхностных групп в присутствии паров воды.

Задачей изобретения является обеспечение ускорения взаимодействия озона с углеродными нанотрубками и получение функционализированных углеродных нанотрубок с большей концентрацией поверхностных кислородсодержащих групп.

Поставленная задача решается тем, что согласно способу озонирования углеродных наноматериалов, включающему обработку углеродного наноматериала газовой смесью, содержащей озон в присутствии вещества, ускоряющего взаимодействие озона с поверхностью углеродного наноматериала, в качестве вещества, ускоряющего взаимодействие озона с поверхностью углеродного наноматериала, берут сильную минеральную кислоту.

Сильную минеральную кислоту вводят в виде паров в газовую смесь, содержащую озон.

Сильную минеральную кислоту предварительно адсорбируют на поверхности углеродного наноматериала.

В качестве сильной минеральной кислоты берут азотную кислоту.

В качестве сильной минеральной кислоты берут триоксид серы.

Использование в качестве вещества, ускоряющего взаимодействие озона с поверхностью углеродного наноматериала, сильной минеральной кислоты, в качестве которой может быть взята сильная кислота Бренстеда (донор протонов), в частности азотная кислота, или же сильная кислота Льюиса (акцептор электронной пары), в частности триоксид серы, обеспечивает ускорение взаимодействия озона с углеродными нанотрубками и получение функционализированных углеродных нанотрубок с большей концентрацией поверхностных кислородсодержащих групп. Механизм действия добавок сильных кислот на систему озон-углеродный наноматериал в настоящее время неизвестен. Можно предполагать, что в присутствии очень сильных кислот происходит частично образование их комплексов с озоном (протонированная форма озона или комплекс озона с триоксидом серы), окислительно-восстановительный потенциал которых выше, чем у исходного озона, и за счет этого реакционная способность по отношению к поверхности углеродных наноматериалов возрастает.

Далее приводятся данные, доказывающие возможность осуществления заявляемого способа и его эффективность. Для осуществления изобретения применялись следующие исходные вещества:

УНМ «Таунит-МД» (ООО НаноТехЦентр, Тамбов), представляющий собой цилиндрические нанотрубки внешним диаметром 30-80 нм и длиной более 20 мкм.

Безводная азотная кислота, полученная путем отгонки из смеси нитрата натрия с концентрированной серной кислотой согласно известной методике.

Олеум марки ХЧ, ТУ 2612-005-56853252-2003, содержащий 62-65% триоксида серы.

Идентификацию поверхностных кислородсодержащих функциональных групп осуществляли методом ИК-спектроскопии.

Определение концентрации поверхностных функциональных групп в обработанных УНМ проводили методом обратного потенциометрического кислотно-основного титрования. Навеску функционализированных УНМ распределяли ультразвуком в 0,1 M растворе NaOH. Выдерживали полученную дисперсию при перемешивании в течение нескольких часов. Затем оттитровывали 0,1 M раствором соляной кислоты. Количество кислотных функциональных групп (карбоксильных), приходящееся на единицу массы УНМ, определяли по убыли концентрации щелочи.

Заявляемое изобретение иллюстрируется следующими графическими материалами:

На фиг.1 показан ИК-спектр УНМ «Таунит-МД», окисленного смесью озонированного воздуха с парами азотной кислоты;

На фиг.2 показано изменение степени функционализации УНМ «Таунит-МД» карбоксильными группами в ходе окисления смесью озонированного воздуха с парами безводной азотной кислоты (1) и смесью озонированного воздуха с парами воды (2) способом, описанным в заявке США №20120041226;

На фиг.3 показано изменение степени функционализации УНМ «Таунит-МД» карбоксильными группами в ходе окисления смесью озонированного воздуха с триоксидом серы;

На фиг.4 показан ИК-спектр УНМ «Таунит-МД», окисленного смесью озонированного воздуха с триоксидом серы;

На фиг.5 показано изменение степени функционализации карбоксильными группами в ходе озонированным воздухом УНМ «Таунит-МД» с предварительно адсорбированным на его поверхности триоксидом серы;

Далее приводятся конкретные примеры реализации изобретения.

Пример 1

10 г УНМ «Таунит-МД» помещали в проточный сосуд, через который продувалась смесь озонированного воздуха с парами безводной азотной кислоты (кислота Бренстеда) со скоростью 1 м3/ч в течение 1-8 часов.

На фиг.1 представлен ИК-спектр озонированного материала. На нем идентифицируются пики, свидетельствующие о наличии алкильных (2926 и 2854 см-1), гидроксильных (3447 см-1), карбонильных (1637 см-1) и карбоксильных (1719 см-1) групп. Следовательно, данный тип обработки способствует появлению на поверхности УНМ кислородсодержащих поверхностных групп.

По данным титриметрии (фиг.2) уже при 1-часовом окислении данным способом на поверхности УНМ присутствует более 0,1 ммоль/г карбоксильных групп. Для сравнения окисление УНМ «Таунит-МД» проведено смесью озонированного воздуха с парами воды способом, описанным в заявке США №20120041226. С позиций степени функционализации карбоксильными группами заявляемый способ показывает в 2-3 раза большую эффективность.

Пример 2

10 г УНМ «Таунит-МД» помещали в проточный сосуд, через который продувалась смесь озонированного воздуха с триоксидом серы (кислота Льюиса) со скоростью 1 м3/ч в течение 1-8 часов.

В данном случае степень функционализации УНМ, рассчитанная по данным титриметрии, в 1,5-2 раза выше, чем при окислении способом, описанным в заявке США №20120041226 (фиг.3). Количество карбоксильных групп на поверхности УНМ несколько ниже, чем при использовании паров безводной азотной кислоты в качестве активатора процесса (см. пример 1).

Также при озонировании УНМ озоново-воздушной смесью в присутствии трирксида серы несколько изменяется качественный состав функциональных групп присутствующих на поверхности окисленного материала. По данным ИК-спектроскопии (фиг.4) помимо гидроксильных, карбонильных и карбоксильных групп, присутствуют поверхностные образования состава -O-C-O- (1100-1200 см-1). Пик, соответствующий карбоксильной группе (1747 см-1), на спектрах окисленного данным способом материала действительно менее интенсивен, чем при активации процесса парами безводной азотной кислоты.

Таким образом, сильные минеральные кислоты активируют окисление УНМ озоном. Однако состав поверхностных функциональных групп зависит от вида активатора процесса (кислота Бренстеда или кислота Льюиса). Следует ожидать, что оба типа активации применимы. УНМ с большим количеством COOH-групп подойдут в качестве модификаторов к одним типам полимерных матриц, УНМ с поверхностными образованиями (-O-C-O-) - к другим типам.

Пример 3

10 г УНМ «Таунит-МД» помещали в проточный сосуд, через который сначала в течение 1 ч пропускали триоксид серы, полученный испарением олеума, а затем продувался озонированный воздух со скоростью 1 м3/ч в течение 1-8 часов.

Окисленные материалы имели приблизительно такую же степень функционализации карбоксильными группами (фиг.5), как и при обработке способом, приведенном в примере 2.

Следовательно, активация процесса озонирования происходит не только при введении триоксида серы в смесь озона с воздухом, но и при его предварительной адсорбции на поверхности УНМ.

Способ озонирования углеродных нанотрубок (УНТ) путем окислительной обработки воздействием на них озоном, отличающийся тем, что воздействие ведут в присутствии вещества, ускоряющего воздействие озона с их поверхностью, в качестве которого используют трехокись серы или азотную кислоту, в проточном сосуде, причем трехокись серы или азотную кислоту подают в сосуд, содержащий УНТ, перед подачей озонированного воздуха, или же пропускают через проточный сосуд озонированный воздух с добавкой паров трехокиси серы или азотной кислоты со скоростью 1 м/ч в течение 1-8 ч.
СПОСОБ ОЗОНИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ
СПОСОБ ОЗОНИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ
СПОСОБ ОЗОНИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ
СПОСОБ ОЗОНИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ
СПОСОБ ОЗОНИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ
Источник поступления информации: Роспатент

Showing 1-10 of 43 items.
20.01.2013
№216.012.1bae

Реактор для получения углеродных наноматериалов

Реактор для получения углеродных наноматериалов содержит корпус, систему терморегулирования, устройства для ввода и вывода газов, устройства для загрузки катализатора и выгрузки углеродного наноматериала, и акустический активатор. Устройство для загрузки катализатора выполнено в виде решетки,...
Тип: Изобретение
Номер охранного документа: 0002472580
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.26c5

Способ получения объемного наноструктурированного материала

Изобретение относится к нанотехнологии. Сущность изобретения: в способе получения объемного наноструктурированного материала на подложке электроосаждением металла из электролита на подложку из электропроводного материала, индифферентного по отношению к осаждаемому металлу, на катоде образуют...
Тип: Изобретение
Номер охранного документа: 0002475445
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.27da

Способ идентификации материала в насыпном виде и устройство для его осуществления

Изобретение относится к нанотехнологическому оборудованию и предназначено для идентификации материалов в насыпном виде и экспресс-контроля микромеханических, реологических и микро-электромеханических характеристик продукции, их стабильности на разных стадиях производства продукта и отклонений...
Тип: Изобретение
Номер охранного документа: 0002475722
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.29f5

Способ получения металлоксидных катализаторов для выращивания углеродных нанотрубок из газовой фазы

Изобретение относится к способам получения катализаторов для выращивания углеродных нанотрубок из газовой фазы. Описан способ получения металлоксидных катализаторов для выращивания углеродных нанотрубок из газовой фазы, включающий смешивание кристаллогидратов нитратов переходных и непереходных...
Тип: Изобретение
Номер охранного документа: 0002476268
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2e22

Способ приготовления электролита для получения композиционных покрытий на основе металлов

Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных покрытий. Способ в основе включает введение в электролит дисперсной фазы в виде твердых субмикрочастиц, при этом введение осуществляют в виде шипучих растворимых таблеток состава:...
Тип: Изобретение
Номер охранного документа: 0002477341
Дата охранного документа: 10.03.2013
20.05.2013
№216.012.3fbf

Способ получения углеродных наноматериалов

Изобретение относится к технологии получения волокнистых углеродных материалов методом пиролиза ароматических и неароматических углеводородов. Предложенный способ получения углеродных нанотрубок, заключающийся в том, что в реактор, снабженный нагревателем, помещают мелкодисперсный катализатор,...
Тип: Изобретение
Номер охранного документа: 0002481889
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4080

Наномодификатор строительных материалов и способ его получения

Наномодификатор строительных материалов и способ его получения могут быть использованы в строительной технологии. Наномодификатор строительных материалов, включающий смесь, содержащую углеродный наноматериал (УНМ), наполнитель и пластификатор, причем УНМ вводится в виде нанотрубок «Таунит», в...
Тип: Изобретение
Номер охранного документа: 0002482082
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4111

Способ корректировки наномодифицированного электролита

Изобретение относится к области гальванотехники и может быть использовано в электрохимической и химической обработке металлов с применением химических методов. Способ корректировки концентрации углеродных нанотрубок (УНТ) в электролите электрохимического осаждения металлов включает измерение...
Тип: Изобретение
Номер охранного документа: 0002482227
Дата охранного документа: 20.05.2013
20.08.2013
№216.012.5ffd

Способ получения углеродных наноматериалов

Изобретение может быть использовано для получения углеродных нанотрубок и нановолокон. В реактор периодически загружают твердый дисперсный катализатор, впускают газы и подвергают их контактированию с частицами катализатора при температуре синтеза углеродного наноматериала. Загрузка каждой...
Тип: Изобретение
Номер охранного документа: 0002490205
Дата охранного документа: 20.08.2013
20.09.2013
№216.012.6a82

Способ наномодифицирования синтетических полимерных мембран

Изобретение относится к технологии получения композитных мембран для мембранного разделения жидких и газообразных сред с селективным слоем, содержащим многослойные углеродные нанотрубки (УНТ). Способ включает формирование селективного слоя УНМ на полимерной микропористой подложке с применением...
Тип: Изобретение
Номер охранного документа: 0002492917
Дата охранного документа: 20.09.2013
Showing 1-10 of 64 items.
20.01.2013
№216.012.1bae

Реактор для получения углеродных наноматериалов

Реактор для получения углеродных наноматериалов содержит корпус, систему терморегулирования, устройства для ввода и вывода газов, устройства для загрузки катализатора и выгрузки углеродного наноматериала, и акустический активатор. Устройство для загрузки катализатора выполнено в виде решетки,...
Тип: Изобретение
Номер охранного документа: 0002472580
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.26c5

Способ получения объемного наноструктурированного материала

Изобретение относится к нанотехнологии. Сущность изобретения: в способе получения объемного наноструктурированного материала на подложке электроосаждением металла из электролита на подложку из электропроводного материала, индифферентного по отношению к осаждаемому металлу, на катоде образуют...
Тип: Изобретение
Номер охранного документа: 0002475445
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.27da

Способ идентификации материала в насыпном виде и устройство для его осуществления

Изобретение относится к нанотехнологическому оборудованию и предназначено для идентификации материалов в насыпном виде и экспресс-контроля микромеханических, реологических и микро-электромеханических характеристик продукции, их стабильности на разных стадиях производства продукта и отклонений...
Тип: Изобретение
Номер охранного документа: 0002475722
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.29f5

Способ получения металлоксидных катализаторов для выращивания углеродных нанотрубок из газовой фазы

Изобретение относится к способам получения катализаторов для выращивания углеродных нанотрубок из газовой фазы. Описан способ получения металлоксидных катализаторов для выращивания углеродных нанотрубок из газовой фазы, включающий смешивание кристаллогидратов нитратов переходных и непереходных...
Тип: Изобретение
Номер охранного документа: 0002476268
Дата охранного документа: 27.02.2013
20.05.2013
№216.012.3fbf

Способ получения углеродных наноматериалов

Изобретение относится к технологии получения волокнистых углеродных материалов методом пиролиза ароматических и неароматических углеводородов. Предложенный способ получения углеродных нанотрубок, заключающийся в том, что в реактор, снабженный нагревателем, помещают мелкодисперсный катализатор,...
Тип: Изобретение
Номер охранного документа: 0002481889
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4080

Наномодификатор строительных материалов и способ его получения

Наномодификатор строительных материалов и способ его получения могут быть использованы в строительной технологии. Наномодификатор строительных материалов, включающий смесь, содержащую углеродный наноматериал (УНМ), наполнитель и пластификатор, причем УНМ вводится в виде нанотрубок «Таунит», в...
Тип: Изобретение
Номер охранного документа: 0002482082
Дата охранного документа: 20.05.2013
20.08.2013
№216.012.5ffd

Способ получения углеродных наноматериалов

Изобретение может быть использовано для получения углеродных нанотрубок и нановолокон. В реактор периодически загружают твердый дисперсный катализатор, впускают газы и подвергают их контактированию с частицами катализатора при температуре синтеза углеродного наноматериала. Загрузка каждой...
Тип: Изобретение
Номер охранного документа: 0002490205
Дата охранного документа: 20.08.2013
20.09.2013
№216.012.6b36

Способ получения углеродных нанотрубок и реактор для их получения

Группа изобретений может быть использована в химической промышленности. В реактор, содержащий корпус 1, на внешней стороне которого расположены нагревательные элементы 2 и теплоизоляция, загружают твердый дисперсный катализатор. Частицы катализатора приводят при температуре каталитического...
Тип: Изобретение
Номер охранного документа: 0002493097
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6f48

Многофункциональная добавка к автомобильному бензину и содержащая ее топливная композиция

Изобретение относится к многофункциональной добавке к автомобильному бензину, содержащей антидетонационные и другие компоненты, а также модифицирующую добавку. В качестве модифицирующей добавки используются углеродные наноматериалы (УНМ), предпочтительно в виде многослойных нанотрубок (УНТ) в...
Тип: Изобретение
Номер охранного документа: 0002494139
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.7278

Дисперсия углеродных нанотрубок

Изобретение может быть использовано при получении модифицирующих добавок для строительных материалов. Дисперсия углеродных нанотрубок содержит, мас.%: углеродные нанотрубки 1-20; поверхностно-активное вещество - натриевую соль сульфинированного производного нафталина 1-20; аэросил 5-15; вода -...
Тип: Изобретение
Номер охранного документа: 0002494961
Дата охранного документа: 10.10.2013
+ добавить свой РИД